DESCRIPTION

Demonstration circuit 601 simplifies the evaluation of the LTC1541CDD building block in the tiny, 3mm x 3mm, DFN (Dual in-line, Flat, No-leads) chip-scale package. Electrical performance of this LTC1541 is the same as previous versions. This version is only a packaging enhancement.

An evaluation circuit can easily be built on this board without handling the tiny DFN device. Pads are provided for adding external components and holes are available for jumpers, signal I/O and supply wires. Supply bypass capacitors are already on the board. Alternatively adding two 4-pin headers (0.1" spacing) converts the board to a standard 8-pin DIP format for use with a socket on a second circuit board.

The backside of this evaluation board is void of metal to allow wiring into an existing system with the board resting on top of other components.

About the LTC1541CDD

The LTC1541 is a Micro-power Combination of an Op Amp, Comparator and Voltage Reference

- Ultra-low Quiescent Current of only 5µA
- 1.2V, 0.4% Tolerance Voltage Reference
- ±3mV Built In Comparator Hysteresis
- 12µsec Propagation Delay
- Input Voltage Range From V_{SS} to V_{CC}–1.3V
- Rail-to-Rail Output Swings
- Total Supply Voltage Range: 2.5V to 12.6V

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td></td>
<td>4.5µA</td>
</tr>
<tr>
<td>Op Amp Offset Voltage</td>
<td></td>
<td>700µV</td>
</tr>
<tr>
<td>Input Bias Current</td>
<td></td>
<td>10pA</td>
</tr>
<tr>
<td>Op Amp Gain Bandwidth</td>
<td></td>
<td>12KHz</td>
</tr>
<tr>
<td>Op Amp Slew Rate</td>
<td></td>
<td>.008V/µsec</td>
</tr>
<tr>
<td>Comparator Propagation Delay</td>
<td>10mV Overdrive</td>
<td>25µsec</td>
</tr>
<tr>
<td></td>
<td>100mV overdrive</td>
<td>12µsec</td>
</tr>
<tr>
<td>Output Swing</td>
<td>Voltage from Either Supply Rail</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Op Amp</td>
<td>70mV</td>
</tr>
<tr>
<td></td>
<td>Comparator</td>
<td>300mV</td>
</tr>
<tr>
<td>Reference Voltage</td>
<td></td>
<td>1.2V</td>
</tr>
</tbody>
</table>

Device Top Mark Identifier: LAAT
QUICK START PROCEDURE

Build the evaluation circuit in one of two ways as shown in Figures 1 and 2.

Figure 1. External Components Directly on the PCB (0.1\(\mu\)F Bypass Capacitors: AVX 1206C104KAT). Example connections shown may not be correct for this device.

Figure 2. Convert the Board to an 8-pin DIP Format
ASSEMBLY TIPS

Following are the recommended procedures for soldering surface mount packages to PC boards.

- Activation temperature 130°C to 150°C
- Reflow begins at 183°C (63Sn/37Pb)
- Time above 183°C for 30 seconds
- Peak package body temperature 220°C to 245°C
- Dwell time at peak temperature 10 seconds max
- Cooling rate 2°C to 4°C per second
- Clean boards.

- For Vapor Phase Reflow, recommended parameter ranges for:
 - Heating rate: 4°C per second max
- For Infrared Reflow:
 - Use of solder plated boards is recommended.
 - Screen solder paste on board.
 - Mount components on board.
 - Infrared or forced hot air convection reflow is recommended for best performance. Parameters:
 - Preheat peak temperature 125°C ± 15°C and 2°C to 4°C per second rise
− Preheat temperature: 45°C to 80°C
− Time above 200°C: 50 seconds to 90 seconds
− Peak package temperature: 212°C to 219°C

Wave Soldering and Hand Soldering are not recommended.

REWORK GUIDELINES FOR DFN PACKAGES

Each package mounting site should be reworked one at a time only, to ensure maximum quality and reliability.

Linear Technology has found the following rework procedure to be effective with DFN packages but by no means excludes other methods more suited to specific manufacturing needs.

Reflow Temperature Profile

Each package site to be reworked should be individually heated. The reflow temperature profile can be established using a hot gas tool and a thermocouple embedded in the solder joints of a sample setup unit on the PCB.

Preheating and Package Removal

A package rework tool with vacuum pickup similar to the A.P.E. Flo-Master can be used. A bottom PCB heater is required to provide preheating of the PCB to approximately 110°C to 120°C. The rework nozzle must be centered with respect to the package in order to direct the hot gas flow over the top of the package while limiting the temperature of the adjacent components to prevent solder reflow.

Site Rework

With a combination on hot gas/vacuum desoldering tool and solder wick ribbons (if necessary), remove the package and any remaining solder residues. Use a minimal amount of flux if it is required to remove solder residue. This will also assist in leaving a smooth, flat surface for the reattachment of a replacement unit. The site for the package should be thoroughly cleaned with isopropyl alcohol (IPA) and dried with clean dry air (CDA).

Solder Paste Application

Solder paste may be screen printed on to the package landing site and exposed heat sink pads. Stainless steel stencils are recommended for solder paste application. The printed solder deposits should be 100 percent inspected for uniformity of size and shape. Some applications may have severe space constraints preventing screen printing to be accomplished on the PCB. Therefore, solder paste can be directly applied to the packages landing site and exposed heatsink pad. The package is to be picked and placed using a vision aided system similar to the A.P.E. Sniper SMD 7007 Rework System.

Reflow Process

The replacement package, once it has been placed onto the reworked PCB landing site, should be reflowed on the PCB using a hot gas tool on the top of the package and a heater on the bottom of the PCB. The reflow temperature should not exceed 240°C. Note that liquidus temperature for 63/37 Sn/Pb solder is 183°C. Make sure to limit adjacent components to below the solder reflow temperature. The solder paste manufacturer's recommended reflow temperature profile/specifications must be complied with to avoid damage to the PCB and/or adjacent components. A 100 percent post rework visual inspection for good joint wetting is recommended.