DESCRIPTION

Demonstration circuit DC367 is a low noise micropower voltage regulator using the LT1963 in the 8-lead SO package. Circuits designed with the LT1963 are used primarily in cellular phones, voltage controlled oscillators, RF power supplies and, in larger systems, as local regulators. The ability to tolerate a wide variety of output capacitors makes the LT1963 ideal in space- and cost-sensitive systems.

LT1963 (3.3V Output) 10Hz to 100kHz Output Noise

PARAMETER CONDITIONS MIN TYP MAX UNITS
Input Voltage Range
Output Voltage
Output Voltage (Note 1) \(V_{\text{IN}} = 2.5V, J P2 \) on Pins 3-4
Output Voltage (Note 1) \(V_{\text{IN}} = 2.8V, J P2 \) on Pins 5-6
Output Voltage (Note 1) \(V_{\text{IN}} = 3.5V, J P2 \) on Pins 7-8
Output Voltage (Note 1) \(V_{\text{IN}} = 4.3V, J P2 \) on Pins 9-10
Line Regulation \(\Delta V_{\text{IN}} = 2.5V \) to 20V
Quiescent Current \(\Delta I_{\text{LOAD}} = 0 \) mA
Load Regulation \(\Delta I_{\text{LOAD}} = 1 \) mA to 1.5A
SHDN Pin Threshold On-to-Off
Off-to-On, \(I_{\text{LOAD}} = 1 \) mA
Output Voltage Noise \(I_{\text{LOAD}} = 1.5A, B W = 10Hz \) to 100kHz

Note 1: Output voltage variations include ±1% tolerance of feedback divider network. For tighter voltage range, use lower tolerance resistors or use fixed voltage output devices.

TYPICAL PERFORMANCE CHARACTERISTICS AND BOARD PHOTO
DEMO MANUAL DC367
LOW DROPOUT REGULATOR

PACKAGE AND SCHEMATIC DIAGRAMS

LT1963ES8
TOP VIEW

Figure 1. LT1963 1.5A Low Noise Micropower LDO Regulator

PARTS LIST

<table>
<thead>
<tr>
<th>REFERENCE DESIGNATOR</th>
<th>QUANTITY</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>VENDOR</th>
<th>TELEPHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADJ1</td>
<td>0</td>
<td>0402</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>1</td>
<td>06032G105ZAT1A</td>
<td>1μF 10V Y5V 80% Capacitor</td>
<td>AVX</td>
<td>(843) 946-0362</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>TA106M010R</td>
<td>10μF 10V Tantum Capacitor</td>
<td>AVX</td>
<td>(843) 946-0362</td>
</tr>
<tr>
<td>E1 to E4</td>
<td>4</td>
<td>2308-2</td>
<td>1-Pin 0.064" Hole Terminal Turret</td>
<td>Mill-Max</td>
<td>(516) 922-6000</td>
</tr>
<tr>
<td>JP1</td>
<td>1</td>
<td>2502S-02-G1</td>
<td>2-Pin 1 Row 0.079 cc Jumper</td>
<td>Comm-Con</td>
<td>(626) 301-4200</td>
</tr>
<tr>
<td>JP2</td>
<td>1</td>
<td>6351-12P1</td>
<td>Connector, SMT2X6, 0.39" Gap</td>
<td>Comm-Con</td>
<td>(626) 301-4200</td>
</tr>
<tr>
<td>Shunts for JP1</td>
<td>1</td>
<td>CC122MM-1380</td>
<td>Shunt 0.079" Center</td>
<td>Comm-Con</td>
<td>(626) 301-4200</td>
</tr>
<tr>
<td>Shunts for JP2</td>
<td>1</td>
<td>CTAL11MM-8</td>
<td>Shunts 0.39 cc</td>
<td>Comm-Con</td>
<td>(626) 301-4200</td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>CR05-9760FM</td>
<td>976 1/16W 1% Chip Resister</td>
<td>AAC</td>
<td>(800) 508-1521</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>CR05-2001FM</td>
<td>2k 1/16W 1% Chip Resistor</td>
<td>AAC</td>
<td>(800) 508-1521</td>
</tr>
<tr>
<td>R3</td>
<td>1</td>
<td>CR05-4321FM</td>
<td>4.32k 1/16W 1% Chip Resistor</td>
<td>AAC</td>
<td>(800) 508-1521</td>
</tr>
<tr>
<td>R4</td>
<td>1</td>
<td>CR05-6981FM</td>
<td>6.98k 1/16W 1% Chip Resistor</td>
<td>AAC</td>
<td>(900) 508-1521</td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>CR05-4121FM</td>
<td>4.12k 1/16W 1% Chip Resistor</td>
<td>AAC</td>
<td>(714) 255-9186</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>LT1963ES8</td>
<td>8-Lead SO IC</td>
<td>LTC</td>
<td>(408) 432-1900</td>
</tr>
</tbody>
</table>

OPERATION

HOOK-UP

Solid turret terminals are provided for easy connection to supplies and test equipment. Connect a 0V to 20V, 1.6A power supply across the IN and GND terminals and the load across the OUT and GND terminals. The SHDN pin can be disconnected from IN via JP1 to allow for separate shutdown control via a secondary control line. JP2 can be used to select any of a number of common fixed output voltages, or used in conjunction with ADJ1 to create a custom output voltage using the formula:

\[\text{ADJ}1 = \frac{(V_{\text{OUT}} - 1.21V)}{297\mu A} \]

Thermal Characteristics

Demonstration Circuit DC367 has been laid out to illustrate and achieve maximum power handling capabilities. Although a simple two-layer board might have been sufficient for electrical operation of the LT1863, the four-layer board with vias to internal ground planes offers excellent thermal characteristics. A two-layer board of the same size with no thermal vias will exhibit a thermal resistance of 60°C/W, whereas DC367 exhibits a thermal resistance of 50°C/W.

OUTPUT CAPACITOR SELECTION

The output capacitor C3 is a 10µF tantalum capacitor. Should a different output capacitor be desired, care must be exercised with the selection. Many ceramic capacitor dielectrics exhibit strong temperature and voltage characteristics that reduce their effective capacitance to as low as 10% to 20% of nominal over the full temperature range. For further information, see Linear Technology Application Note 83, “Performance Verification of Low Noise, Low Dropout Regulators,” Appendix B, “Capacitor Selection Considerations,” reprinted below.

CAPACITOR SELECTION CONSIDERATIONS

Output Capacitance and Transient Response

The regulators are designed to be stable with a wide range of output capacitors. Output capacitor ESR affects stability, most notably with small capacitors. A 10µF minimum output value with ESR of 3Ω or less is recommended to prevent oscillation. Transient response is a function of output capacitance. Larger values of output capacitance decrease peak deviations, providing improved transient response for large load current changes. Bypass capacitors, used to decouple individual components powered by the regulator, increase the effective output capacitor value.

Ceramic Capacitors

Ceramic capacitors require extra consideration. They are manufactured with a variety of dielectrics, each with different behavior across temperature and applied voltage. The most common dielectrics are Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics provide high capacitance in a small package, but exhibit strong voltage and temperature coefficients, as shown in Figures B1 and B2. Used with a 5V regulator, a 10µF Y5V capacitor shows values as low as 1µF to 2µF over the operating temperature range. The X5R and X7R dielectrics have more stable characteristics and are more suitable for output capacitor use. The X7R type has better stability over temperature, while the X5R is less expensive and available in higher values.

Voltage and temperature coefficients are not the only problem sources. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress, similar to the way a piezoelectric accelerometer or microphone works. For a ceramic capacitor, the stress can be induced by vibrations in the system or thermal transients. The resulting voltages can cause appreciable amounts of noise, especially when a ceramic capacitor is used for noise bypassing. A ceramic capacitor produced Figure B3's trace in response to light tapping from a pencil. Similar vibration-induced behavior can masquerade as increased output voltage noise.
Measuring output voltage noise can be a tricky process, further complicated by the low levels of noise inherent in a circuit such as this. Consideration must be given to regulator operating conditions, as well as the noise bandwidth of interest. Linear Technology has invested an enormous amount of time to provide accurate, relevant data to customers regarding noise performance. For further information on measuring output voltage noise, see Linear Technology Application Note 83, “Performance Verification of Low Noise, Low Dropout Regulators.”
Noise Testing Considerations

What noise bandwidth is of interest and why is it interesting? In most systems, the range of 10Hz to 100kHz is the information signal processing area of concern. Additionally, linear regulators produce little noise energy outside this region. These considerations suggest a measurement bandpass of 10Hz to 100kHz, with steep slopes at the band limits. Figure 2 shows a conceptual filter for LDO noise testing. The Butterworth sections are the key to steep slopes and flatness in the passband. The small input level requires 60dB of low noise gain to provide adequate signal for the Butterworth filters. Figure 3 details the filter scheme. The regulator under test is at the diagram's center. A1–A3 make up a 60dB gain highpass section. A1 and A2, extremely low noise devices (<1nV/√Hz), comprise a 60dB gain stage with a 5Hz highpass input. A3 provides a 10Hz, 2nd order Butterworth highpass characteristic. The LTC®-1562 filter block is arranged as a 4th order Butterworth lowpass. Its output is delivered via the 330μF-100Ω highpass network. The circuit's output drives a thermally responding RMS voltmeter. Note that all circuit power is furnished by batteries, precluding ground loops from corrupting the measurement.

Note 1: Switching regulators are an entirely different proposition, requiring very broadband noise measurement.
Note 2: Component choice for the regulator, more critical than might be supposed, is discussed in “Capacitor Selection Considerations.”
Note 3: The choice of the RMS voltmeter is absolutely crucial to obtaining meaningful measurements. See Appendix C, Application Note 83 “Understanding and Selecting RMS Voltmeters.”

Figure 2. Filter Structure for Noise Testing LDOs. Butterworth Sections Provide Appropriate Response in Desired Frequency Range
DEMO MANUAL DC367
LOW DROPOUT REGULATOR

OPERATION

ALL RESISTORS 1% METAL FILM
4.7µF CAPACITORS = MYLAR, WIMA MKS-2
330µF CAPACITORS = SANYO OSCON
±4.5V DERIVED FROM 6AA CELLS
POWER REGULATOR FROM APPROPRIATE NUMBER OF D SIZE BATTERIES

TYPICAL REGULATOR UNDER TEST

Figure 3. Implementation of Figure 2. Low Noise Amplifiers Provide Gain and Initial Highpass Shaping. LTC1562 Filter Supplies 4th Order Butterworth Lowpass Characteristic
DEMO MANUAL DC367
LOW DROPOUT REGULATOR

PCB LAYOUT AND FILM

Silkscreen Top

Solder Mask Top

Paste Mask Top

Layer 1, Component Side

Layer 2, GND Plane*

Layer 3, GND Plane*

Layer 4, Solder Side*

Solder Mask Bottom

* These layers are shorted to L1 with vias and function as heat dispersants.
NOTES: UNLESS OTHERWISE SPECIFIED
1. MATERIAL: FR4 OR EQUIVALENT EPOXY, 2 OZ. COPPER CLAD
 THICKNESS 0.062 ± 0.006 TOTAL OF 4 LAYERS.
2. FINISH: ALL PLATED HOLES 0.001 MIN/0.0015 MAX COPPER PLATE
 ELECTRODEPOSITED TIME-LEAD COMPOSITION
 BEFORE REFLOW, SOLDER MASK OVER BARE COPPER (SMBG)
3. SOLDER MASK: BOTH SIDES USING LPI OR EQUIVALENT.
4. SILKSCREEN: USING WHITE NON-CONDUCTIVE EPOXY INK.
5. UNUSED SMD COMPONENTS SHOULD BE FREE OF SOLDER.
6. FILL UP ALL VIAS WITH SOLDER.
7. SCORING:

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DIAMETER</th>
<th>NUMBER OF HOLES</th>
<th>PLATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.02</td>
<td>25</td>
<td>YES</td>
</tr>
<tr>
<td>B</td>
<td>0.035</td>
<td>2</td>
<td>YES</td>
</tr>
<tr>
<td>C</td>
<td>0.064</td>
<td>4</td>
<td>YES</td>
</tr>
<tr>
<td>D</td>
<td>0.07</td>
<td>2</td>
<td>NO</td>
</tr>
</tbody>
</table>