DEMO MANUAL DC2242A

LT8494
SEPIC/Boost DC/DC Converter with 2A, 70V Switch, and 7μA Quiescent Current

DESCRIPTION

Demonstration circuit 2242A is a monolithic SEPIC converter featuring LT®8494. The demo board is designed for 5V output from a 3V to 60V input at 450kHz switching frequency. The max output current is 1A when the input voltage is above 12V, and is reduced with lower input voltage. The quiescent current of LT8494 is less than 7μA when operating. Dual supply pins (VIN and BIAS) allow the part to automatically operate from the most efficient supply.

Low ripple Burst Mode® operation increases the efficiency at the light load while keeping the output ripple below 10mV. Figure 1 shows the demo board efficiency at 12V input voltage. Figure 2 shows the maximum load current with different input voltages of the demo board.

The LT8494 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this demo manual for DC2242A. The LT8494 is assembled in 20-lead QFN and 20-lead plastic TSSOP packages. Proper board layout is essential for maximum thermal and electrical performance. See the data sheet sections for details.

Design files for this circuit board are available at http://www.linear.com/demo/DC2242A

L, LT, LTC, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Figure 1. LT8494 Efficiency

Figure 2. LT8494 Maximum Load Current (Typical) vs Input Voltage

PERFORMANCE SUMMARY

Specifications are at TA = 25°C

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_IN</td>
<td>Input Supply Range</td>
<td></td>
<td>3</td>
<td>60</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_OUT</td>
<td>Output Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>f_SW</td>
<td>Switching Frequency</td>
<td>R_T = 169kΩ</td>
<td>414</td>
<td>450</td>
<td>477</td>
<td>kHz</td>
</tr>
<tr>
<td>I_MAX</td>
<td>Max Output Current</td>
<td>V_IN = 12V</td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>EFE</td>
<td>Efficiency at DC</td>
<td>V_IN = 12V, I_OUT = 1A</td>
<td>80.3</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>
QUICK START PROCEDURE

DC2242A is easy to set up to evaluate the performance of the LT8494. Refer to Figure 3 for proper measurement equipment setup and follow the procedure below:

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT and GND terminals. See Figure 4 for the proper scope technique.

1. With power off, connect the input power supply to VIN and GND. Make sure that the input voltage does not exceed 60V.

2. With power off, connect loads from VOUT to GND.

3. Turn on the power at the input.

4. Check for the proper output voltages (VOUT = 5V).

 NOTE: If there is no output, temporarily disconnect the load to make sure that the load is not set too high or is shorted.

5. Once the proper output voltage is established, adjust the load within the operating ranges and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
QUICK START PROCEDURE

Figure 3. Proper Measurement Equipment Setup

Figure 4. Measuring Input or Output Ripple
Parts List

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>REFERENCE</th>
<th>Part Description</th>
<th>Manufacturer/Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Circuit Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>C2, C8</td>
<td>CAP., X7R, 2.2µF, 100V, 10%, 1210</td>
<td>MURATA, GRM32ER72A225KA35L</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>C3, C4</td>
<td>CAP., X7R, 47µF, 10V, 10%, 1210</td>
<td>MURATA, GRM32ER71A476KE15L</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>C5, C7</td>
<td>CAP., X7R, 1µF, 10V, 10%, 0603</td>
<td>MURATA, GRM188R71A105KA61D</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>C6</td>
<td>CAP., NPO, 4.7pF, 50V, ±0.25pF, 0603</td>
<td>MURATA, GRM1885C1H4R7CA01D</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>D1</td>
<td>DIODE, SCHOTTKY 100V, 2A, SMA</td>
<td>ON SEMI., MBRA2H100T3G</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>L1</td>
<td>INDUCTOR, 15µH</td>
<td>VISHAY, IHCL4040DZER150M5A</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>R1, R10</td>
<td>RES., CHIP, 1M, 1/10W, 0603</td>
<td>VISHAY, CRCW06031M00FKEA</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R2</td>
<td>RES., CHIP, 316K, 1/10W, 1%, 0603</td>
<td>VISHAY, CRCW0603316KFKEA</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>R4</td>
<td>RES., CHIP, 100k, 1/10W, 1%, 0603</td>
<td>VISHAY, CRCW0603100KFEA</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>R6</td>
<td>RES., CHIP, 169k, 1/10W, 1%, 0603</td>
<td>VISHAY, CRCW0603169KFKEA</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>R9</td>
<td>RES., CHIP, 0, 1/10W, 0603</td>
<td>VISHAY, CRCW06030000Z0EA</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>U1</td>
<td>I.C., LT8494, TSSOP-20-4.4mm</td>
<td>LINEAR TECH., LT8494EFE#PBF</td>
</tr>
<tr>
<td>Additional Demo Board Circuit Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>C1</td>
<td>CAP., ALUM, 10µF, 63V, 20%</td>
<td>SUN ELECTRONIC, 63CE10BS</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>C10 (OPT)</td>
<td>CAP., OPTION, 0603</td>
<td>OPT</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>R11 (OPT)</td>
<td>RES., OPTION, 0603</td>
<td>OPT</td>
</tr>
<tr>
<td>Hardware: For Demo Board Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>E1-E6</td>
<td>TESTPOINT, TURRET, .094" PBF</td>
<td>MILL-MAX, 2501-2-00-80-00-00-07-0</td>
</tr>
</tbody>
</table>
SCHEMATIC DIAGRAM

1. The max load current is reduced when the input voltage is less than 12V. Please see demo manual for details.

2. All capacitors are in microfarads, 0603.

3. All resistors are in ohms, 0603.

4. Vin: 3V - 60V

5. Vout: 5V / 1A

6. C1: 680uF, 12V

7. C2: 2.2uF, 1210, 10V

8. C3: 100uF, 63V

9. C4: 47uF, 1210, 10V

10. C5: 1uF, 0603

11. R1: 1M

12. R2: 1.69K

13. R3: 680K

14. R4: 2.7K

15. R5: 316K

16. L1: 15uH

17. D1: MBRA300H100T3G

18. U1: LT8494EFE

19. CUSTOMER NOTICE

LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS; HOWEVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO VERIFY PROPER AND RELEVANT FUNCTION. CONTACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.

THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS.

NOTES:

1. All resistors are in ohms, 0603.

2. All capacitors are in microfarads, 0603.

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation