Demonstration circuit 2106B-B is a high efficiency, high density, μModule regulator with 4.5V to 16V input range. The output voltage is adjustable from 0.5V to 1.8V, and it can supply 130A maximum load current. The demo board has 1×LTM4676A and 3×LTM4630 μModule regulators. The LTM4676A is a dual 13A or single 26A step-down regulator with PMBus power system management, and the LTM4630 is a dual 18A or single 36A step-down regulator. Please see LTM4676A and LTM4630 data sheets for more detailed information.

DC2106B-B powers up to default settings and produces power based on configuration resistors without the need for any serial bus communication. This allows easy evaluation of the DC/DC converter. To fully explore the extensive power system management features of the part, download the GUI software LTpowerPlay™ onto your PC and use LTC’s I2C/SMBus/PMBus dongle DC1613A to connect to the board. LTpowerPlay allows the user to reconfigure the part on the fly and store the configuration in EEPROM, and view telemetry of voltage, current, temperature and fault status.

GUI Download
The software can be downloaded from:
http://www.linear.com/ltpowerplay

For more details and instructions of LTpowerPlay, please refer to LTpowerPlay GUI for LTM4676A Quick Start Guide.

Design files for this circuit board are available at http://www.linear.com/demo/DC2106B-B
DEMO MANUAL DC2106B-B

PERFORMANCE SUMMARY
Specifications are at $T_A = 25^\circ C$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range</td>
<td>VIN = 4.5V to 16V</td>
<td>4.5V to 16V</td>
</tr>
<tr>
<td>Output Voltage, V_{OUT0}</td>
<td>$V_{IN} = 4.5V to 16V, I_{OUT0} = 0A to 130A</td>
<td>0.5V to 1.8V, Default: 1V</td>
</tr>
<tr>
<td>Maximum Output Current, I_{OUT0}</td>
<td>$V_{IN} = 4.5V to 16V, V_{OUT} = 0.5V to 1.8V</td>
<td>130A</td>
</tr>
<tr>
<td>Typical Efficiency</td>
<td>$V_{IN} = 12V, V_{OUT} = 1V, I_{OUT} = 130A</td>
<td>82.9%</td>
</tr>
<tr>
<td>Default Switching Frequency</td>
<td></td>
<td>350kHz</td>
</tr>
</tbody>
</table>

QUICK START PROCEDURE

Demonstration circuit 2106B-B is easy to set up to evaluate the performance of the LTM4676AEY. Refer to Figure 2 for the proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input power supply to V_{IN} (4.5V to 16V) and GND (input return).
2. Connect the output load between V_{OUT0} and GND (Initial load: no load).
3. Connect the DVMs to the input and outputs. Set default switch position: SW1: ON; SW2: ON.
4. Turn on the input power supply and check for the proper output voltages. V_{OUT0} should be 1V ±1%.
5. Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage and other parameters.
6. Connect the dongle and control the output voltages from the GUI. See “LTpowerPlay GUI for the LTM4676A Quick Start Guide” for details.

Note: When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe. See Figure 3 for the proper scope probe technique. Short, stiff leads need to be soldered to the (+) and (–) terminals of an output capacitor. The probe’s ground ring needs to touch the (–) lead and the probe tip needs to touch the (+) lead.

Connecting a PC to DC2106B-B

You can use a PC to reconfigure the power management features of the LTM4676A such as: nominal V_{OUT}, margin setpoints, OV/UV limits, temperature fault limits, sequencing parameters, the fault log, fault responses, GPIOs and other functionality. The DC1613A dongle may be plugged when V_{IN} is present.

Table 1. LTM4676/LTM4676A Demo Cards for Up to 130A Point-of-Load Regulation

<table>
<thead>
<tr>
<th>MAXIMUM OUTPUT CURRENT</th>
<th>NUMBER OF OUTPUT VOLTAGES</th>
<th>NUMBER OF LTM4676/LTM4676A µMODULE REGULATORS ON THE BOARD</th>
<th>DEMO BOARD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>13A, 13A</td>
<td>2</td>
<td>1x LTM4676</td>
<td>DC1811A/DC1811B-A</td>
</tr>
<tr>
<td>13A, 13A</td>
<td>2</td>
<td>1x LTM4676A</td>
<td>DC1811B-B</td>
</tr>
<tr>
<td>26A</td>
<td>1</td>
<td>1x LTM4676</td>
<td>DC2087A</td>
</tr>
<tr>
<td>50A</td>
<td>1</td>
<td>2x LTM4676</td>
<td>DC1989A-A</td>
</tr>
<tr>
<td>75A</td>
<td>1</td>
<td>3x LTM4676</td>
<td>DC1989A-B</td>
</tr>
<tr>
<td>100A</td>
<td>1</td>
<td>4x LTM4676</td>
<td>DC1989A-C</td>
</tr>
<tr>
<td>100A</td>
<td>1</td>
<td>1x LTM4676 (+ 3x LTM4620A)</td>
<td>DC2106A-A</td>
</tr>
<tr>
<td>130A</td>
<td>1</td>
<td>1x LTM4676 (+ 3x LTM4630)</td>
<td>DC2106A-B</td>
</tr>
<tr>
<td>100A</td>
<td>1</td>
<td>1x LTM4676A (+ 3x LTM4620A)</td>
<td>DC2106B-A</td>
</tr>
<tr>
<td>130A</td>
<td>1</td>
<td>1x LTM4676A (+ 3x LTM4630)</td>
<td>DC2106B-B</td>
</tr>
</tbody>
</table>
QUICK START PROCEDURE

Figure 2. Proper Measurement Equipment Setup

Figure 3. Measuring Output Voltage Ripple
QUICK START PROCEDURE

Figure 4. Demo Setup with PC

Figure 5. Efficiency vs Load Current at VIN = 12V
QUICK START PROCEDURE

Figure 6. Output Voltage V_{OUT0} vs Load Current (V_{OUT0} RANGE = 0)

Figure 7. Output Voltage Ripple at $V_{IN} = 12V$, $V_{OUT0} = 1V$, $I_{OUT0} = 130A$

Figure 8. Thermal Performance at $V_{IN} = 12V$, $V_{OUT0} = 1V$, $I_{OUT0} = 130A$, $T_A = 23.3^\circ C$, Air Flow 300LFM

Figure 9. Current Sharing Performance at $V_{IN} = 12V$, $V_{OUT0} = 1V$
DEMO MANUAL DC2106B-B

QUICK START PROCEDURE

LTpowerPlay Software GUI

LTpowerPlay is a powerful Windows based development environment that supports Linear Technology power system management ICs, including the LTM4676A, LTC3880, LTC3883, LTC2974 and LTC2978. The software supports a variety of different tasks. You can use LTpowerPlay to evaluate Linear Technology ICs by connecting to a demo board system. LTpowerPlay can also be used in an offline mode (with no hardware present) in order to build a multichip configuration file that can be saved and reloaded at a later time. LTpowerPlay provides unprecedented diagnostic and debug features. It becomes a valuable diagnostic tool during board bring-up to program or tweak the power management scheme in a system, or to diagnose power issues when bringing up rails. LTpowerPlay utilizes the DC1613A USB-to-SMBus controller to communicate with one of many potential targets, including the LTM4676, the LTC3880 and the LTC3883’s demo system, or a customer board. The software also provides an automatic update feature to keep the software current with the latest set of device drivers and documentation. The LTpowerPlay software can be downloaded from:

http://linear.com/ltpowerplay

To access technical support documents for LTC Digital Power Products visit Help. View online help on the LTpowerPlay menu.

LTpowerPlay QUICK START PROCEDURE

The following procedure describes how to use LTpowerPlay to monitor and change the settings of LTM4676A.

1. Download and install the LTpowerPlay GUI:

http://linear.com/ltpowerplay
QUICK START PROCEDURE

2. Launch the LTpowerPlay GUI.
 a. The GUI should automatically identify the DC2106B-B. The system tree on the left hand side should look like this:

 ![System Tree Screenshot]

 b. A green message box shows for a few seconds in the lower left hand corner, confirming that LTM4676A is communicating:

 ![Green Message Screenshot]

 c. In the Toolbar, click the “R” (RAM to PC) icon to read the RAM from the LTM4676A. This reads the configuration from the RAM of LTM4676A and loads it into the GUI.

 ![RAM to PC Icon Screenshot]

 d. If you want to change the output voltage to a different value, like 1.5V. In the Config tab, type in 1.5 in the VOUT_COMMAND box, like this:

 ![VOUT_COMMAND Box Screenshot]

 Then, click the “W” (PC to RAM) icon to write these register values to the LTM4676A. After finishing this step, you will see the output voltage will change to 1.5V.

 ![Output Voltage Change Screenshot]

 If the write is successful, you will see the following message:

 ![Success Message Screenshot]

 e. You can save the changes into the NVM. In the tool bar, click “RAM to NVM” button, as following

 ![RAM to NVM Icon Screenshot]

 f. Save the demo board configuration to a (*.proj) file. Click the Save icon and save the file. Name it whatever you want.
PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>REFERENCE</th>
<th>PART DESCRIPTION</th>
<th>MANUFACTURER/PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Circuit Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>CIN1, CIN2, CIN4, CIN5, CIN6, CIN7, CIN8, CIN9, CIN10, CIN11, CIN12, CIN13, CIN14, CIN15, CIN16, CIN17, CIN18, CIN19</td>
<td>CAP, X5R, 10µF, 35V, 10%, 1210</td>
<td>NIC NMC1210X5R106K35TRPLPF</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>CIN3</td>
<td>CAP, 150µF, 35V, ALUMINUM ELECTR</td>
<td>SUN ELECT, 35CE150AX</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>COUT1, COUT2, COUT3, COUT4, COUT6, COUT9, COUT10, COUT12, COUT13, COUT15, COUT16, COUT19, COUT20, COUT22, COUT24, COUT27, COUT28, COUT31, COUT32, COUT35, COUT36</td>
<td>CAP, X5R, 100µF, 6.3V, 20% 1210</td>
<td>MURATA, GRM32ER60J107M20L</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>COUT5, COUT7, COUT8, COUT12, COUT22, COUT24, COUT30, COUT34, COUT38, COUT8, COUT11</td>
<td>CAP, 330µF, 6.3V, POSCAP, D4</td>
<td>SANYO, 6TPF330M9L</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C5</td>
<td>CAP, X7R, 2.2nF, 16V, 10%, 0603</td>
<td>AVX, 0603YC222KAT2A</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>C7, C8, C33, C34</td>
<td>CAP, X7R, 10nF, 16V, 10%, 0603</td>
<td>AVX, 0603YC103KAT2A</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>C11, C18, C22</td>
<td>CAP, X5R, 10µF, 6.3V, 20% 1210</td>
<td>TDK, C1608X5R1C225K</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>C12, C19, C23</td>
<td>CAP, X7R, 1µF, 16V, 10%, 0603</td>
<td>AVX, 0603YC105KAT2A</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>C31, C28</td>
<td>CAP, X7R, 1µF, 25V, 10%, 1206</td>
<td>AVX, 12063C105KAT2A</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>C25</td>
<td>CAP, X7R, 2.2nF, 25V, 10%, 0605</td>
<td>AVX, 06053D222KAT2A</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>C26</td>
<td>CAP, X7R, 0.1µF, 25V, 10%, 1206</td>
<td>AVX, 12063C104KAT2A</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>C29</td>
<td>CAP, X5R, 0.1µF, 25V, 10%, 0605</td>
<td>AVX, 06053D105KAT2A</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>C27</td>
<td>CAP, X7R, 1µF, 25V, 10%, 0605</td>
<td>AVX, 06033C151KAT2A</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>C30</td>
<td>CAP, X5R, 0.2µF, 25V, 10%, 0605</td>
<td>AVX, 06032D475KAT2A</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>D1, D2</td>
<td>LED GREEN S-GW TYPE SMD</td>
<td>ROHM SML-010FTT86</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>D3</td>
<td>LED RED S-TYPE GULL WING SMD</td>
<td>ROHM SML-010VTT86</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>D10</td>
<td>DIODE, ULTRA LOW SCHOTTKY RECTIFIER</td>
<td>NXP SEMI PMEG2005AEL, 315</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>Q1, Q3, Q4</td>
<td>MOSFET N-CH 60V 115MA SOT-23</td>
<td>FAIRCHILD 2N7002K</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>Q2</td>
<td>MOSFET P-CH 20V 0.58A SOT-23</td>
<td>VISHAY TP0101K-T1-E3</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>Q5, Q6</td>
<td>MOSFET SPEED SRS 30V 30A LFPAK</td>
<td>RENESAS RJK0305DOPB</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>Q19</td>
<td>P-CHANNEL 30-V MOSFET</td>
<td>DIODE IN, DMP3130L-7</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>R25</td>
<td>RES, CHIP, 22.6k, 1%, 0603</td>
<td>VISHAY CRCW060322K6FKEA</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>R2, R4, R8, R23, R31, R32, R34, R37, R38, R50, R61, R66, R42, R44, R46, R47, R41, R64, R51, R55, R109, R75, R80, R114</td>
<td>RES, CHIP, 0%, 0603</td>
<td>VISHAY CRCW06030000Z0EA</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>R43, R49, R52, R56,</td>
<td>RES, CHIP, 0%, 0603</td>
<td>VISHAY CRCW20100000Z0EA</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>R10, R11, R12, R13, R16, R17, R21, R77, R94</td>
<td>RES, CHIP, 10k, 1%, 0603</td>
<td>VISHAY CRCW060310K0FKEA</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>R9</td>
<td>RES, CHIP, 10k, 1%, 0603</td>
<td>VISHAY CRCW060310K15FKEA</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>R22, R26, R70, R73</td>
<td>RES, CHIP, 12k, 1%, 0603</td>
<td>NIC NRC06F100R0TF</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>R102</td>
<td>RES, CHIP, 12k, 1%, 0603</td>
<td>VISHAY CRCW0603121KFKEA</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>R33, R60, R65</td>
<td>RES, CHIP, 80.6k, 1%, 0603</td>
<td>VISHAY CRCW060380K6FKEA</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>R40, R63, R68, R58</td>
<td>RES, CHIP, 10k, 1%, 0603</td>
<td>VISHAY CRCW060380K6FKEA</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>R35</td>
<td>RES, CHIP, 10k, 1%, 0603</td>
<td>VISHAY CRCW060380K6FKEA</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>R36</td>
<td>RES, CHIP, 80.6k, 1%, 0603</td>
<td>VISHAY CRCW060380K6FKEA</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>R19</td>
<td>RES, CHIP, 7.15k, 1%, 0603</td>
<td>VISHAY CRCW06037K15FKEA</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>R45, R84, R85, R98</td>
<td>RES, CHIP, 200, 1%, 0603</td>
<td>VISHAY CRCW0603200RFKEA</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>R54, R89, R92</td>
<td>RES, CHIP, 200, 1%, 0603</td>
<td>VISHAY CRCW0603200RFKEA</td>
</tr>
</tbody>
</table>
PARTS LIST

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>REFERENCE</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER/PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>2</td>
<td>R76, R115</td>
<td>RES, CHIP, 4.99k, 1%, 0603</td>
<td>PANASONIC ERJ-3EKF4991V</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>R86</td>
<td>RES, CHIP, 127, 1%, 0603</td>
<td>VISHAY CRCW0603127RFKEA</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>R87</td>
<td>RES, CHIP, 2, 1%, 0603</td>
<td>VISHAY CRCW06032R00FKEA</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>R88</td>
<td>RES, CHIP, 1M, 1%, 0603</td>
<td>NIC NRC06F1004TRF</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>R90</td>
<td>RES, CHIP, 154k, 1%, 0603</td>
<td>VISHAY CRCW0603154KFKEA</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>R91</td>
<td>RES, CHIP, 3.3, 1%, 0603</td>
<td>VISHAY CRCW06033R30FKEA</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>R93</td>
<td>RES, CHIP, 681k, 1%, 0603</td>
<td>VISHAY CRCW0603681KFKEA</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>R95</td>
<td>RES, CHIP, 82.5, 1%, 0603</td>
<td>VISHAY CRCW060382R5FKEA</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>R112</td>
<td>RES, CHIP, 15.8k, 1%, 0603</td>
<td>VISHAY CRCW060315K8FKEA</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>R99, R100</td>
<td>RES, CHIP, 0.01, 1%, 2010</td>
<td>VISHAY WSL2010R0100FEA</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>R101</td>
<td>TRIMMING POTENTIOMETER, 5k</td>
<td>BOURNS, 336G-P-1-502LF</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>R103</td>
<td>RES, CHIP, 100k, 1%, 0603</td>
<td>VISHAY CRCW0603100KFKEA</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>U1</td>
<td>IC, LTM4676AEY</td>
<td>LINEAR TECH LTM4676AEY</td>
</tr>
<tr>
<td>49</td>
<td>3</td>
<td>U2, U3, U4</td>
<td>IC, LTM4630EV</td>
<td>LINEAR TECH LTM4630EV</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>U5</td>
<td>IC, LT1801CMS8, MSOP</td>
<td>LINEAR TECH LT1801CMS8</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>U6</td>
<td>IC, 24LC025T-E/OT SOT-23 6-LEAD</td>
<td>MICROCHIP, 24LC025T-E/OT</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>U7</td>
<td>IC, LTC6992-1, S6-TSOT23</td>
<td>LINEAR TECH LTC6992S6-1</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>U8</td>
<td>IC, LT1803IS5, S5-TSOT23</td>
<td>LINEAR TECH LT1803IS5</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>U9</td>
<td>IC, LT1129CS8-5, S8</td>
<td>LINEAR TECH LT1129CS8-5</td>
</tr>
</tbody>
</table>

Additional Demo Board Circuit Components

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>REFERENCE</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER/PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>C1, C2, C3, C4, C6, C13, COUT14, COUT17, COUT21, COUT25, COUT29, COUT33, COUT37, C9, C10, C16, C17, C20, C21,</td>
<td>CAP, OPTIONAL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>R1, R3, R5, R6, R7, R14, R15, R18, R20, R24, R27 TO R30, R39, R48, R59, R62, R67, R69, R72, R78, R79, R96, R97, R104 TO R108, R39, R41, R62, R67, R69</td>
<td>RES, OPTIONAL</td>
<td></td>
</tr>
</tbody>
</table>

Hardware: for Demo Board Only

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>REFERENCE</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER/PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>E1 TO E24</td>
<td>TESTPOINT, TURRET, 0.062”</td>
<td>MILL-MAX, 2308-2-00-80-00-00-07-0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>JP1, JP2</td>
<td>0.079 SINGLE ROW HEADER, 3 PIN</td>
<td>SAMTEC,TMM-103-02-L-S</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>XJP1, XJP2</td>
<td>SHUNT</td>
<td>SAMTEC, 2SN-BK-G</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>J1, J3</td>
<td>JACK, BANANA</td>
<td>KEYSTONE 575-4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>J2, J4, J5, J6</td>
<td>STUD, TESTPIN</td>
<td>PEM KFH-032-10</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>J1, J2, J3, J4, J5, J6 (x2)</td>
<td>NUT, BRASS 10-32</td>
<td>ANY #10-32</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>J1, J2, J3, J4, J5, J6</td>
<td>RING, LUG #10</td>
<td>KEYSTONE, 8205, #10</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>J1, J2, J3, J4, J5, J6</td>
<td>WASHER, TIN PLATED BRASS</td>
<td>ANY #10, #10EXT BZ TN</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>S$1, SW2</td>
<td>CONN, SUB MINIATURE SLIDE SWITCHES</td>
<td>C&K, JS20201CON</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>J7</td>
<td>CONN HEADER 12POS 2MM STR DL PCB</td>
<td>FCI 98414-G06-12ULF</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>J10, J11</td>
<td>CONN, BNC, 5PINS</td>
<td>CONNEX, 112404</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>J14</td>
<td>HEADER, 4 PINS, SHROUDED</td>
<td>HIROSE, DF3A-4P-2DSA</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>J12</td>
<td>CONN RECEPT 2MM DUAL R/A 14POS (F)</td>
<td>SULLINS, NPN072FJFN-RC</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>J13</td>
<td>HEADER 14POS 2MM R/A GOLD (M)</td>
<td>MOLEX, 87760-1416</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>(STAND-OFF)</td>
<td>STAND-OFF, NYLON 0.50” TALL</td>
<td>KEYSTONE, 8833(SNAP ON)</td>
</tr>
</tbody>
</table>
ALL PARTS ON THIS PAGE ARE FOR DEMO ONLY, NOT NEEDED IN CUSTOMER DESIGN

CUSTOMER NOTICE

LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS; HOWEVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO VERIFY PROPER AND SAFE PERFORMANCE. THERE ARE UNPREDICTABLE FACTORS THAT CAN AFFECT CIRCUIT PERFORMANCE OR RELIABILITY. CONTACT LINEAR TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.

APPROVALS

LINEAR TECHNOLOGY

PCB DES.

HZ

LTC Confidential-For Customer Use Only

TITLE:

HIGH EFFICIENCY, POLY-PHASE, DC/DC STEP-DOWN MICRO MODULE REGULATOR WITH POWER SYSTEM MANAGEMENT IC NO. REV.

B LTM4676AEY / LTM4630EV 1

DATE:

Thursday, June 04, 2015

SHEET OF

SHEET OF

SHEET OF

dc2106bbf

www.linear.com
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

Figure 7. Circuit Schematic
DEMO MANUAL DC2106B-B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation