DESCRIPTION

Providing power for the Pentium® microprocessor family is not a trivial task by any means. There are currently several different voltage specifications for different versions of the µP. Future upgrades will further challenge the power supply. In an effort to promote flexible, upgradable power supplies for their current and future microprocessors, Intel has defined a specification for a modularized power system for the CPU. This demo board is designed to accept modules built to the Intel specification and also accept an Intel Power Validator module. The Power Validator generates the fast load transients characteristic of the current generation of Pentium processors.

In addition, there is a 5V to 3.3V at 7A, LT®1584 based regulator (DC065A-A) included onboard which meets the needs of a 75MHz, 3.3V ±5% Pentium processor. An LT1585 version (DC065A-B) is available which is capable of only 4.6A* but in all other respects is identical to the LT1584 design. Either regulator may be disabled if desired, permitting installation of a plug-in module on the 30-pin header provided.

*There is also a 5A version, the LT1585A available. Contact a Linear Technology Corporation sales representative for details.
Figure 1. Power Validator Motherboard

NOTES: UNLESS OTHERWISE SPECIFIED.
1. ALL RESISTOR VALUES OHMS, 5%, CHIP-1206.
2. ALL CERAMIC CAPACITORS 20%, 50V, CHIP-1206.
3. ALL POLARIZED CAPACITORS TANTALUM, 20%, SMT.
4. ALL 330 µF POLARIZED CAPACITORS SANYO 0S-CON.
5. REMOVE JMP2-7 BEFORE USING POWER MODULE SOCKET J1.
6. VERSION DC065A-A HAS LT1584. VERSION DC065A-B HAS LT1585.
7. JP2-6 OPTIONAL.

LT1584/LT1585 POWER SUPPLY

PACKAGE AND SCHEMATIC DIAGRAMS

IN OUT ADJ

LT1584CT

LT1585CT

FRONT VIEW

3-LEAD TO-220

T PACKAGE
PARTS LIST

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QUANTITY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>VENDOR</th>
<th>TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C6</td>
<td>6</td>
<td>TPSD107M010R0100</td>
<td>Cap., Tantalum, 100µF, 10V, 20%</td>
<td>AVX</td>
<td>(803) 946-0690</td>
</tr>
<tr>
<td>C7-C10</td>
<td>4</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C11-C20</td>
<td>10</td>
<td>12063G105ZAT2A</td>
<td>Cap., 5V, 1µF, 25V</td>
<td>AVX</td>
<td>(803) 946-0362</td>
</tr>
<tr>
<td>C21-C24</td>
<td>4</td>
<td>6SA330M</td>
<td>Cap., OS-CON, 330µF, 6.3V, 20%</td>
<td>SANYO</td>
<td>(619) 661-6835</td>
</tr>
<tr>
<td>C25</td>
<td>1</td>
<td>TPSD476M016R0150</td>
<td>Cap., Tantalum, 47µF, 16V, 20%</td>
<td>AVX</td>
<td>(803) 946-0690</td>
</tr>
<tr>
<td>C26-C28</td>
<td>3</td>
<td>TPSE227M010R0100</td>
<td>Cap., Tantalum, 220µF, 10V, 20%</td>
<td>AVX</td>
<td>(803) 946-0690</td>
</tr>
<tr>
<td>C29-C31</td>
<td>3</td>
<td></td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C32</td>
<td>1</td>
<td>1206YC334KAT2A</td>
<td>Cap., X7R, 0.33, 16V, 10%</td>
<td>AVX</td>
<td>(803) 946-0362</td>
</tr>
<tr>
<td>E1-E12</td>
<td>12</td>
<td>1502-2</td>
<td>Terminal, 2-Turret, 0.092"</td>
<td>KEYSTONE</td>
<td>(718) 956-8900</td>
</tr>
<tr>
<td>JMP1-JMP7</td>
<td>7</td>
<td>TSW-102-07-G-S</td>
<td>Jumper, 0.100", 2-Pin</td>
<td>SAMTEC</td>
<td>(800) 726-8329</td>
</tr>
<tr>
<td>J1</td>
<td>1</td>
<td>1-102567-3</td>
<td>Header, Shrouded, 15 x 2, 30-Pin</td>
<td>AMP</td>
<td>(717) 564-0100</td>
</tr>
<tr>
<td>J2</td>
<td>1</td>
<td>916560-2</td>
<td>Socket, PGA, ZIF, 320-Pin</td>
<td>AMP</td>
<td>(717) 564-0100</td>
</tr>
<tr>
<td>J3</td>
<td>1</td>
<td>227699-3</td>
<td>Con., PC-MNT, BNC, 50Ω</td>
<td>AMP</td>
<td>(717) 564-0100</td>
</tr>
<tr>
<td>J4-J7</td>
<td>4</td>
<td>575-4</td>
<td>Jack, Banana, .175-ID, Low Profile</td>
<td>KEYSTONE</td>
<td>(718) 956-8900</td>
</tr>
<tr>
<td>J8, J9</td>
<td>2</td>
<td>15-48-0406</td>
<td>Header, 6-Pin, Std-AT</td>
<td>MOLEX</td>
<td>(408) 946-4700</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>CR32-510J-T</td>
<td>Res., Chip, 51, 1/8W, 5%</td>
<td>AVX</td>
<td>(803) 946-0524</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>CR32-1100F-T</td>
<td>Res., Chip, 110, 1/8W, 1%</td>
<td>AVX</td>
<td>(803) 946-0524</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>CR32-1820F-T</td>
<td>Res., Chip, 182, 1/8W, 1%</td>
<td>AVX</td>
<td>(803) 946-0524</td>
</tr>
<tr>
<td>U1*</td>
<td>1</td>
<td>LT1584CT</td>
<td>IC, +VREG, LT1584</td>
<td>LTC</td>
<td>(408) 432-1900</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SNT-100-BK-T</td>
<td>Shunt, 0.100cc</td>
<td>SAMTEC</td>
<td>(800) 726-8329</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>Standoff, #4-40 x 1/2", F/F, Plastic</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>Screw, #4-40, 3/8", Pan Hd, Phil</td>
<td>ANY</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td>1</td>
<td>7021B-MT</td>
<td>Heat Sink, for LT1584</td>
<td>THERMALLOY</td>
<td>(214) 243-4321</td>
</tr>
</tbody>
</table>

* U1 may be substituted with an LT1585CT for 4.6A design, version DC065A-B.
** Heat sink may be substituted with a 7020B-MT for 4.6A design.
OPERATION

PENTIUM POWER DEMANDS

The supply voltage for these processors is clock frequency dependent. The standard Pentium processor has a supply requirement of 3.3V ±5%, while the Pentium VR processor has a supply spec of 3.3V +5%/-0%. The Pentium VRE processor requires 3.525V ±75mV. In all cases, the CPU can cycle from a standby condition which consumes approximately 200mA to a full load current of approximately 4.0A in 2 clocks or as little as 20ns. The supply must remain within the appropriate voltage limitations at all times, even during these large load transients. Disabling the stop clock modes will not relieve the designer of the need to handle the fast transients. Events such as an “L1 cache miss” will generate transients of similar magnitude during normal operation. As may be imagined, the decoupling network supplying power to the CPU is critical in maintaining a clean voltage supply.

DECOUPLING CAPACITOR NETWORK REQUIREMENTS

For the Pentium VR processor spec, the supply must be designed using a set point of 3.38V with a ±2.5% tolerance. The Pentium VRE processor spec is even tighter. With only ±2% total deviation from the ideal voltage allowed, the magnitude of the transients must be carefully controlled. Some of the error budget must remain for the static tolerances such as line and load regulation, temperature variation and initial set point. Realistically, approximately 45mV peak transient response is obtainable. To achieve this, a large number of low ESR tantalum capacitors must be installed as close to the processor as possible. The microprocessor socket cavity is the best place for these capacitors.

As an absolute minimum, use 6 pieces of a 100µF, 10V AVX type TPS tantalum for a Pentium VR or VRE processor supply. If more height is available, such as with a ZIF socket, it is preferred to use 6 each, 220µF, 10V parts instead. When using the 100µF parts there is very little margin in the design. Do not reduce the quantity of the capacitors if larger values are used. The ESR specs are the same for the 100µF, 220µF and 330µF capacitors. The reason for paralleling 6 caps is to reduce the ESR as well as providing bulk capacitance. In standard 3.3V ±5% applications, a slightly larger transient can be tolerated, so somewhat less capacitance may be used. It is recommended that you use at least 4 each of the 100µF AVX tantalums. Intel recommends 24 each, 1µF ceramic capacitors in addition to the tantalum bulk decoupling. These additional ceramics have little effect on the transient response but do effect the amount of high frequency clock noise reflected back onto the supply by the CPU.

DEMO BOARD CHARACTERISTICS

This demo board has provisions for a pair of standard “AT” style power entry connectors for 5V and 12V power input. Also, along the top of the board are provisions for banana plug inputs for 3.3V, 5V and 12V power. The 3.3V is provided in accordance with the Intel module specification and will only be needed for future upgrade designs. It is not connected to the 3.3V output of the onboard regulator or any of the LTC plug-in modules currently available. All input supplies have onboard decoupling capacitors to reduce the effects of long distribution cables. There are also test points for all input and output voltages as well as access to optional “power good” monitor functions. A BNC type connector is provided for monitoring the CPU supply during testing. This line is terminated into 50Ω and it allows measurement of the “core voltage” at one of the socket pins. This point should be connected to an oscilloscope input with a 50Ω BNC cable. It is not necessary to terminate the oscilloscope end at 50Ω as the edge rates are slow enough not to cause any reflections or unusual perturbations.

The onboard LT1584 with its associated heat sink is set up to provide 3.3V at up to 7.0A. The regulator used is an adjustable device with an external divider. The lower resistor of the divider is bypassed with a 0.33µF capacitor to speedup the regulator transient response time. Fixed 3.3V regulators are available from LTC. However, due to the inability to add a large value speedup capacitor to the internal feedback divider, there is a substantial increase in the transient response time (approximately 2X). A corresponding increase in the number of decoupling capacitors is required. The addition of the 2 divider resistors and the 0.33µF ceramic capacitor required by the adjustable regulator more than pay for themselves due to the reduction in bulk capacitance that results compared to the fixed voltage parts.
OPERATION

The board utilizes 6 each, 100µF tantalums and 10 each, 1µF ceramics on planes located in the processor socket cavity. Also, an area is provided to the right of the socket for additional capacitors, if it is desired to further reduce the transient magnitude. Jumpers JP-2 thru JP-7 permit disabling the onboard regulator if a plug-in module is to be used. The resistance of the jumpers causes a slight degradation of the load regulation as measured at the CPU.

TEST SETUP

Install the power validator in the socket and connect a 5V “silver box” supply to the input connectors. Be sure to observe the proper connector orientation. The connectors are not configured the same as on a normal motherboard. Test points adjacent to the connectors correspond to the supply voltages at those pins. The oscilloscope should be connected to the board with a BNC cable. Be careful of potential ground loop problems. In general it is best to use an isolation transformer for the oscilloscope or use isolated probes. This will eliminate several measurement errors that are likely to exist otherwise. For safety reasons, be sure to keep the off-line case grounded. Voltmeters should be connected to the input and output test points. The power validator should be powered up and set according to the instructions provided by Intel. If the demo board’s onboard regulator is to be used, be sure jumpers JMP2 through JMP7 are installed. If you plan to use a plug-in power supply module, remove these jumpers to isolate the LT1584. Also, a fan which provides approximately 100 linear feet per minute of air flow should be aimed at the LT1584 heat sink or the plug-in module. Jumper JMP1 connects the CPU core and I/O power pins on the power module header together. Leave this jumper installed if the CPU you intend to use only requires a single supply voltage. At this point it should be safe to power up the off-line supply.

TEST RESULTS

The results should look like Figure 2. The test conditions were as follows:

\[V_{IN} = 5.0V, \quad V_{OUT} = 3.30V. \]

Load steps from 200mA to 4.0A. It should be noted that as the minimum load current is raised from 200mA to 3.2A and the load delta held constant at 3.8A, the waveform remains essentially unchanged. The transient droop measures approximately 44mV pk. and is nearly symmetrical. Note the offset voltage between the high load and low load condition on the output waveform. This is the load regulation of the regulator including any distribution (I)(R) drops. When using the socketed modules the additional resistance of the connector pins makes the use of remote sense desirable to ensure that the (I)(R) drops are kept under control.

The photo in Figure 3 shows the same transient at 2µs/div. There is a fast leading edge droop followed by one short ring. The output then begins to slowly recover toward its final value. The layout techniques utilized here keep...
RINGING TO A MINIMUM. TO APPRECIATE THE EFFECTS OF PARASITIC INDUCTANCE, TRY CONNECTING A 100µF TANTALUM CAPACITOR TO THE AREA ON THE RIGHT SIDE OF THE SOCKET AND NOTE THE DIFFERENCE IN TRANSIENT AMPLITUDE, ESPECIALLY THE LEADING EDGE SPIKE. NOW REMOVE THE CAPACITOR AND SOLDER A COUPLE OF INCHES OF 24AWG WIRE TO THE CAPACITOR AND RECONNECT IT TO THE POWER PLANES. THE DIFFERENCE IN PERFORMANCE IS QUITE NOTICEABLE.

AVAILABLE PLUG-INS

SEVERAL ADDITIONAL BOARDS ARE AVAILABLE FOR USE WITH THE POWER VALIDATOR DEMO BOARD. BOTH LINEAR AND SWITCHING REGULATORS HAVE BEEN DESIGNED AND BUILT TO COMPLY WITH THE INTEL MODULE SPECIFICATION. WE ANTICIPATE DEVELOPING ADDITIONAL DESIGNS AS TECHNOLOGY IMPROVEMENTS WARRANT. CONTACT LINEAR TECHNOLOGY FOR FURTHER DETAILS.
Component Side Silkscreen

PC FAB DRAWING

NOTES: UNLESS OTHERWISE SPECIFIED.
1. FINISHED MATERIAL IS FR4, 0.062' THICK, 2-OZ COPPER.
2. PCB WILL BE DOUBLE-SIDED WITH PLATED THROUGH HOLES.
3. PTH SIZES AFTER PLATING, 0.001' MIN WALL THICKNESS.
4. USE PADMASTER PROCESS.
5. SOLDER MASK BOTH SIDES USING PC-401 OR EQUIVALENT.
6. SILKSCREEN COMPONENT SIDE USING WHITE NONCONDUCTIVE INK.
7. ALL DIMENSIONS IN INCHES, ±0.005'.
8. ALL HOLE SIZES AFTER PLATING, ±0.003' MAX.

HOLE CHART

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DIAMETER</th>
<th>NUMBER OF HOLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.020</td>
<td>71</td>
</tr>
<tr>
<td>B</td>
<td>0.030</td>
<td>328</td>
</tr>
<tr>
<td>C</td>
<td>0.040</td>
<td>44</td>
</tr>
<tr>
<td>D</td>
<td>0.045</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>0.075</td>
<td>14</td>
</tr>
<tr>
<td>G</td>
<td>0.094</td>
<td>12</td>
</tr>
<tr>
<td>H</td>
<td>0.120</td>
<td>4</td>
</tr>
<tr>
<td>K</td>
<td>0.210</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL HOLES 493</td>
</tr>
</tbody>
</table>

DC065A • PCB01
U.S. Area Sales Offices

NORTHEAST REGION
Linear Technology Corporation
3220 Tillman Drive, Suite 120
Bensalem, PA 19020
Phone: (215) 638-9667
FAX: (215) 638-9764

Linear Technology Corporation
266 Lowell St., Suite B-8
Wilmington, MA 01887
Phone: (508) 658-3881
FAX: (508) 658-2701

SOUTHEAST REGION
Linear Technology Corporation
17000 Dallas Parkway
Suite 219
Dallas, TX 75248
Phone: (214) 733-3071
FAX: (214) 380-5138

CENTRAL REGION
Linear Technology Corporation
Chesapeake Square
229 Mitchell Court, Suite A-25
Addison, IL 60101
Phone: (708) 620-6910
FAX: (708) 620-6977

SOUTHWEST REGION
Linear Technology Corporation
22141 Ventura Blvd.
Suite 206
Woodland Hills, CA 91364
Phone: (818) 703-0835
FAX: (818) 703-0517

NORTHWEST REGION
Linear Technology Corporation
782 Sycamore Dr.
Milpitas, CA 95035
Phone: (408) 428-2050
FAX: (408) 432-6331

International Sales Offices

FRANCE
Linear Technology S.A.R.L.
Immeuble "Le Quartz"
58 Chemin de la Justice
92290 Chatenay Malabry
France
Phone: 33-1-41079555
FAX: 33-1-46314613

GERMANY
Linear Technology GmbH
Untere Hauptstr. 9
D-85386 Eching
Germany
Phone: 49-89-3197410
FAX: 49-89-3194821

KOREA
Linear Technology Korea Branch
Namsong Building, #505
Itaewon-Dong 260-199
Yongsan-Ku, Seoul
Korea
Phone: 82-2-792-1617
FAX: 82-2-792-1619

SINGAPORE
Linear Technology Pte. Ltd.
507 Yishun Industrial Park A
Singapore 2776
Phone: 65-753-2692
FAX: 65-754-4113

TAIWAN
Linear Technology Corporation
Rm. 602, No. 46, Sec. 2
Chung Shan N. Rd.
Taipei, Taiwan, R.O.C.
Phone: 886-2-521-7575
FAX: 886-2-562-2285

UNITED KINGDOM
Linear Technology (UK) Ltd.
The Coliseum, Riverside Way
Camberley, Surrey GU15 3YI
United Kingdom
Phone: 44-1276-677676
FAX: 44-1276-64851

World Headquarters

Linear Technology Corporation
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Phone: (408) 432-1900
FAX: (408) 434-0507