Copyright Information

© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Limited Warranty

The EZ-KIT Lite evaluation system is warranted against defects in materials and workmanship for a period of one year from the date of purchase from Analog Devices or from an authorized dealer.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, and EZ-KIT Lite are registered trademarks of Analog Devices, Inc.

VisualDSP++ is a trademark of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.
Regulatory Compliance

The ADSP-BF535 EZ-KIT Lite evaluation system has been certified to comply with the essential requirements of the European EMC directive 89/336/EEC (inclusive 93/68/EEC) and, therefore, carries the “CE” mark.

The ADSP-BF535 EZ-KIT Lite evaluation system had been appended to the Technical Construction File referenced “DSPTOOLS1” dated December 21, 1997 and was awarded CE Certification by an appointed European Competent Body as listed below.

Technical Certificate No: Z600AN A1.007

Issued by: Technology International (Europe) Limited
41 Shrivenham Hundred Business Park
Shrivenham, Swindon, SN6 8TZ, UK

The EZ-KIT Lite evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-KIT Lite boards in the protective shipping package.
CONTENTS

PREFACE

Purpose of This Manual ... xiv
Intended Audience .. xiv
Manual Contents .. xiv
What's New in This Manual ... xv
Technical or Customer Support .. xvi
Supported Processors ... xvi
Product Information .. xvi
 MyAnalog.com ... xvii
 DSP Product Information ... xvii
 Related Documents ... xviii
Online Documentation .. xix
Printed Manuals ... xix
 VisualDSP++ Documentation Set xix
 Hardware Manuals ... xx
 Data Sheets .. xx
 Contacting DSP Publications .. xx
Notation Conventions .. xxi
CONTENTS

GETTING STARTED

Contents of EZ-KIT Lite Package .. 1-1
PC Configuration ... 1-3
Installation Tasks .. 1-3
 Installing VisualDSP++ and EZ-KIT Lite Software 1-4
 Installing VisualDSP++ License ... 1-5
 Setting Up EZ-KIT Lite Hardware .. 1-5
 Installing EZ-KIT Lite USB Driver ... 1-7
 Windows 98 USB Driver .. 1-8
 Windows 2000 USB Driver ... 1-12
 Windows XP USB Driver ... 1-13
 Verifying Driver Installation .. 1-15
 Starting VisualDSP++ ... 1-16

USING EZ-KIT LITE

EZ-KIT Lite License Restrictions .. 2-2
Memory Map ... 2-3
Using SDRAM Interface ... 2-4
Using Flash Memory ... 2-5
Using Programmable Flag Pins .. 2-6
 Power Management ... 2-7
Example Programs .. 2-8
Using Flash Programmer Utility .. 2-9
Using Background Telemetry Channel ... 2-9
CONTENTS

Using EZ-KIT Lite VisualDSP++ Interface ... 2-10

Trace Window ... 2-10
 Enabling Trace Buffer .. 2-11
 Reading Trace Buffer Data .. 2-11

Performance Monitor ... 2-11

Boot Load ... 2-13

Context Switching .. 2-13
 Using M3 Register ... 2-13
 Using Stack Pointer .. 2-14

Hardware Breakpoints .. 2-14
 Global Breakpoint Options ... 2-15
 Common Breakpoint Attributes ... 2-15
 Data Breakpoints .. 2-15
 Data Breakpoint Specific Attributes .. 2-15
 Instruction Breakpoints ... 2-16
 Instruction Breakpoint Specific Attributes ... 2-16
 Hardware Breakpoints Tips and Tricks .. 2-18
 Latency .. 2-18
 Restrictions .. 2-18

Target Options ... 2-19
 Reset Options ... 2-19
 On Emulator Exit ... 2-20
 Other Options .. 2-20

Restricted Software Breakpoints ... 2-21
EZ-KIT LITE HARDWARE REFERENCE

- System Architecture .. 3-2
- External Bus Interface ... 3-3
- SPORT0 Audio Interface ... 3-3
- Expansion Interface .. 3-4
- JTAG Emulation Port .. 3-5
- Jumper and DIP Switch Settings ... 3-5
 - Audio Input Select Jumper (JP1) ... 3-5
 - Audio Codec Disable Jumper (JP2) 3-6
 - Boot Mode Select Switch (SW1) .. 3-7
 - DSP PLL Setup Switch (SW2) .. 3-7
- LEDs and Push Buttons ... 3-9
 - Programmable Flag LEDs (LED1, LED2, LED3, LED4) 3-9
 - USB Monitor LED (LED5) .. 3-10
 - Power LED (LED6) .. 3-10
 - Reset LEDs (LED7, LED8) .. 3-10
 - Non-Maskable Interrupt Push Button (SW3) 3-11
 - Programmable Flag Push Buttons (SW4, SW5, SW6, SW7) 3-11
 - Reset Push Button (SW8) .. 3-11
- Connectors .. 3-12
 - Expansion Interface (P1, P2, P3) ... 3-12
 - FlashLINK (P4) ... 3-13
 - Audio (P5, P6) .. 3-13
 - USB (P7) .. 3-14
CONTENTS

JTAG (P8) .. 3-14
SPORT0 (P9) .. 3-15
Power Connector (P10) ... 3-15
Specifications .. 3-15
Power Supply .. 3-16
Board Current Measurements ... 3-16
Mechanical Dimensions ... 3-17

BILL OF MATERIALS

INDEX
PREFACE

Thank you for purchasing the ADSP-BF535 EZ-KIT Lite®, Analog Devices (ADI) evaluation system for Blackfin® embedded media processors.

The Blackfin processors are embedded processors that support a Media Instruction Set Computing (MISC) architecture. This architecture is the natural merging of RISC, media functions, and digital signal processing (DSP) characteristics towards delivering signal processing performance in a microprocessor-like environment.

The evaluation board is designed to be used in conjunction with the VisualDSP++™ development environment to test the capabilities of the ADSP-BF535 (formerly ADSP-21535) Blackfin processors. The VisualDSP++ development environment gives you the ability to perform advanced application code development and debug, such as:

- Create, compile, assemble, and link application programs written in C++, C and ADSP-BF535 assembly
- Load, run, step, halt, and set breakpoints in application program
- Read and write data and program memory
- Read and write core and peripheral registers
- Plot memory

Access to the ADSP-BF535 processor from a personal computer (PC) is achieved through a USB port or an optional JTAG emulator. The USB interface gives unrestricted access to the ADSP-BF535 processor and the
evaluation board peripherals. Analog Devices JTAG emulators offer faster communication between the host PC and target hardware. Analog Devices carries a wide range of in-circuit emulation products. To learn more about Analog Devices emulators and DSP development tools, go to http://www.analog.com/dsp/tools/.

ADSP-BF535 EZ-KIT Lite provides example programs to demonstrate the capabilities of the evaluation board.

The VisualDSP++ license provided with this EZ-KIT Lite evaluation system limits the size of a user program to 176 KB of internal memory.

The board's features include:

- Analog Devices ADSP-BF535 processor
 - 300 MHz Core Clock Speed (default)
 - Switch-Configurable Core Clock Speed
 - Switch-Configurable Boot Mode
- USB Debugging Interface
 - This is not the DSP's USB interface.
- Analog Devices AD1885 48 kHz AC'97 SoundMAX® Codec
 - Jumper-Selectable Line-In or Mic-In 3.5 mm Stereo Jack
 - Line-Out 3.5 mm Stereo Jack
- SDRAM
 - 4 M x 32-bit
- Flash Memory
 - 272 K x 16
Preface

- Interface Connectors
 - 14-Pin Emulator Connector for JTAG Interface
 - SPORT0 Connector
 - FlashLINK™ Connector (for Flash memory programming)
 - Expansion Interface Connectors (not populated)

- General-Purpose IO
 - 4 Push Buttons connected to DSP Programmable Flags
 - 1 Push Button connected to DSP Non-maskable Interrupt
 - 4 LEDs connected to DSP Programmable Flags

- Real Time Clock

- Analog Devices ADP3331, ADP3338, ADP3339, and ADP3088 Voltage Regulators

The EZ-KIT Lite board has a Flash memory device that can be used to store user specific boot code. By configuring the boot mode switch (SW1) and by programming the Flash memory, the board can run as a stand-alone unit. For information about using the Flash memory, see "Using Flash Memory" on page 2-5.

SPORT0 is interfaced with an audio codec, allowing you to create audio signal processing applications. SPORT0 is also attached to an off-board connector to allow communication with other serial devices. For information about SPORT0, see "SPORT0 Audio Interface" on page 3-3.

Additionally, the EZ-KIT Lite board provides access to most of the processor’s peripheral ports. Access is provided in the form of uninstalled expansion interface connectors. The processor’s USB pins are brought to the P3 connector but require additional circuitry to function as a USB port. The PCI bus of the DSP is not available at any connector of the EZ-Kit Lite. For information about the expansion interface, see “Expansion Interface” on page 3-4.
Purpose of This Manual

The ADSP-BF535 EZ-KIT Lite Evaluation System Manual provides instructions for using the hardware and installing the software on your PC. This manual provides guidelines for running your own code on the ADSP-BF535 EZ-KIT Lite. The manual also describes the operation and configuration of the evaluation board’s components. Finally, a schematic and a bill of materials are provided as a reference for future ADSP-BF535 board designs.

Intended Audience

This manual is a user’s guide and reference to the ADSP-BF535 EZ-KIT Lite evaluation system. Programmers who are familiar with the Analog Devices Blackfin processor architecture, operation, and programming are the primary audience for this manual.

Programmers who are unfamiliar with Analog Devices Blackfin processors can use this manual in conjunction with the ADSP-BF535 DSP Hardware Reference and the Blackfin Processor Instruction Set Reference, which describe the processor architecture and instruction set. Programmers who are unfamiliar with VisualDSP++ should refer to the VisualDSP++ online Help and the VisualDSP++ user’s or getting started guides. For the locations of these documents, refer to “Related Documents”.
Manual Contents

The manual consists of:

- Chapter 2, “Getting Started” on page 1-1
 Provides software and hardware installation procedures, PC system requirements, and basic board information.

- Chapter 2, “Using EZ-KIT Lite” on page 2-1
 Provides information on the EZ-KIT Lite from a programmer’s perspective and provides an easy-to-access memory map.

- Chapter 3, “EZ-KIT Lite Hardware Reference” on page 3-1
 Provides information on the hardware aspects of the evaluation system.

- Appendix A, “Bill Of Materials” on page A-1
 Provides a list of components used to manufacture the EZ-KIT Lite board.

- Appendix B, “Schematics” on page B-1
 Provides the resources to allow EZ-KIT Lite board-level debugging or to use as a reference design.

This appendix is not part of the online Help. The online Help viewers should go to the PDF version of the ADSP-BF535 EZ-KIT Lite Evaluation System Manual located in the Docs\EZ-KIT Lite Manuals folder on the installation CD to see the schematics.
What’s New in This Manual

This is the third revision of the ADSP-BF535 EZ-KIT Lite Evaluation System Manual. The manual provides an updated listing of related documents.

Technical or Customer Support

You can reach DSP Tools Support in the following ways.

- Visit the DSP Development Tools website at

- Email questions to
 dsptools.support@analog.com

- Phone questions to 1-800-ANALOG D

- Contact your ADI local sales office or authorized distributor

- Send questions by mail to
 Analog Devices, Inc.
 DSP Division
 One Technology Way
 P.O. Box 9106
 Norwood, MA 02062-9106
 USA

Supported Processors

The ADSP-BF535 EZ-KIT Lite evaluation system supports ADSP-BF535 (formerly ADSP-21535) Blackfin Analog Devices embedded processors.
Product Information

You can obtain product information from the Analog Devices website, from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides information about a broad range of products—analogue integrated circuits, amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices website that allows customization of a webpage to display only the latest information on products you are interested in. You can also choose to receive weekly email notification containing updates to the webpages that meet your interests. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com. Registration takes about five minutes and serves as means for you to select the information you want to receive.

If you are already a registered user, just log on. Your user name is your email address.

DSP Product Information

For information on digital signal processors, visit our website at www.analog.com/dsp, which provides access to technical publications, data sheets, application notes, product overviews, and product announcements.
Product Information

You may also obtain additional information about Analog Devices and its products in any of the following ways.

- Email questions or requests for information to dsp.support@analog.com
- Fax questions or requests for information to 1-781-461-3010 (North America) or +49 (0) 89 76903-157 (Europe)

Related Documents

For information on product related development software, see the following publications.

Table 1. Related DSP Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSP-BF535 Blackfin Processor Hardware Reference</td>
<td>Description of internal processor architecture and all register functions.</td>
</tr>
<tr>
<td>Blackfin Processor Instruction Set Reference</td>
<td>Description of all allowed processor assembly instructions.</td>
</tr>
</tbody>
</table>

Table 2. Related VisualDSP++ Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisualDSP++ 3.5 Assembler and Preprocessor Manual for Blackfin Processors</td>
<td>Description of the assembler function and commands for Blackfin processors.</td>
</tr>
<tr>
<td>VisualDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors</td>
<td>Description of the compiler function and commands for Blackfin processors</td>
</tr>
</tbody>
</table>
Preface

Table 2. Related VisualDSP++ Publications (Cont'd)

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VisualDSP++ 3.5 Linker & Utilities Manual</td>
<td>Description of the linker function and commands for 16-bit processors.</td>
</tr>
<tr>
<td>for 16-Bit Processors</td>
<td></td>
</tr>
<tr>
<td>VisualDSP++ 3.5 Loader Manual for 16-Bit</td>
<td>Description of the loader/splitter function and commands for 16-bit processors.</td>
</tr>
<tr>
<td>Processors</td>
<td></td>
</tr>
</tbody>
</table>

The listed documents can be found through online Help or in the Docs folder of your VisualDSP++ installation. Most documents are available in printed form.

If you plan to use the EZ-KIT Lite board in conjunction with a JTAG emulator, refer to the documentation that accompanies the emulator.

Online Documentation

Your software installation kit includes online Help as part of the Windows® interface. These help files provide information about VisualDSP++ and the ADSP-BF535 EZ-KIT Lite evaluation system.

To view VisualDSP++ Help, click on the Help menu item or go to the Windows task bar and select Start --> Programs --> VisualDSP++ --> VisualDSP++ Documentation.

To view ADSP-BF535 EZ-KIT Lite Help, which now is a part of the VisualDSP++ Help system, go the Contents tab of the Help window and select Manuals --> ADSP-BF535 EZ-KIT Lite.

For more documentation, please go to http://www.analog.com/technology/dsp/library.html.
Product Information

Printed Manuals

For general questions regarding literature ordering, call the Literature Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through Analog Devices Customer Service at 1-781-329-4700; ask for a Customer Service representative. The manuals can be purchased only as a kit. For additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to Analog Devices distributors. To get information on our distributors, log onto www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware reference and instruction set reference manuals can be ordered through the Literature Center or downloaded from the Analog Devices website. The phone number is 1-800-ANALOGD (1-800-262-5643). The manuals can be ordered by a title or by product number located on the back cover of each manual.

Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a general rule, printed copies of data sheets with a letter suffix (L, M, N, S) can be obtained from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or downloaded from the website. Data sheets without the suffix can be downloaded from the website only—no hard copies are available. You can ask for the data sheet by part name or by product number.
If you want to have a data sheet faxed to you, the phone number for that service is **1-800-446-6212**. Follow the prompts and a list of data sheet code numbers will be faxed to you. Call the Literature Center first to find out if requested data sheets are available.

Contacting DSP Publications

Please send your comments and recommendations on how to improve our manuals and online Help. You can contact us at dsp.techpubs@analog.com.

Notation Conventions

The following table identifies and describes text conventions used in this manual.

> Additional conventions, which apply only to specific chapters, may appear throughout this document.

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close command (File menu) or OK</td>
<td>Text in bold style indicates the location of an item within the VisualDSP++ environment's and boards' menu system and user interface items.</td>
</tr>
<tr>
<td>{this</td>
<td>that}</td>
</tr>
<tr>
<td>[this</td>
<td>that]</td>
</tr>
<tr>
<td>[this,...]</td>
<td>Optional item lists in syntax descriptions appear within brackets delimited by commas and terminated with an ellipsis; read the example as an optional comma-separated list of this.</td>
</tr>
<tr>
<td>PF9-0</td>
<td>Registers, connectors, pins, commands, directives, keywords, code examples, and feature names are in text with letter gothic font.</td>
</tr>
<tr>
<td>filename</td>
<td>Non-keyword placeholders appear in text with italic style format.</td>
</tr>
</tbody>
</table>
Notation Conventions

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A note providing information of special interest or identifying a related topic. In the online version of this book, the word Note appears instead of this symbol.</td>
</tr>
<tr>
<td></td>
<td>A caution providing information about critical design or programming issues that influence operation of a product. In the online version of this book, the word Caution appears instead of this symbol.</td>
</tr>
</tbody>
</table>
1 GETTING STARTED

This chapter provides the information you need to begin using ADSP-BF535 EZ-KIT Lite evaluation system. For correct operation, install the software and hardware in the order presented in “Installation Tasks” on page 1-3.

The chapter includes the following sections.

- “Contents of EZ-KIT Lite Package” on page 1-1
 Provides a list of the components shipped with this EZ-KIT Lite evaluation system.

- “PC Configuration” on page 1-3
 Describes the minimum requirements for the PC to work with the EZ-KIT Lite evaluation system.

- “Installation Tasks” on page 1-3
 Describes the step-by-step procedures for setting up the hardware and software.

Contents of EZ-KIT Lite Package

Your ADSP-BF535 EZ-KIT Lite evaluation system package contains the following items.

- ADSP-BF535 EZ-KIT Lite board
- EZ-KIT Lite Quick Start Guide
Contents of EZ-KITLite Package

- CD containing:
 - VisualDSP++ for Blackfin processors with a limited license
 - ADSP-BF535 EZ-KIT Lite debug software
 - USB driver files
 - Example programs
 - ADSP-BF535 EZ-KIT Lite Evaluation System Manual (this document)
- Installation Quick Reference Card for VisualDSP++
- Universal 7.5V DC power supply
- USB 2.0 type cable
- Registration card (please fill out and return)

If any item is missing, contact the vendor where you purchased your EZ-KIT Lite or contact Analog Devices, Inc.

![The EZ-KIT Lite evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-KIT Lite boards in the protective shipping package.]

1-2 ADSP-BF535 EZ-KIT Lite Evaluation System Manual
PC Configuration

For correct operation of the VisualDSP++ software and the EZ-KIT Lite, your computer must have the minimum configuration:

<table>
<thead>
<tr>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 98, Windows 2000, Windows XP</td>
</tr>
<tr>
<td>Intel (or comparable) 166 MHz processor</td>
</tr>
<tr>
<td>VGA Monitor and color video card</td>
</tr>
<tr>
<td>2-button mouse</td>
</tr>
<tr>
<td>50 MB free on hard drive</td>
</tr>
<tr>
<td>32 MB RAM</td>
</tr>
<tr>
<td>Full-speed USB port</td>
</tr>
<tr>
<td>CD-ROM Drive</td>
</tr>
</tbody>
</table>

EZ-KIT Lite does not run under Windows 95 or Windows NT.

Installation Tasks

The following task list is provided for the safe and effective use of the ADSP-BF535 EZ-KIT Lite. Follow the instructions in the presented order to ensure correct operation of your software and hardware.

1. VisualDSP++ and EZ-KIT Lite software installation
2. VisualDSP++ license installation
3. EZ-KIT Lite hardware setup
4. EZ-KIT Lite USB driver installation
5. USB driver installation verification
6. VisualDSP++ startup
Installation Tasks

Installing VisualDSP++ and EZ-KIT Lite Software

This EZ-KIT Lite comes with the latest version of VisualDSP++ 3.5 for 16-bit processors. VisualDSP++ installation includes EZ-KIT Lite installations.

To install VisualDSP++ and EZ-KIT Lite software:

1. Insert the VisualDSP++ installation CD into the CD-ROM drive.

2. If Autoplay is enabled on your PC, you see the Install Shield Wizard Welcome screen. Otherwise, choose Run from the Start menu, and enter D:\ADI_Setup.exe in the Open field, where D is the name of your local CD-ROM drive.

3. Follow the on-screen instructions to continue installing the software.

4. At the Custom Setup screen, select your EZ-KIT Lite from the list of available systems and choose the installation directory. Click an icon in the Feature Description field to see the selected system’s description. When you have finished, click Next.

5. At the Ready to Install screen, click Back to change your install options, click Install to install the software, or click Cancel to exit the install.

6. When the EZ-KIT Lite installs, the Wizard Completed screen appears. Click Finish.
Installing VisualDSP++ License

To install the VisualDSP++ license:

1. Locate the serial number provided on the sticker affixed to the CD sleeve and the registration form.

3. The information screen asks if you would like to install a license. Click Yes. The About VisualDSP++ screen appears.

4. Select the Licenses tab and click New.

5. In the Install a New License dialog that opens, select Single User.

6. Fill in the tools serial number in the field provided exactly as it appears on your CD sleeve or registration form and click Next. An information window notifies of successful license installation.

Setting Up EZ-KIT Lite Hardware

The EZ-KIT Lite evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-KIT Lite boards in the protective shipping package.

The ADSP-BF535 EZ-KIT Lite board is designed to run outside your personal computer as a stand-alone unit. You do not have to open your computer case.
Installation Tasks

To connect the EZ-KIT Lite board:

1. Remove the EZ-KIT Lite board from the package. Be careful when handling the board to avoid the discharge of static electricity, which may damage some components.

2. Figure 1-1 shows the default jumper settings, DIP switch, connector locations, and LEDs used in installation. Confirm that your board is set up in the default configuration before continuing.

Figure 1-1. EZ-KIT Lite Hardware Setup
Getting Started

3. Plug the provided power supply into P10 on the EZ-KIT Lite board. Visually verify that the green power LED (LED6) is on. Also verify that the two red reset LEDs (LED7 and LED8) go on for a moment and then go off.

4. Connect one end of the USB cable to an available full speed USB port on your PC and the other end to P7 on the ADSP-BF535 EZ-KIT Lite board.

Installing EZ-KIT Lite USB Driver

The EZ-KIT Lite evaluation system installed on Windows 98, Windows 2000, and Windows XP requires one full-speed USB port.

- “Windows 98 USB Driver” on page 1-8 describes the installation on Windows 98.
- “Windows XP USB Driver” on page 1-13 describes the installation on Windows XP.

The USB driver used by the debug agent is not Microsoft certified because it is intended for a development or laboratory environment, not a commercial environment.
Installation Tasks

Windows 98 USB Driver

Before using the ADSP-BF535 EZ-KIT Lite for the first time, the Windows 98 USB driver must first be installed.

To install the USB driver:

1. Insert the CD into the CD-ROM drive. The connection of the device to the USB port activates the Windows 98 Add New Hardware Wizard, as shown in Figure 1-2.

2. Click Next.

Figure 1-2. Windows 98 – Add New Hardware Wizard
3. Select **Search for the best driver for your device**, as shown in **Figure 1-3**.

![Add New Hardware Wizard](image1)

Figure 1-3. Windows 98 – Searching for Driver

4. Click **Next**.

5. Select **CD-ROM drive**, as shown in **Figure 1-4**.

![Add New Hardware Wizard](image2)

Figure 1-4. Windows 98 – Searching for CD-ROM
Installation Tasks

6. Click Next. Windows 98 locates the WmUSBEx.inf file on the installation CD, as shown in Figure 1-5.

7. Click Next. The Copying Files dialog box appears (Figure 1-6).

Figure 1-5. Windows 98 – Locating Driver

Figure 1-6. Windows 98 – Searching for .SYS File
8. Click **Browse**. The **Open** dialog box, shown in Figure 1-7, appears on the screen.

![Figure 1-7. Windows 98 – Opening .SYS File](image)

10. Click **OK**. The **Copying Files** dialog box (Figure 1-8) appears.

![Figure 1-8. Windows 98 – Copying .SYS File](image)
11. Click **OK**.
 The driver installation is now complete, as shown in Figure 1-9.

![Add New Hardware Wizard](image1)

Figure 1-9. Windows 98 – Completing Software Installation

12. Click **Finish** to exit the wizard.

13. Verify the installation by following the instructions in “Verifying Driver Installation” on page 1-15.

Windows 2000 USB Driver

VisualDSP++ 3.5 installation software pre-installs the necessary drivers for the selected EZ-KIT Lite. The install also upgrades an older driver if such is detected in the system.

Prior to running the VisualDSP++ 3.5 installer, ensure there are no other Hardware Wizard windows running in the background. If there are any wizard windows running, close them before starting the installer.
Getting Started

To install the USB driver:

1. If VisualDSP++ 3.5 is already installed on your system, go to step 2.
 When installing VisualDSP++ 3.5 on Windows 2000, make sure the appropriate EZ-KIT Lite component is selected for the installation.

2. Connect the EZ-KIT Lite device to your PC’s USB port.
 Windows 2000 automatically detects an EZ-KIT device and automatically installs the appropriate driver for the selected device (see step 1).

3. Verify the installation by following the instructions in “Verifying Driver Installation” on page 1-15.

Windows XP USB Driver

VisualDSP++ 3.5 installation software pre-installs the necessary drivers for the selected EZ-KIT Lite. The install also upgrades an older driver if such is detected in the system.

Prior to running the VisualDSP++ 3.5 installer, ensure there are no other Hardware Wizard windows running in the background. If there are any wizard windows running, close them before starting the installer.

To install the USB driver:

1. If VisualDSP++ 3.5 is already installed on your system, go to step 2.
 Otherwise, run VisualDSP++ 3.5 installation. Refer to the Installation Quick Reference Card for VisualDSP++ for a detailed
Installation Tasks

When installing VisualDSP++ 3.5 on Windows XP, make sure the appropriate EZ-KIT Lite component is selected for the installation.

2. Connect the EZ-KIT Lite device to your PC’s USB port. By connecting the device to the USB port you activate the Windows XP Found New Hardware Wizard, shown in Figure 1-10.

3. Select Install the software automatically (Recommended) and click Next.
When Windows XP completes the driver installation for the selected device (see step 1), a window shown in Figure 1-11 appears on the screen.

![Figure 1-11. Windows XP – Completing Driver Installation](image)

4. Verify the installation by following the instructions in “Verifying Driver Installation”.

Verifying Driver Installation

Before you use the EZ-KIT Lite evaluation system, verify that the USB driver software is installed properly:

1. Ensure that the USB cable is connected to the evaluation board and the PC.

2. Verify that the yellow USB monitor LED (LED4) is lit. This signifies that the board is communicating properly with the host PC and is ready to run VisualDSP++.

ADSP-BF535 EZ-KIT Lite Evaluation System Manual 1-15
Installation Tasks

3. Verify that the USB driver software is installed properly. Open Windows **Device Manager** and verify that **ADSP-BF535 EZ-KIT Lite** shows under **ADI Development Tools** with no exclamation point, as in Figure 1-12.

![Device Manager Window](image)

If using an EZ-KIT Lite on Windows 98, disconnect the USB cable from the board before booting the PC. When Windows 98 is booted and you are logged on, re-connect the USB cable to the board. The operation should continue normally from this point.

Starting VisualDSP++

To set up a session in VisualDSP++:

1. Verify that the yellow USB monitor LED (LED5, located near the USB connector) is lit. This signifies that the board is communicating properly with the host PC and is ready to run VisualDSP++.

2. Hold down the **Control** (CTRL) key.
3. Select the **Start** button on the Windows taskbar, then choose **Programs-->VisualDSP-->VisualDSP++**.
 If you are running VisualDSP++ for the first time, go to step 4. If you already have existing sessions, the **Session List** dialog box appears on the screen.

4. Click **New Session**.

5. The **New Session** dialog box, shown in **Figure 1-13**, appears on the screen.

![Figure 1-13. New Session Dialog Box](image)

6. In **Debug Target**, choose **EZ-KIT Lite (ADSP-BFxxx)**.

7. In **Processor**, choose the appropriate processor, **ADSP-BF535**.

8. Type a new target name in **Session Name** or accept the default name.

9. Click **OK** to return to the **Session List**. Highlight the new session and click **Activate**.
Installation Tasks
2 USING EZ-KIT LITE

This chapter provides specific information to assist you with developing programs for the ADSP-BF535 EZ-KIT Lite evaluation board. This information appears in the following sections.

- "EZ-KIT Lite License Restrictions" on page 2-2
 Describes the restrictions of the VisualDSP++ license shipped with the EZ-KIT Lite.

- "Memory Map" on page 2-3
 Defines the ADSP-BF535 EZ-KIT Lite’s memory map.

- "Using SDRAM Interface" on page 2-4
 Defines the register values to configure the on-board SDRAM.

- "Using Flash Memory" on page 2-5
 Describes how to program and use the on-board Flash memory.

- "Using Programmable Flag Pins" on page 2-6
 Describes the function and use of the programmable flag pins on the EZ-KIT Lite evaluation system.

- "Example Programs" on page 2-8
 Provides information about the example programs included in the ADSP-BF535 EZ-KIT Lite evaluation system.

- "Using Flash Programmer Utility" on page 2-9
EZ-KIT Lite License Restrictions

Provides information on the Flash Programmer utility included with the EZ-KIT Lite software.

- “Using Background Telemetry Channel” on page 2-9
 Highlights the advantages of the Background Telemetry Channel features of VisualDSP++.

- “Using EZ-KIT Lite VisualDSP++ Interface” on page 2-10
 Describes the trace, performance monitoring, boot loading, context switching, hardware breakpoints, and target options of the EZ-KIT Lite system.

For more detailed information about programming the ADSP-BF535 Blackfin processor, see the documents referred to as “Related Documents”.

EZ-KIT Lite License Restrictions

The license shipped with the EZ-KIT Lite imposes the following restrictions.

- The user program is limited to 176 KB of the ADSP-BF535 processor’s internal memory space.
- No connections to Simulator or Emulator sessions are allowed.
- Only one EZ-KIT Lite board can be connected to the host PC and debugged at a time.
- The EZ-KIT Lite hardware must be connected and powered up in order to use VisualDSP++ with a kit license.
Memory Map

The ADSP-BF535 processor has internal SRAM that can be used for instruction or data storage. The configuration of internal SRAM is detailed in the ADSP-BF535 Processor Hardware Reference.

The ADSP-BF535 EZ-KIT Lite board contains 272K x 16 bits of external Flash memory. This memory is connected to the processor’s ~AMS0 memory select pin. The external memory interface is also connected to 4M x 32-bit SDRAM memory. This memory is connected to the ~SMS0 pin.

Table 2-1. EZ-KIT Lite Evaluation Board Memory Map

<table>
<thead>
<tr>
<th>Start Address</th>
<th>End Address</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Memory</td>
<td>0x0000 0000</td>
<td>0x00FF FFFF</td>
</tr>
<tr>
<td></td>
<td>0x2000 0000</td>
<td>0x2009 FFFF</td>
</tr>
<tr>
<td></td>
<td>All other locations</td>
<td>Not used</td>
</tr>
<tr>
<td>Internal Memory</td>
<td>0xF000 0000</td>
<td>0xF003 FFFF</td>
</tr>
<tr>
<td></td>
<td>0xFF80 0000</td>
<td>0xFF80 3FFF</td>
</tr>
<tr>
<td></td>
<td>0xFF90 0000</td>
<td>0xFF90 3FFF</td>
</tr>
<tr>
<td></td>
<td>0xFFA0 0000</td>
<td>0xFFA0 3FFF</td>
</tr>
<tr>
<td></td>
<td>0xFFB0 0000</td>
<td>0xFFB0 0FFF</td>
</tr>
<tr>
<td></td>
<td>0xFFC0 0000</td>
<td>0xFFDF FFFF</td>
</tr>
<tr>
<td></td>
<td>0xFFE0 0000</td>
<td>0xFFFF FFFF</td>
</tr>
<tr>
<td></td>
<td>All other locations</td>
<td>Reserved</td>
</tr>
</tbody>
</table>
Using SDRAM Interface

In order to use the 4M x 32 bits (16 M B) of SDRAM memory, the three SDRAM control registers must be initialized. Table 2-2 shows the standard configuration for these registers when using the EZ-KIT Lite in the default configuration. These numbers were derived using the M48LC4M16ATG-75 with a system clock frequency of 120 M Hz.

Table 2-2. SDRAM Default Settings

<table>
<thead>
<tr>
<th>Register</th>
<th>Value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBIU_SDRRC</td>
<td>0x0000074A</td>
<td>RDIV = 1866 clock cycles</td>
</tr>
<tr>
<td>EBIU_SDBCTL</td>
<td>0x00000001</td>
<td>Bank 0 enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bank 0 size = 16 M B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bank 0 column address width = 8 bits</td>
</tr>
<tr>
<td>EBIU_SDGCTL</td>
<td>0x0091998F</td>
<td>32-bit data path</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External buffering timing disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tWR = 2 SCLK cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tRCD = 3 SCLK cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tRP = 3 SCLK cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tRAS = 6 SCLK cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pre-fetch disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CAS latency = 3 SCLK cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SCLK1 disabled</td>
</tr>
</tbody>
</table>

If you are in an EZ-KIT Lite session (that is, not using an emulator), the SDRAM registers are configured automatically through the debugger. The debugger uses the values in Table 2-2 whenever Bank 0 is accessed through the debugger (such as viewing memory windows or loading a program). Clearing the appropriate checkbox on the Target Options dialog box, which is accessible through the Settings pull-down menu, disables this feature and allows manual configuration.

An example program is included in the EZ-KIT installation directory to demonstrate how to set up the SDRAM interface.
Using Flash Memory

The DSM 2150 Flash/PLD chip provides a total of 272K x 16 bits of external Flash memory, arranged into two independent flash arrays (boot and main). The chip also has a series of configuration registers to control IO and PLD. This chip is initially configured with the memory sectors mapped to the DSP, as shown in Figure 2-1.

Figure 2-1. Flash Memory Map

Use PSDsoft Express™ to modify the default settings for the Flash memory. The DSM project must be modified and the Flash memory must be reprogrammed using FlashLINK. The default project files can be found in \VisualDSP\Blackfin\EZ-KITs\ADSP-BF535\PSDConfigFiles. Analog Devices does not provide any support for setting up the DSM 2150 with PSD soft Express or programming it using FlashLINK. E-mail STMicroelectronics at apps.psd@st.com for technical assistance.

To program the Flash memory with your boot code, you must first create a loader file from your DSP code. Set up the loader in VisualDSP++, depending on how you plan to boot the Flash memory. The two possibili-
Using Programmable Flag Pins

The ADSP-BF535 processor has 16 asynchronous Programmable Flag (PF) IO pins. During reset, PF9-0 function as inputs to the internal PLL of the DSP. They are not valid until 120μS after reset. Table 2-3 describes how the PFs can be used after reset.

Table 2-3. Programmable Flag Pin Summary

<table>
<thead>
<tr>
<th>Flag</th>
<th>Connected To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF0</td>
<td>LED4</td>
<td></td>
</tr>
<tr>
<td>PF1</td>
<td>LED1</td>
<td></td>
</tr>
<tr>
<td>PF2</td>
<td>LED2</td>
<td></td>
</tr>
<tr>
<td>PF3</td>
<td>LED3</td>
<td>PF3-0 are connected to the LEDs. These can be used to light an LED when a routine completes.</td>
</tr>
</tbody>
</table>

Next, the loader file must be programmed into the Flash memory. This can be done through the DSP using the VisualDSP++ Flash Programmer utility (see “Using Flash Programmer Utility” on page 2-9) or by using the FlashLink programmer.

The DSM 2150 can be re-programmed using the FlashLINK JTAG programming cable available from STMicroelectronics (www.st.com/psd) for approximately $59. FlashLINK plugs into any PC parallel port. The software development tool, PSDsoft Express, is required to modify the DSM 2150 configuration and to operate the FlashLINK cable. PSDsoft Express can be downloaded at no charge from at www.st.com/psd.
Using EZ-KIT Lite

After a DSP reset, all of the PF pins are initialized as inputs. The direction of the PF is configured by the FIO_DIR Memory Mapped Register (MMR). The PFs are set HIGH (1) using the FIO_FLAG_S and cleared (0) using the FIO_FLAG_C MMRs. For more information on configuring the PF pins, see the ADSP-BF535 Processor Hardware Reference Manual.

All of the PFs can be brought out to the expansion connector P2. The location of the PF nets can be found in “Schematics” on page B-1.

Power Management

The PF14-12 pins allow you to program the core voltage of the processor. The default core voltage is 1.5V. Table 2-4 gives the value of the core voltage corresponding to the state of the PFs.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Connected To</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF4</td>
<td>SW4</td>
<td>PF7-4 are connected to the push buttons on the EZ-KIT Lite board and are for user input. Your routine can monitor and execute specific code when a push button is pressed.</td>
</tr>
<tr>
<td>PF5</td>
<td>SW5</td>
<td>Not used</td>
</tr>
<tr>
<td>PF6</td>
<td>SW6</td>
<td>Not used</td>
</tr>
<tr>
<td>PF7</td>
<td>SW7</td>
<td>Not used</td>
</tr>
<tr>
<td>PF8</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>PF9</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>PF10</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>PF11</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>PF12</td>
<td>PGMGMT0</td>
<td>These are used to change the internal voltage of the DSP. Refer to “Power Management” on page 2-7 for more information.</td>
</tr>
<tr>
<td>PF13</td>
<td>PGMGMT1</td>
<td></td>
</tr>
<tr>
<td>PF14</td>
<td>PGMGMT2</td>
<td></td>
</tr>
<tr>
<td>PF15</td>
<td>U7.11</td>
<td>Connected to the reset of the AD1885 codec (U7). This signal must be output as a high (1) to enable the AD1885 codec.</td>
</tr>
</tbody>
</table>

Table 2-3. Programmable Flag Pin Summary (Cont’d)
When lowering the core voltage of the processor, the frequency of the DSP should also be taken into consideration. As you lower the core voltage, the frequency the core is running at must be decreased.

Example Programs

Example programs are provided with the ADSP-BF535 EZ-KIT Lite to demonstrate various capabilities of the evaluation board. These programs are installed with the EZ-KIT Lite software and can be found in `\VisualDSP\Blackfin\EZ-KITs\ADSP-BF535\Examples`. Please refer to the readme file provided with each example for more information.

<table>
<thead>
<tr>
<th>PF14</th>
<th>PF13</th>
<th>PF12</th>
<th>VDD_INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9V</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.0V</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1.1V</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.2V</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1.3V</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.4V</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1.5V</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1.6V</td>
</tr>
</tbody>
</table>

1 Default settings
Using Flash Programmer Utility

The ADSP-BF535 EZ-KIT Lite evaluation system includes a Flash Programmer utility. The utility allows you to program the Flash memory on the EZ-KIT Lite. The Flash Programmer is installed with VisualDSP++. Once the utility is installed, it is accessible from the Tools pull-down menu.

For more information on the Flash Programmer utility, select Start and choose Programs-->VisualDSP-->VisualDSP++ Documentation.

Using Background Telemetry Channel

The ADSP-BF535 USB debug agent supports the Background Telemetry Channel (BTC), which facilitates data exchange between VisualDSP++ and the processor without interrupting DSP execution.

The BTC allows the user to view a variable as it is updated or changed, all while the processor continues to execute. For increased performance of the BTC, including faster reading and writing, please check out our latest line of DSP emulators at www.analog.com/Analog_Root/productPage/productHome/0,2121,EMULATORS,00.html.

For more information about the Background Telemetry Channel, see the VisualDSP++ 3.5 User's Guide for 16-Bit Processors or online Help.
Using EZ-KIT Lite VisualDSP++ Interface

This section provides information on the following parts of the VisualDSP++ graphical user interface:

- “Trace Window” on page 2-10
- “Performance Monitor” on page 2-11
- “Boot Load” on page 2-13
- “Context Switching” on page 2-13
- “Hardware Breakpoints” on page 2-14
- “Target Options” on page 2-19
- “Restricted Software Breakpoints” on page 2-21

Trace Window

Choosing the Trace command from the View --> Debug Windows menu opens the Trace window (Figure 2-2).

The trace buffer stores a history of the last 16 changes in program flow taken by the program sequencer. View the history to recreate the program sequencer’s most recent path.
The trace buffer does not track changes in flow caused by zero-overhead loops or while in the reset service routine.

To use the trace buffer, ensure your program leaves the reset service routine.

Enabling Trace Buffer

To view trace history in the **Trace** window, first, enable the trace buffer (choose **Enable Trace** from the **Tools** > **Trace** menu). On each halt, the **Trace** window is updated with the changes that occurred since the last halt. Reading the trace buffer destroys the trace buffer's contents and discards the information previously stored before the last run.

Reading Trace Buffer Data

The first column between the square brackets (in blue) indicates the line number in the **Trace** window.

The second column between square brackets, which comes in vertical pairs, shows the trace number. For each discontinuity, the first (top position) is the source trace, and the second (bottom position) is the destination trace. The third column in between square brackets shows the addresses of the instructions. Each address is followed by the assembly instruction.

The trace grows upward. In Figure 2-2 on page 2-10, trace 0 occurred before trace 1, which occurred before trace 2, and so on.

Performance Monitor

Choosing **Performance Monitor** from the **Settings** menu opens the **Performance Monitor Control** dialog box shown in Figure 2-3 on page 2-12. A description of the dialog box appears in Table 2-5 on page 2-12.
The performance monitor is a 32-bit counter that allows you to track occurrences of events within the core and use these to analyze system behavior. When the counter reaches zero, it causes an exception or emulation event, as specified by the Type option.

Table 2-5. Performance Monitor Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enables performance monitoring.</td>
</tr>
<tr>
<td>Mode</td>
<td>Determines the mode of operation for tracking events: $\texttt{Disabled}$ disables the monitor. \texttt{User} tracks while in user mode. $\texttt{Supervisor}$ tracks while in supervisor mode. \texttt{Both} tracks while in both user mode and supervisor mode.</td>
</tr>
<tr>
<td>Type</td>
<td>Determines the type of event occurring on a match: $\texttt{Exception}$ causes an exception to occur. You can install a handler to detect and handle this exception. $\texttt{Emulation}$ halts the DSP.</td>
</tr>
</tbody>
</table>
Using EZ-KIT Lite

Table 2-5. Performance Monitor Options (Cont’d)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>Specifies the tracked event. Refer to your processor’s Hardware Reference for details. Events include stalls, cache hits or misses, loop iterations, branches, interrupts, loads, stores, DMA accesses, and so on.</td>
</tr>
<tr>
<td>Count</td>
<td>Specifies the count. When the 32-bit counter reaches zero, an exception or emulation event occurs. For example, to halt on the third occurrence of an event, load the count with 0xFFFFFFFF and set Type to Emulation. The counter counts up and wraps around, causing the processor to halt as desired.</td>
</tr>
</tbody>
</table>

Boot Load

Choosing Boot Load from the Settings menu runs the processor and performs a hard reset on the board. This command saves you from having to shut down VisualDSP++, reset the EZ-KIT Lite board, and bring up VisualDSP++ again when you want to perform a hard reset.

Use this feature when loading debug boot code from an external part or when you want to put the device into a known state.

Context Switching

The ADSP-BF535 EZ-KIT Lite evaluation system uses two methods to obtain and restore the processor’s context: by using the M3 register or by using the stack.

Using M3 Register

Set Use M3 register for context switching option in the Target Options dialog box, as described on page 2-19.

When this option is selected, VisualDSP++ uses the M3 register for context switches. This renders M3 unavailable for user code since the register will be corrupted. When cleared, VisualDSP++ uses the address pointed to by the Stack Pointer register (SP).
Using EZ-KITLite VisualDSP++ Interface

This method is very straightforward. M3 is chosen as the register for temporary storage and is, therefore, corrupted and cannot be employed in user code. Only use this method when there may be a problem using the stack method.

Using Stack Pointer

If the processor is in the reset service routine at startup, it is assumed the Stack Pointer (SP) is not pointing to a valid address. In this case, the SP is initialized to point to a valid address (0xFFB00FFC), and this location is used for temporary storage.

If the processor is not in the reset service routine, it is assumed the user code has already initialized the SP to a valid address, and this location is used for temporary storage. After the initial startup, the SP is assumed valid. User code can change the SP at any time after leaving the reset service routine, and the new value of the SP is used for context switches. In all cases, the stack is pushed and popped and is non-intrusive to the user code.

This method is less intrusive than the M3 method but is also more prone to problems. First, this method requires at least one available location on the stack. It also assumes user code will not point the SP to an invalid memory location during debugging and that, if not in the reset service routine, the SP has been programmed correctly. Additionally, it may be possible that a user program has not yet left the reset service routine, but the SP is already initialized. In this case, at startup, the processor is detected in the reset service routine still and the user’s SP value would be overwritten.

Hardware Breakpoints

Choosing Hardware Breakpoints from the Settings menu opens the Hardware Breakpoints dialog box. The Hardware Breakpoints dialog box contains four tabbed pages: Data 0-1, Instruction 0-1, Instruction 2-3, and Instruction 4-5.
Hardware breakpoints allow you to set breaks on instructions or data transfers within a user-defined memory range. The two types of breakpoints are described in “Data Breakpoints” on page 2-15 and “Instruction Breakpoints” on page 2-16.

Global Breakpoint Options

Global breakpoint options apply to all hardware breakpoints regardless of type. These options are listed in Table 2-6.

Table 2-6. Global Breakpoint Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable watchpoint unit</td>
<td>Enables the watchpoint unit.</td>
</tr>
<tr>
<td>Enable data AND instruction</td>
<td>Specifies that the processor AND the data and instruction breakpoints to form the composite interrupt. Normally each of the group interrupts are ORed to create a composite interrupt.</td>
</tr>
</tbody>
</table>

Common Breakpoint Attributes

Each tabbed page in the Hardware Breakpoints dialog box has the following common attributes, as described in Table 2-7.

Data Breakpoints

Figure 2-4 on page 2-17 shows the Data 0-1 page of the Hardware Breakpoints dialog box. Two individual data breakpoints can be set. A data breakpoint is triggered by a memory access to a specified address or range. Selecting Enable Range enables the two data breakpoints.

Data Breakpoint Specific Attributes

Data breakpoints have the attributes listed in Table 2-8.
Using EZ-KITLite VisualDSP++ Interface

Instruction Breakpoints

Figure 2-5 shows the Instruction 0-1 page of the Hardware Breakpoint dialog box.

Six individual instruction breakpoints can be set. An instruction breakpoint occurs when an instruction is executed or an instruction in a specified range is executed. Three ranges, each with its own page, can be specified. You must select Enable Range to set up an instruction range.

Instruction Breakpoint Specific Attributes

Each instruction breakpoint have a specific attribute, as described in Table 2-9.

Table 2-7. Common Breakpoint Attributes

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>Enables the individual breakpoint. Ensure that Global watchpoint unit is also selected.</td>
</tr>
</tbody>
</table>
| Enable Range | Each tab (Data 0-1, Instruction 0-1, Instruction 2-3, and Instruction 4-5) is considered a range. Selecting this option on a particular tabbed page specifies a search range instead of a single address. Select the inclusive or exclusive range radio button as desired, for example:

- \(WPIA0 < IA <= WPIA1 \) causes the DSP to break for an address greater than the instruction breakpoint 0 address AND less than or equal to the instruction breakpoint 1 address.
- \(IA <= WPIA0 || IA > WPIA1 \) causes the DSP to break for an address less than or equal to the instruction breakpoint 0 address OR greater than the instruction breakpoint 1 address. |
| Address | Each breakpoint has an associated address. For a single address, this is the address searched when Enable Range is selected. This may be the upper or lower bound address. |
| Skip Count | Each individual breakpoint has an associated skip count. When this count is reached, the breakpoint triggers on the next match of this breakpoint. For example, to break on every third match, enter a skip count of 2. |
Table 2-8. Data Breakpoint Specific Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| Access | Specifies the type of access:
 * Reserved (reserved)*
 * Write* triggers the breakpoint on any write to the specified address.
 * Read* triggers the breakpoint on any read from the specified address.
 * Both* triggers the breakpoint on any write to or read from the specified address. |
| Source | Specifies the source of access:
 * Reserved (reserved)*
 * DAG0* triggers the breakpoint on any access using DAG0 with the specified address.
 * DAG1* triggers the breakpoint on any access using DAG1 with the specified address.
 * Both* triggers the breakpoint on any access using DAG0 or DAG1 with the specified address. |
Hardware Breakpoints Tips and Tricks

Be aware of the following tips and tricks when using hardware breakpoints on Blackfin processors.

Latency

There are no latency cycles for hardware breakpoint matches on the ADSP-BF535 EZ-KIT Lite evaluation system.

Restrictions

When using hardware breakpoints, do not place breaks at any address where a JUMP, CALL, or IDLE instruction is not valid.
Do not attempt to place breaks in the last few instructions of a `DO LOOP` or in the delay slots of a delayed branch. For more information on these illegal locations, see the processor’s Hardware Reference.

Target Options

Choosing **Target Options** from the **Settings** menu opens the **Target Options** dialog box (Figure 2-6). Use target options to control certain aspects of the processor on the ADSP-BF535 EZ-KIT Lite evaluation system.

![Target Options Dialog Box](image)

Figure 2-6. Target Options Dialog Box

Reset Options

Reset options control how the processor behaves when a reset occurs. The reset options are described in **Table 2-10**.

Table 2-10. Reset Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core reset</td>
<td>Resets the core when the debugger executes a reset.</td>
</tr>
<tr>
<td>System reset</td>
<td>Resets the peripherals when the debugger executes a reset.</td>
</tr>
</tbody>
</table>
Using EZ-KITLite VisualDSP++ Interface

On Emulator Exit

This target option controls processor behavior when VisualDSP++ relinquishes DSP control (for example, when exiting VisualDSP++). The option is described in Table 2-11.

Table 2-11. On Emulator Exit Target Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| On Emulator Exit | Determines the state the DSP is left in when the emulator relinquishes control of the DSP.
| | Reset DSP and Run causes the DSP to reset and begin execution from its reset vector location.
| | Run from current PC causes the DSP to begin running from its current location.
| | Stall the DSP resets the DSP and then writes a JUMP 0 to the first location in internal memory so the DSP is stuck in a tight loop after exiting. |

Other Options

Table 2-12 describes other available target options.

Table 2-12. Miscellaneous Target Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset before loading executable</td>
<td>Resets registers before loading a DSP executable. Clear this option when DSP registers must not change to their reset values when a file load occurs.</td>
</tr>
<tr>
<td>Verify all writes to target memory</td>
<td>Validates all memory writes to the DSP. After each write, a read is performed and the values are checked for a matching condition. Enable this option during initial program development to locate and fix initial build problems (such as attempting to load data into non-existent memory). Clear this option to increase performance while loading executable files, since VisualDSP++ does not perform the extra reads that are required to verify each write.</td>
</tr>
</tbody>
</table>
Restricted Software Breakpoints

The EZ-KIT Lite development system restricts breakpoint placement when certain conditions are met. That is, under some conditions, breakpoints cannot be placed effectively. Such conditions depend on bus architecture, pipeline depth, and ordering of the EZ-KIT Lite and its target processor.
Using EZ-KIT Lite VisualDSP++ Interface
3 EZ-KIT LITE HARDWARE REFERENCE

This chapter describes the hardware design of the ADSP-BF535 EZ-KIT Lite board. The following topics are covered.

- “System Architecture” on page 3-2
 Describes the configuration of the ADSP-BF535 (formerly ADSP-21535) processor and explains how the board components interface with the processor.

- “Jumper and DIP Switch Settings” on page 3-5
 Shows the location and describes the function of the configuration jumpers and DIP switches.

- “LEDs and Push Buttons” on page 3-9
 Shows the location and describes the function of the LEDs and push buttons.

- “Connectors” on page 3-12
 Shows the location and gives the part number for all of the connectors on the board. Also, the manufacturer and part number information is given for the mating parts.

- “Specifications” on page 3-15
 Gives the requirements for powering the board.
This section describes the processor’s configuration on the EZ-KIT Lite board.

The EZ-KIT Lite has been designed to demonstrate the capabilities of the ADSP-BF535 Blackfin processor. The processor has a default core voltage of 1.5V. Refer to “Power Management” on page 2-7 for more information about changing the core voltage without halting the processor. The voltage of the processor’s peripheral interface is 3.3V.

A 20 MHz oscillator supplies the input clock to the processor. The speed at which the core and peripherals operate is determined by the configuration of the multiplier select switch (SW2) at reset. (See “DSP PLL Setup

Figure 3-1. System Architecture

The EZ-KIT Lite has been designed to demonstrate the capabilities of the ADSP-BF535 Blackfin processor. The processor has a default core voltage of 1.5V. Refer to “Power Management” on page 2-7 for more information about changing the core voltage without halting the processor. The voltage of the processor’s peripheral interface is 3.3V.

A 20 MHz oscillator supplies the input clock to the processor. The speed at which the core and peripherals operate is determined by the configuration of the multiplier select switch (SW2) at reset. (See “DSP PLL Setup
Switch (SW 2)” on page 3-7.) By default, the processor core runs at 300 MHz and the peripheral interface runs at 120 MHz. A 32.768 kHz crystal supplies the Real Time Clock (RTC) inputs of the processor.

The EZ-KIT Lite board can be configured to boot in all of the possible ADSP-BF535 boot modes. For information about configuring the boot mode, see “Boot Mode Select Switch (SW 1)” on page 3-7.

External Bus Interface

The External Bus Interface Unit (EBIU) is connected to 4M x 32 bits of SDRAM (16 MB). This memory is connected to the synchronous memory select 0 (~SMS0) pin. Refer to “Using SDRAM Interface” on page 2-4 for information about configuring the SDRAM.

The EBIU is also connected to 272K x 16 bits of Flash memory. This memory is connected to the asynchronous memory select (~AMS0) pin. The processor can use this memory for both booting and storing information during normal operation. Refer to “Using Flash Memory” on page 2-5 for information about using the Flash memory.

All of the address, data, and control signals are available externally via the extender connectors (P3-1). The pin-out of these connectors can be found in “Schematics” on page B-1.

SPORT0 Audio Interface

SPORT0 is connected to the AD1885 SoundMAX codec (U7). Two 3.5mm stereo jacks (P5, P6) allow audio to be input and output. You can supply an audio input to the Codec Microphone Input Channel (MIC1) or to the stereo LINE_IN input channel. The jumper settings of JP1 determine the codec channel driven by the input jack (P5). For information about configuring JP1, see “Audio Input Select Jumper (JP1)” on page 3-5.
SPORT0 is also routed to an off-board connector (P9). When using the off-board connector, the codec must be held in reset, so that it does not drive any of the SPORT0 signals. The codec can be held in reset by driving PF15 low or by setting up JP2 to always hold the codec in reset (see “Audio Codec Disable Jumper (JP2)” on page 3-6). PF15 must be pulled Hi (1) for the codec to function.

\(\text{TCLKD and RCLKD pins are shorted together using R114 and R118.} \)

Expansion Interface

The expansion interface consists of the footprints for three connectors. Table 3-1 shows the interfaces each connector provides. For the exact pin-out of these connectors, refer to “Schematics” in Appendix B, Schematics. Analog Devices does not populate these connectors or provide any additional support for this interface. The mechanical locations of these connectors can be found in “Mechanical Dimensions” on page 3-17.

Table 3-1. Connector Interfaces

<table>
<thead>
<tr>
<th>Connector</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>5V, GND, Address, Data</td>
</tr>
<tr>
<td>P2</td>
<td>3.3V, GND, EBU1 control signals, PF15-0, SPI1-0, SPORT1, UART1-0, TMR2-0, NMI</td>
</tr>
<tr>
<td>P3</td>
<td>1.5V, GND, Reset, USB, CLKOUT, SLEEP</td>
</tr>
</tbody>
</table>

Limits to the current and to the interface speed must be taken into consideration if you use this interface. The maximum current limit is dependent on the capabilities of the regulator used. Additional circuitry can also add extra loading to signals, decreasing their maximum effective speed.

\(\text{Analog Devices does not support and is not responsible for the effects of additional circuitry.} \)
JTAG Emulation Port

The JTAG emulation port allows an emulator to access the processor’s internal and external memory through a 6-pin interface. The JTAG emulation port of the DSP is also connected to the USB debugging interface (Note that this is not the processor’s USB interface). When an emulator is connected to the board at P8, the USB debugging interface is disabled. See “JTAG (P8)” on page 3-14 for more information about the JTAG connector.

To learn more about available emulators, contact Analog Devices (see “Product Information”).

Jumper and DIP Switch Settings

This section describes the function of all the jumpers and DIP switches. The following figure (Figure 3-2 on page 3-6) shows the location of all the jumpers and DIP switches.

Audio Input Select Jumper (JP1)

The audio input jack (P5) can be connected to the MIC1 or the LINEIN input channels of the AD1885 codec (U7). When the JP1 jumpers connect pins 1 and 3 and pins 2 and 4, P3 connects to the mono MIC1 channel. When the jumpers connect pins 3 and 5 and pins 4 and 6, P5 connects to the stereo LINE_IN channel of the AD1885 codec. These jumper settings are illustrated in Figure 3-2 on page 3-6. (The words MIC and LINE are on the board as a reference)
Jumper and DIP Switch Settings

Audio Codec Disable Jumper (JP2)

Placing a jumper between pins 1 and 2 of JP2 holds the AD1885 in reset, preventing it from driving signals to the serial port. When a jumper is between pins 2 and 3 of JP2, the AD1885 is held in reset until PF15 is set to an output and is asserted. These positions are labeled on the board as DIS and ENA 1885.

Table 3-2. Audio Input Jumper Settings (JP1)

<table>
<thead>
<tr>
<th>Stereo LINE IN (DEFAULT)</th>
<th>Mono MIC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC JP1 LINE 2</td>
<td>6</td>
</tr>
<tr>
<td>MIC JP1 LINE 1</td>
<td>5</td>
</tr>
<tr>
<td>MIC JP1 LINE 2</td>
<td>6</td>
</tr>
<tr>
<td>MIC JP1 LINE 1</td>
<td>5</td>
</tr>
</tbody>
</table>
Boot Mode Select Switch (SW1)

The boot mode select switch determines how the processor boots. Table 3-3 shows the switch settings for the boot modes.

SPI ROM is not available on the EZ-KIT Lite.

Table 3-3. Boot Mode Select Switch

<table>
<thead>
<tr>
<th>BMODE0 Pin 1</th>
<th>BMODE1 Pin 2</th>
<th>BMODE2 Pin 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0n</td>
<td>0n</td>
<td>0n</td>
<td>Execute from 16 bit external memory (no boot).</td>
</tr>
<tr>
<td>Off¹</td>
<td>0n¹</td>
<td>0n¹</td>
<td>Boot from 8-bit EPROM¹</td>
</tr>
<tr>
<td>0n</td>
<td>Off</td>
<td>0n</td>
<td>Boot from SPI0 ROM (8-bit addresses)</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
<td>0n</td>
<td>Boot from SPI0 ROM (16-bit addresses)</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>Off</td>
<td>All others reserved</td>
</tr>
</tbody>
</table>

1 Default settings

DSP PLL Setup Switch (SW2)

The processor’s Phase Lock Loop (PLL) multiplies the 20 MHz input clock by a multiplication factor to set the core clock speed of the DSP. Internal to the processor the Programmable Flag pins, PF9-0, are multiplexed with the PLL setup signals, SSEL6-0, DF, and MSEL1-0.

During reset, the function of the pins is to setup the PLL. At this time, the signals are attached to the SW2 switch and determine the core and external clock speeds of the processor. The SW2 switch drives the processor pins during reset and, for approximately 120mS, after reset. Once this time has elapsed, the PFs are no longer connected to the SW2 but are connected to the general-purpose IO (LEDs, push buttons) on the board. This is done with an external 2-to-1 multiplexer and is provided for flexibility when using the EZ-KIT Lite.
Jumper and DIP Switch Settings

The following table shows the switch position that corresponds to a processor pin.

Table 3-4. PLL Setup Switch (SW2) Functions

<table>
<thead>
<tr>
<th>DSP Pin</th>
<th>Switch Position</th>
<th>DSP Pin</th>
<th>Switch Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEL0</td>
<td>1</td>
<td>MSEL6</td>
<td>7</td>
</tr>
<tr>
<td>MSEL1</td>
<td>2</td>
<td>DF</td>
<td>8</td>
</tr>
<tr>
<td>MSEL2</td>
<td>3</td>
<td>SSELO</td>
<td>9</td>
</tr>
<tr>
<td>MSEL3</td>
<td>4</td>
<td>SSEL1</td>
<td>10</td>
</tr>
<tr>
<td>MSEL4</td>
<td>5</td>
<td>None</td>
<td>11</td>
</tr>
<tr>
<td>MSEL5</td>
<td>6</td>
<td>Bypass</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 3-3 shows the default setting for SW2. This will produce a 300 MHz core clock speed and a 120 MHz peripheral interface speed. For more information about setting up the multiplication factors, refer to the Managing DSP Clocks section of the ADSP-BF535 Processor Hardware Reference.

Figure 3-3. Default PLL Setup Switch Settings (SW2)

A switch setting of ON supplies a logic low (0) on the corresponding processor pin.
LEDs and Push Buttons

This section describes the functionality of the LEDs and push buttons. Figure 3-4 shows the locations of the LEDs and push buttons.

Programmable Flag LEDs (LED1, LED2, LED3, LED4)

Four LEDs are connected to four of the processor’s Programmable Flag (PF) pins, PF3-0. These LEDs are active HIGH and are lit by an output of “1” from the processor. Refer to “Using Programmable Flag Pins” on page 2-6 for more information about using of the PFs when programming the processor.
LEDs and Push Buttons

Table 3-5. Programmable Flag LEDs

<table>
<thead>
<tr>
<th>LED Reference Designator</th>
<th>DSP Programmable Flag Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED4</td>
<td>PF0</td>
</tr>
<tr>
<td>LED1</td>
<td>PF1</td>
</tr>
<tr>
<td>LED2</td>
<td>PF2</td>
</tr>
<tr>
<td>LED3</td>
<td>PF3</td>
</tr>
</tbody>
</table>

USB Monitor LED (LED5)

The USB Monitor LED (LED5) indicates that USB communication has been initialized successfully and you may connect to the processor using a VisualDSP++ EZ-KIT Lite session. This should take approximately 15 seconds. If the LED does not light, try cycling power on the board and/or reinstalling the USB driver (see “Installing EZ-KIT Lite USB Driver” on page 1-7).

Power LED (LED6)

When LED6 is lit (green), it indicates that power is being properly supplied to the board.

Reset LEDs (LED7, LED8)

When LED8 is lit, it indicates that master reset for all the major ICs is active. When LED7 is lit, the USB interface chip (U11) is being reset. The USB chips only reset on power-up, or if USB communication has not been initialized.
Non-Maskable Interrupt Push Button (SW3)

The SW3 button is connected to the Non-maskable Interrupt (NMI) pin of the processor. When pressed, the processor vectors to the NMI interrupt vector.

Programmable Flag Push Buttons (SW4, SW5, SW6, SW7)

Four push buttons are provided for general-purpose user input. SW7-4 connect to the processor’s Programmable Flag (PF) pins, PF7-4. The push buttons are active HIGH and, when pressed, send a HIGH (1) to the processor. Refer to “Using Programmable Flag Pins” on page 2-6 for more information about the use of the PFs when programming the DSP. Table 3-6 shows the PF signal and the switch it is connected to.

Table 3-6. Programmable Flag Switches

<table>
<thead>
<tr>
<th>Push Button Reference Designator</th>
<th>DSP Programmable Flag Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW4</td>
<td>PF4</td>
</tr>
<tr>
<td>SW5</td>
<td>PF5</td>
</tr>
<tr>
<td>SW6</td>
<td>PF6</td>
</tr>
<tr>
<td>SW7</td>
<td>PF7</td>
</tr>
</tbody>
</table>

Reset Push Button (SW8)

The RESET push button resets all of the ICs on the board. This reset does not affect the USB interface chip (U11) unless communication has not been initialized with a PC. After USB communication has been initialized, the only way to reset the USB is by powering down the board.
Connectors

This section describes the connector functionality and provides information about mating connectors. The locations of the connectors are shown in Figure 3-5 on page 3-10.

Figure 3-5. Connector Locations

Expansion Interface (P1, P2, P3)

Three board-to-board connector footprints provide signals for most of the DSP peripheral interfaces. Analog Devices does not populate these connectors or provide any additional support for this interface. For more information on the expansion interface, see “Expansion Interface” on page 3-4. Contact Samtec for the availability and pricing of the connectors.
FlashLINK (P4)

The FlashLINK connector allows you to configure and program the STMicroelectronics DSM2150 flash/PLD chip. See “Using Flash Memory” on page 2-5 for more information about using the FlashLINK connector.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 Position 0.05" Spacing (P1, P2, P3)</td>
<td>Samtec</td>
<td>SFM-145-01-S-D</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 Position 0.05" Spacing (Through Hole)</td>
<td>Samtec</td>
<td>TFM-145-x1 Series</td>
</tr>
<tr>
<td>90 Position 0.05" Spacing (Surface Mount)</td>
<td>Samtec</td>
<td>TFM-145-x2 Series</td>
</tr>
<tr>
<td>90 Position 0.05" Spacing (Low Cost)</td>
<td>Samtec</td>
<td>TFC-145 Series</td>
</tr>
</tbody>
</table>

Audio (P5, P6)

There are two 3.5 mm stereo audio jacks: one input and one output.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 mm stereo jack (P5, P6)</td>
<td>Shogyo</td>
<td>SJ-0359AM-5</td>
</tr>
</tbody>
</table>
Connectors

USB (P7)

The USB connector is a standard Type B USB receptacle. This connector is used to debug the processor and is not connected to the processor’s USB interface.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5 mm stereo plug to 3.5 mm stereo cable</td>
<td>Radio Shack</td>
<td>42-2387A</td>
</tr>
</tbody>
</table>

JTAG (P8)

The JTAG header is the connecting point for a JTAG in-circuit emulator pod. When an emulator is connected to the JTAG header, the USB debug interface is disabled.

- Pin 3 is missing to provide keying. Pin 3 in the mating connector should have a plug.
- When using an emulator with the EZ-KIT Lite board, follow the connection instructions provided with the emulator.
SPORT0 (P9)

SPORT0 is connected to a 20-pin connector. The pin-out for this connector can be found in “Schematics” on page B-1. Contact AMP for pricing and availability on these connectors.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 position AMPMODU system 50 receptacle (P9)</td>
<td>AMP</td>
<td>104069-1</td>
</tr>
</tbody>
</table>

Mating Connectors

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 position AMPMODU ribbon cable connector</td>
<td>AMP</td>
<td>111196-4</td>
</tr>
</tbody>
</table>

Power Connector (P10)

The power connector provides all of the power necessary to operate the EZ-KIT Lite board.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 mm Power Jack (P10)</td>
<td>Switchcraft</td>
<td>RAPC712</td>
</tr>
<tr>
<td></td>
<td>Digi-key</td>
<td>SC1152-N D</td>
</tr>
</tbody>
</table>

Mating Power Supply (shipped with EZ-KIT Lite)

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5V Power Supply</td>
<td>GlobTek</td>
<td>TR9CC2000LCP-Y</td>
</tr>
</tbody>
</table>

Specifications

This section provides the requirements for powering the board and the mechanical dimensions of the board.
Specifications

Power Supply

The power connector supplies DC power to the EZ-KIT Lite board. Table 3-7 shows the power connector pin-out.

Table 3-7. Power Connectors

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center pin</td>
<td>+7.5 VDC@2amps</td>
</tr>
<tr>
<td>Outer Ring</td>
<td>GND</td>
</tr>
</tbody>
</table>

Board Current Measurements

The ADSP-BF535 EZ-KIT Lite board provides eight zero-ohm resistors that may be removed to measure current draw. Table 3-8 shows the resistor number, the voltage plane, and a description of each component on the plane.

Table 3-8. Current Measurement Resistors

<table>
<thead>
<tr>
<th>Resistor</th>
<th>Voltage Plane</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2</td>
<td>VDD_RTC</td>
<td>DSP Real Time Clock Supply</td>
</tr>
<tr>
<td>R3</td>
<td>VDD_EXT</td>
<td>DSP External Interface Supply</td>
</tr>
<tr>
<td>R6</td>
<td>VDD_INT</td>
<td>DSP Internal Interface Supply</td>
</tr>
<tr>
<td>R7</td>
<td>VDD_PCIEXT</td>
<td>DSP PCI Interface Supply</td>
</tr>
<tr>
<td>R8</td>
<td>VDD_PLL</td>
<td>DSP Phase Lock Loop Supply</td>
</tr>
<tr>
<td>R110</td>
<td>5V</td>
<td>5V Supply</td>
</tr>
<tr>
<td>R111</td>
<td>3V</td>
<td>3V supply to all non DSP-related components</td>
</tr>
<tr>
<td>R113</td>
<td>3V_DSP</td>
<td>3V to DSP-related components</td>
</tr>
</tbody>
</table>
Mechanical Dimensions

Figure 3-6 shows the location of the mounting holes as well as the PIN1 of each of the expansion connectors.

Figure 3-6. Mechanical Drawing
Specifications
A BILL OF MATERIALS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Quantity</th>
<th>Reference Design</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>U9-10, U19</td>
<td>74LVC14A SOIC14 HEX-INVER-SCHMITT-TRIGGER</td>
<td>TI</td>
<td>74LVC14AD</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>U24</td>
<td>IDT 74FCT3244APY SSO P20 3.3V-OCTAL-BUFFER</td>
<td>IDT</td>
<td>IDT 74FCT3244APY</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Y2</td>
<td>24.576M HZ SMT OSC005 CRYSTAL</td>
<td>EPSON</td>
<td>MA505 24.576M-C2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>U11</td>
<td>CY7C64603-128 PQFP128 USB-TX/RX MICROCONTROLLER</td>
<td>CYPRESS</td>
<td>CY7C64603-128NC</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Q1</td>
<td>MMBT4401 SOT-23 NPN TRANSISTOR 200MA</td>
<td>FAIRCHILD</td>
<td>MMBT4401</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>U13</td>
<td>74LVCO0AD SOIC14</td>
<td>PHILIPS</td>
<td>74LVCO0AD</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>U25</td>
<td>24LC00-SN SOIC8 128 BIT SERIAL EEPROM</td>
<td>MICROCHIP</td>
<td>24LC00-SN</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>VR3</td>
<td>ADP3331ART SOT23-6 ADJ 200mA REGULATOR</td>
<td>ANALOG DEVICES</td>
<td>ADP3331ART</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>M1-3</td>
<td>BSS123 SOT23D NMOS FET</td>
<td>FAIRCHILD</td>
<td>BSS123</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>U12</td>
<td>CY7C1019BV33-15VC SOJ32 128K X 8 SRAM</td>
<td>CYPRESS</td>
<td>CY7C1019BV33-12VC</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>U16</td>
<td>SN 74AH C1G02 SOT23-5 SINGLE-2 INPUT-NOR</td>
<td>TI</td>
<td>SN74AH C1G02DBVR</td>
</tr>
<tr>
<td>Reference</td>
<td>Quantity</td>
<td>Description</td>
<td>Reference Design</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>SN74LV164A SOIC14 8-BIT-PARALLEL-SERIAL</td>
<td>U17</td>
<td>TI</td>
<td>SN74LV164AD</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>CY7C4201V-15AC TQFP32 64-BYTE-FIFO</td>
<td>U18</td>
<td>CYPRESS</td>
<td>CY7C4201V-15AC</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>12.0MHZ THROSC006 CRYSTAL</td>
<td>Y3</td>
<td>DIGI</td>
<td>300-6027-ND</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>MT48LC4M16TSOP54 4M X16-SDRAM-133MHz</td>
<td>U5-6</td>
<td>MICRON</td>
<td>MT48LC4M16A2TG-75</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>32.768kHz THROSC007 CRYSTAL</td>
<td>Y1</td>
<td>ECPLITEK</td>
<td>EC38T</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>SN74AHCG00SOT23-5 SINGLE-2-INPUT-NAND</td>
<td>U26</td>
<td>TI</td>
<td>SN74AHCG00DBVR</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>21535 BRD DSM2150F5V U4""BLKFIN160OBJ SUM 876F5F1</td>
<td>U4</td>
<td>ST MICRO</td>
<td>DSM2150F5V</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>1000pF 50V 5% 1206 CERM</td>
<td>C25-26</td>
<td>AVX</td>
<td>12065A102JAT2A</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>0.1uF 50V 10% 1206 CERM</td>
<td>C8-9</td>
<td>PHILIPS</td>
<td>12062R104K9BB2</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>ADM708SAR SOIC8 VOLTAGE-SUPervisor</td>
<td>U23</td>
<td>ANALOG DEVICES</td>
<td>ADM708SAR</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>AD1885JST LQFP48 AC97 STEREO CODEC</td>
<td>U7</td>
<td>ANALOG DEVICES</td>
<td>AD1885JST</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>ADP3338AKC-33 SOT-223 3.3V-1.0AMP REGULATOR</td>
<td>VR1-2</td>
<td>ANALOG DEVICES</td>
<td>ADP3338AKC-3.3</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>ADP3339AKC-5 SOT-223 5V-1.5A REGULATOR</td>
<td>VR4</td>
<td>ANALOG DEVICES</td>
<td>ADP3339AKC-5-REEL</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>ADP3088 MSOP8 500MA-BUCK-REGULATOR</td>
<td>VR5</td>
<td>ANALOG DEVICES</td>
<td>ADP3088ARM-REEL</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>ADSP-21535PKB-300 PBGA260 308KBYTES-BLACKFIN</td>
<td>U1</td>
<td>ANALOG DEVICES</td>
<td>ADSP-21535PKB-300</td>
</tr>
</tbody>
</table>
Bill Of Materials

<table>
<thead>
<tr>
<th>Reference</th>
<th>Quantity</th>
<th>Description</th>
<th>Reference Design</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>5</td>
<td>RUBBER FEET BLACK</td>
<td>MH1-5</td>
<td>MOUSER</td>
<td>517-SJ-5018BK</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>PWR 2.5MM JACK CON005 RA</td>
<td>P10</td>
<td>SWITCH-CRAFT</td>
<td>SC1152-N-D12</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>USB 4PIN CON009 USB</td>
<td>P7</td>
<td>MILL-MAX</td>
<td>897-30-004-90-00000</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>.05 10X2 CON014 RA</td>
<td>P9</td>
<td>AMP</td>
<td>104069-1</td>
</tr>
<tr>
<td>32</td>
<td>6</td>
<td>SPST-MOMENTARY SWT013 6MM</td>
<td>SW3-8</td>
<td>PANASONIC</td>
<td>EVQ-PAD04M</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>DIP12 SWT014</td>
<td>SW2</td>
<td>DIGI-KEY</td>
<td>CKN3063-N-D</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>DIP3 SWT015</td>
<td>SW1</td>
<td>DIGI-KEY</td>
<td>CKN3055-N-D</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>IDC 7X2 IDC7X2SRDRA RIGHT ANGLE SHROUDED</td>
<td>P4</td>
<td>MOLEX</td>
<td>70247-1401</td>
</tr>
<tr>
<td>36</td>
<td>23</td>
<td>0.00 1/8W 5% 1206</td>
<td>R2-3, R6-12, R21, R63-64, R77, R97, R111-118, R127</td>
<td>YAGEO</td>
<td>0.0ECT-ND</td>
</tr>
<tr>
<td>37</td>
<td>2</td>
<td>220uF 10V 20% E ELEC</td>
<td>CT7-8</td>
<td>SPRAGUE</td>
<td>293D227X9010E2T</td>
</tr>
<tr>
<td>38</td>
<td>5</td>
<td>AMBER-SMT LED001 GULL-WING</td>
<td>LED1-5</td>
<td>PANASONIC</td>
<td>LN1461C-TR</td>
</tr>
<tr>
<td>39</td>
<td>2</td>
<td>22pF 50V 5% 805 CERM</td>
<td>C5-C6</td>
<td>AVX</td>
<td>08055A220JAT</td>
</tr>
<tr>
<td>Reference</td>
<td>Quantity</td>
<td>Description</td>
<td>Reference Design</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>40</td>
<td>79</td>
<td>0.01uF 100V 10% 805</td>
<td>C19, C30-92, C94, C96-97, C99-109, C116</td>
<td>AVX</td>
<td>08051C103KAT2A</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>0.22uF 25V 10% 805</td>
<td>C114</td>
<td>AVX</td>
<td>08053C224FAT</td>
</tr>
<tr>
<td>42</td>
<td>5</td>
<td>0.1uF 50V 10% 805</td>
<td>C3, C24, C27-29</td>
<td>AVX</td>
<td>08055C104KAT</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>10uF 16V 10% C TANT</td>
<td>CT15-18</td>
<td>SPRAGUE</td>
<td>293D106X9025C2T</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>10K 100MW 5% 805</td>
<td>R1, R13-19, R31-32, R37, R44-45, R47-54, R57, R59-61, R66, R68, R78-81</td>
<td>AVX</td>
<td>CR21-103J-T</td>
</tr>
<tr>
<td>45</td>
<td>44</td>
<td>10K 100MW 5% 805</td>
<td>R83-84, R87-88, R90-93, R105, R120-122, R125</td>
<td>D ALE</td>
<td>CRCW0805-103JRT1</td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>33 100M W 5% 805</td>
<td>R4-5, R46, R119</td>
<td>AVX</td>
<td>CR21-330JTR</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>4.7K 100M W 5% 805</td>
<td>R55-56, R58, R62, R107</td>
<td>AVX</td>
<td>CR21-4701F-T</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>1M 100M W 5% 805</td>
<td>R41</td>
<td>AVX</td>
<td>CR21-1004F-T</td>
</tr>
</tbody>
</table>
Bill Of Materials

<table>
<thead>
<tr>
<th>Reference</th>
<th>Quantity</th>
<th>Description</th>
<th>Reference Design</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>1</td>
<td>1.5K 100M W 5% 805</td>
<td>R43</td>
<td>AVX</td>
<td>CR21-1501F-T</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>22μF 16V 10% D TANT</td>
<td>CT1</td>
<td>DIG01</td>
<td>PCT3226CT-N D</td>
</tr>
<tr>
<td>51</td>
<td>3</td>
<td>2.2K 1/8W 1% 1206</td>
<td>R30, R35, R40</td>
<td>AVX</td>
<td>CR32-2211F-T</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
<td>10μF 16V 10% B TANT</td>
<td>CT4, CT19-21</td>
<td>AVX</td>
<td>TAJB106K016R</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>1A H SM 160J DO-214AA SCHOTTKY</td>
<td>D4</td>
<td>MICRO-SEMI</td>
<td>HSM 160J</td>
</tr>
<tr>
<td>54</td>
<td>5</td>
<td>100 100M W 5% 805</td>
<td>R67, R8Z, R85-86, R89</td>
<td>AVX</td>
<td>CR21-101J-T</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>1000 100M H Z 1.5A FERO02 0.06 CHOKE</td>
<td>FER9</td>
<td>MURATA</td>
<td>PLM 250540T1</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>2A S2A_RECT DO-214AA SILICON RECTIFIER</td>
<td>D1-3</td>
<td>GENERALSEMI</td>
<td>S2A</td>
</tr>
<tr>
<td>57</td>
<td>8</td>
<td>600 100M H Z 500M A 1206 0.70 BEAD</td>
<td>FER1-8</td>
<td>DIGIKEY</td>
<td>240-1019-1-ND</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>0.047UF 16V 10% 1206</td>
<td>C10</td>
<td>AVX</td>
<td>12065C473JATME</td>
</tr>
<tr>
<td>59</td>
<td>2</td>
<td>270PF 50V 10% 805</td>
<td>C11, C13</td>
<td>KEMET</td>
<td>C1206C271J5GAC210</td>
</tr>
<tr>
<td>60</td>
<td>6</td>
<td>1UF 16V 10% 805 X7R</td>
<td>C4, C22, C110-113</td>
<td>MURATA</td>
<td>GRM 40X7R105K016AL</td>
</tr>
<tr>
<td>61</td>
<td>6</td>
<td>470PF 100V 10% 1206 CERM</td>
<td>C12, C14-16, C20-21</td>
<td>AVX</td>
<td>12061A471JAT2A</td>
</tr>
<tr>
<td>62</td>
<td>2</td>
<td>30PF 100V 5% 1206</td>
<td>C17-18</td>
<td>AVX</td>
<td>12061A300JAT2A</td>
</tr>
<tr>
<td>63</td>
<td>3</td>
<td>10UF 25V +80-20% 1210 Y5V</td>
<td>C93, C95, C98</td>
<td>MURATA</td>
<td>GRM 235Y.5V106Z025</td>
</tr>
<tr>
<td>Reference</td>
<td>Quantity</td>
<td>Description</td>
<td>Reference Design</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0.47UF 20V 10% A</td>
<td>CT14</td>
<td>KEMET</td>
<td>T491A474K025AS</td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>16K 1/8W 5% 1206</td>
<td>R65</td>
<td>DALE</td>
<td>CRCW1206-163JRT1</td>
</tr>
<tr>
<td>66</td>
<td>1</td>
<td>53.6K 1/10W 1% 805</td>
<td>R95</td>
<td>PHILIPS</td>
<td>9C08052A5362FKRT/R</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>165K 1/10W 1% 805</td>
<td>R102</td>
<td>PHILIPS</td>
<td>9C08052A1653FKRT/R</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
<td>316K 1/10W 1% 805</td>
<td>R103</td>
<td>PHILIPS</td>
<td>9C08052A3163FKRT/R</td>
</tr>
<tr>
<td>69</td>
<td>1</td>
<td>332K 1/10W 1% 805</td>
<td>R101</td>
<td>PHILIPS</td>
<td>9C08052A3323FKRT/R</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>665K 1/10W 1% 805</td>
<td>R100</td>
<td>PHILIPS</td>
<td>9C08052A6653FKRT/R</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>10UH 47/-20 IN D001</td>
<td>L1</td>
<td>TDK</td>
<td>SLF7045T-100M 1R1-2</td>
</tr>
<tr>
<td>72</td>
<td>1</td>
<td>243.0K 1/10W 1% 805</td>
<td>R106</td>
<td>PHILIPS</td>
<td>9C08052A2433FKRT/R</td>
</tr>
<tr>
<td>73</td>
<td>1</td>
<td>1.00M 1/4W 1% 1210</td>
<td>R108</td>
<td>PANASONIC</td>
<td>ECG ERJ-14N F1004U</td>
</tr>
<tr>
<td>74</td>
<td>3</td>
<td>10K 31MW 5% RNET8</td>
<td>RN6-8</td>
<td>CTS</td>
<td>746X101103J</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>39PF 50V 5% 805 NPO</td>
<td>C1-C2</td>
<td>PANASONIC</td>
<td>ECJ-2VC1H390J</td>
</tr>
<tr>
<td>76</td>
<td>5</td>
<td>10K 100M W 2% RNET16 BUSSED</td>
<td>RN1-5</td>
<td>CTS</td>
<td>767-161-103G</td>
</tr>
<tr>
<td>77</td>
<td>1</td>
<td>1K 1/8W 5% 1206</td>
<td>R38</td>
<td>AVX</td>
<td>CR32-102j-T</td>
</tr>
<tr>
<td>78</td>
<td>6</td>
<td>10K 1/8W 5% 1206</td>
<td>R23-27, R33</td>
<td>DALE</td>
<td>CRCW1206-1002FRT1</td>
</tr>
<tr>
<td>79</td>
<td>1</td>
<td>100K 1/8W 5% 1206</td>
<td>R109</td>
<td>DALE</td>
<td>CR1206-1003FTR1</td>
</tr>
<tr>
<td>80</td>
<td>1</td>
<td>20.0K 1/8W 1% 1206</td>
<td>R104</td>
<td>DALE</td>
<td>CRCW1206-2002FRT1</td>
</tr>
<tr>
<td>81</td>
<td>3</td>
<td>22 1/8W 5% 1206</td>
<td>R36, R39, R126</td>
<td>DALE</td>
<td>CR1206-22R0jTR</td>
</tr>
<tr>
<td>82</td>
<td>7</td>
<td>270 1/8W 5% 1206</td>
<td>R69-73, R75-76</td>
<td>AVX</td>
<td>CR32-271j-T</td>
</tr>
<tr>
<td>83</td>
<td>4</td>
<td>4.7K 1/8W 5% 1206</td>
<td>R20, R22, R28-29</td>
<td>AVX</td>
<td>CR32-472j-T</td>
</tr>
<tr>
<td>Reference</td>
<td>Quantity</td>
<td>Description</td>
<td>Reference Design</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>84</td>
<td>1</td>
<td>680 1/8W 5% 1206</td>
<td>R74</td>
<td>AVX</td>
<td>CR32-681J-T</td>
</tr>
<tr>
<td>85</td>
<td>1</td>
<td>20MH Z 1/2 OSC001</td>
<td>U2</td>
<td>ECLIPTEK</td>
<td>EC1100HS-20.000MHZ</td>
</tr>
<tr>
<td>86</td>
<td>2</td>
<td>RED-SMT LED 001 GULL-WING</td>
<td>LED7-8</td>
<td>PANASONIC</td>
<td>LN1261C</td>
</tr>
<tr>
<td>87</td>
<td>1</td>
<td>GREEN-SMT LED 001 GULL-WING</td>
<td>LED6</td>
<td>PANASONIC</td>
<td>LN1361C</td>
</tr>
<tr>
<td>88</td>
<td>5</td>
<td>1uF 25V 20% A TANT -55+125</td>
<td>CT9-13</td>
<td>PANASONIC</td>
<td>ECS-T1EY105R</td>
</tr>
<tr>
<td>89</td>
<td>5</td>
<td>QS3257Q QSOP16 QUICKSWITCH-257</td>
<td>U14-15, U20-22</td>
<td>ANALOG DEVICES</td>
<td>ADG774ABRQ</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>IDC 3X1 IDC3X1</td>
<td>JP2</td>
<td>BERG</td>
<td>54101-T08-03</td>
</tr>
<tr>
<td>91</td>
<td>1</td>
<td>IDC 3X2 IDC3X2</td>
<td>JP1</td>
<td>BERG</td>
<td>54102-T08-03</td>
</tr>
<tr>
<td>92</td>
<td>1</td>
<td>IDC 7X2 IDC7X2</td>
<td>P8</td>
<td>BERG</td>
<td>54102-T08-07</td>
</tr>
<tr>
<td>93</td>
<td>3</td>
<td>IDC 2PIN_JUMPER 0.1</td>
<td>SJ1-3</td>
<td>MOLEX</td>
<td>15-38-1024</td>
</tr>
<tr>
<td>94</td>
<td>1</td>
<td>2.5A RESETABLE FUS001</td>
<td>F1</td>
<td>RAYCHEM CORP.</td>
<td>SMD250-2</td>
</tr>
<tr>
<td>95</td>
<td>2</td>
<td>3.5MM STEREO_JACK CON001</td>
<td>P5-6</td>
<td>A/D ELECEUTONICS</td>
<td>ST-323-5</td>
</tr>
</tbody>
</table>
ADSP-BF535 EZ-KIT LITE
All USB interface circuitry is considered proprietary and has been omitted from this schematic.

When designing your JTAG interface please refer to the Engineer to Engineer Note EE-68 which can be found at http://www.analog.com.
Symbols
~AM S0, memory select pin, 2-3, 3-3
~SM S0, memory select pin, 2-3, 3-3

A
Add New Hardware Wizard, Windows 98, 1-8
ADSP-BF535 processor
core voltage, 3-2
DF pin, 3-8
internal memory restrictions, 2-2
internal SRAM, 2-3
memory map
MSEL0 pin, 3-8
MSEL1 pin, 3-8
MSEL2 pin, 3-8
MSEL3 pin, 3-8
MSEL4 pin, 3-8
MSEL5 pin, 3-8
MSEL6 pin, 3-8
 peripheral interface voltage, 3-2
 peripheral ports, -xiii
real time clock (RTC), 3-3
SSEL0 pin, 3-8
SSEL1 pin, 3-8
audio
 applications, -xiii
codec disable jumper (JP2), 3-6
input select jumper (JP1), 3-5
interface (SPORT0), 3-3
jacks (P5, P6), 3-13

B
background telemetry channel (BTC), 2-9
bill of materials, A-1
boot load, 2-13
boot mode
8-bit, 2-6
external execution mode, 2-6
switch (SW1), -xiii
boot mode switch (SW1)
 see also switch settings
breakpoints, restrictions, 2-21
breakpoints, see hardware breakpoints

codecs, -xii, 2-7, 3-3, 3-5, 3-6, A-2
connecting, EZ-KIT Lite board, 1-6
 connectors, 1-6, 3-12
 expansion interface, 3-3, 3-12, 3-17
 P1 (expansion), 3-4
 P10 (power), 3-15
 P2 (expansion), 2-7
INDEX

| Contents, EZ-KIT Lite package, 1-1 |
| Context switching, 2-13 |
| Using M3 register, 2-13 |
| Using SP, 2-14 |
| Conventions, manual, -xxi |
| Core voltage, 2-8, 3-2 |
| Customer support, -xvi |
| F |
| Features, product, -xii |
| Flash arrays |
| Boot, main, 2-5 |
| Flash memory, -xiii, 2-3, 2-5, 3-3 |
| FlashLINK (P4), 2-5, 3-13 |
| PSD soft Express, 2-5 |
| Flash programmer, 2-9 |
| Found New Hardware Wizard Windows 2000, 1-14 |
| G |
| Graphical user interface (GUI), 2-10 |
| H |
| Hard reset, 2-13 |
| Hardware breakpoints, 2-14 |
| Common attributes, 2-15 |
| Data type, 2-15 |
| Global options, 2-15 |
| Instruction type, 2-16 |
| Restrictions, 2-18 |
| Tips and tricks, 2-18 |
| Help, online, -xix, 2-9 |
| I |
| Installation, summary, 1-3 |
| Installing |
| EZ-KIT Lite USB driver, 1-7 |
| VisualDSP++ and EZ-KIT Lite software, 1-4 |
| VisualDSP++ license, 1-5 |
| Instruction breakpoints |
specific attributes, 2-16
interface, see graphical user interface (GUI)
internal
 memory restrictions, 2-2
 memory, ADSP-BF535 processors, 2-3

J
JTAG
 connector (P8), 3-14
 emulation port, 3-5
jumper settings, 1-6, 3-3, 3-5
 codec disable (JP2), 3-4, 3-6
 input select (JP1), 3-5

L
 latency cycles, 2-18
LEDs, 1-6, 3-9
 LED 1, 2-6, 3-10
 LED 2, 2-6, 3-10
 LED 3, 2-6, 3-10
 LED 4, 1-15, 2-6, 3-10
 LED 5, 1-16, 3-10
 LED 6, 1-7, 3-10
 LED 7, 1-7, 3-10
 LED 8, 1-7, 3-10
license restrictions, 2-2

M
 M3 register, 2-13
 measurements, 3-16
 mechanical dimensions, 3-17
memory map, see ADSP-BF535 processor
memory mapped registers (MMR), 2-7
 FIO_DIR, 2-7
 FIO_FLAG_C, 2-7

N
 non-maskable interrupt (NMI)
 pin, 3-11
 push button (SW3), 3-11

P
 package contents, 1-1
 PC configuration, 1-3
 Performance Monitor Control dialog box, 2-11
 peripheral
 interface voltage, 3-2
 ports, -xiii
 phase lock loop (PLL) setup switch
 (SW 2), 3-7
 PMGMT0, 2-7
 PMGMT1, 2-7
 PMGMT2, 2-7
 power
 connector (P10), 3-15
 LED (LED 6), 3-10
 management, 2-7
 supply, 3-16
 processor memory map, see
 ADSP-BF535 processor
 programmable flags (PFs), 3-7, 3-9
 PF0, 2-6, 3-10
 PF1, 2-6, 3-10
INDEX

PF10, 2-7
PF11, 2-7
PF12, 2-7, 2-8
PF13, 2-7, 2-8
PF14, 2-7, 2-8
PF15, 2-7, 3-4, 3-6
PF2, 2-6, 3-10
PF3, 2-6, 3-10
PF4, 2-7
PF5, 2-7
PF6, 2-7
PF7, 2-7
PF8, 2-7
PF9, 2-7
pins, 2-6
see also push buttons
push buttons, 3-7, 3-9
SW3, 3-11
SW4, 2-7, 3-11
SW5, 2-7, 3-11
SW6, 2-7, 3-11
SW7, 2-7, 3-11
SW8, 3-11

S
SDRAM, 2-3, 2-4, 3-3
setting
 hardware breakpoints, 2-14
 target options, 2-19
setting up EZ-KIT Lite hardware, 1-5
software breakpoints, 2-21
SP
 stack pointer, 2-14
 stack pointer register, 2-13, 2-14
specifications, 3-15
SPORT0 (P9), -xiii, 3-15
starting VisualDSP++, 1-16
SW2, see phase lock loop
switch settings
 boot mode select (SW1), 3-7
 also see boot mode switch
 phase lock loop setup (SW2), 3-7
system architecture, EZ-KIT Liteboard, 3-2
system requirements, PC, 1-3

T
target options
 miscellaneous, 2-20
 on emulator exit, 2-20
 reset, 2-19
Target Options dialog box, 2-13, 2-19
trace
 buffer, 2-10, 2-11
 destination, 2-11
 instruction addresses, 2-11
 number, 2-11
 source, 2-11
Trace window, 2-10, 2-11

U
USB
cable, 1-2
connector (P7), 3-14
driver installation, Windows 2000, 1-12
driver installation, Windows 98, 1-8
driver installation, Windows XP, 1-13
interface, 3-5
interface chip (U11), 3-11
monitor LED (LED 4), 1-15

V
VDD_INT, core voltage, 2-8
verifying USB driver installation, 1-15
VisualDSP++
documentation, -xix
installation, 1-4
license, 1-5
online Help, -xix
requirements, 1-3
starting, 1-16
voltage plane, 3-16

monitor LED (LED 5), 3-10
port, -xiii