DESCRIPTION

DC2073B demo board features Linear Technology’s SOT23 packaged silicon oscillators. The DC2073B demo board is available in eleven different options; DC2073B-A through DC2073B-K. These eleven options provide for the evaluation of resistor-set oscillator ICs and fixed frequency ICs (Table1).

Table 1. Resistor-Set Oscillator ICs and Maximum Frequency Error at TA = 25°C

<table>
<thead>
<tr>
<th>PART NUMBER, BOARD ASSEMBLY</th>
<th>FREQUENCY PROGRAM METHOD</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC6905, DC2073B-A</td>
<td>Resistor Programmable</td>
<td>17.225MHz ≤ fOSC ≤ 170MHz, ±1.4% at V+ = 2.7V and ±2.2% at V+ = 5V</td>
</tr>
<tr>
<td>LTC1799, DC2073B-B</td>
<td>Resistor Programmable</td>
<td>5kHz ≤ fOSC ≤ 10MHz, ±1.5% at V+ = 3V and ±1.5% at V+ = 5V (Up to 20MHz)</td>
</tr>
<tr>
<td>LTC6900, DC2073B-C</td>
<td>Resistor Programmable</td>
<td>5kHz ≤ fOSC ≤ 10MHz, ±1.5% at V+ = 3V and ±1.5% at V+ = 5V (Up to 20MHz)</td>
</tr>
<tr>
<td>LTC6905-133, DC2073B-D</td>
<td>Three Fixed Frequencies Set by Three-State Input</td>
<td>fOSC = 133MHz, 66.7MHz and 33.5MHz, ±1.0% at V+ = 3V and ±1.5% Typical at V+ = 5V</td>
</tr>
<tr>
<td>LTC6905-100, DC2073B-E</td>
<td>Three Fixed Frequencies Set by Three-State Input</td>
<td>fOSC = 100MHz, 50MHz and 25MHz, ±1.0% at V+ = 3V and ±1.5% Typical at V+ = 5V</td>
</tr>
<tr>
<td>LTC6905-96, DC2073B-F</td>
<td>Three Fixed Frequencies Set by Three-State Input</td>
<td>fOSC = 96MHz, 48MHz and 24MHz, ±1.0% at V+ = 3V and ±1.5% Typical at V+ = 5V</td>
</tr>
<tr>
<td>LTC6905-80, DC2073B-G</td>
<td>Three Fixed Frequencies Set by Three-State Input</td>
<td>fOSC = 80MHz, 40MHz and 20MHz, ±1.0% at V+ = 3V and ±1.5% typical at V+ = 5V</td>
</tr>
<tr>
<td>LTC6906, DC2073B-H</td>
<td>Resistor Programmable</td>
<td>10kHz ≤ fOSC ≤ 1MHz, ±0.5% at V+ = 2.7V to 3.6V and ±0.7% at V+ = 2.25V</td>
</tr>
<tr>
<td>LTC6907, DC2073B-I</td>
<td>Resistor Programmable</td>
<td>400kHz ≤ fOSC ≤ 4MHz, ±0.65% at V+ = 3V to 3.6V</td>
</tr>
<tr>
<td>LTC6908-1, DC2073B-J</td>
<td>Spread Spectrum Modulation, Complementary Outputs (0°/180°) Resistor Programmable</td>
<td>250kHz ≤ fOSC ≤ 5MHz, ±1.5% at V+ = 2.7V and ±2.0% at V+ = 5V</td>
</tr>
<tr>
<td>LTC6908-2, DC2073B-K</td>
<td>Spread Spectrum Modulation, Quadrature Outputs (0°/90°) Resistor Programmable</td>
<td>250kHz ≤ fOSC ≤ 5MHz, ±1.5% at V+ = 2.7V and ±2.0% at V+ = 5V</td>
</tr>
</tbody>
</table>

Design files for this circuit board are available at http://www.linear.com/demo/DC2073B
QUICK START PROCEDURE

Test Equipment:
1. A single 3V power supply.
2. An oscilloscope with a bandwidth of at least 5x f OSC. (For example, if f OSC = 100MHz then use a 500MHz oscilloscope).
3. A screwdriver to adjust the potentiometer.

Note: The DC2073B potentiometer is shorted with a zero ohm resistor for factory testing. The zero ohm (RJ10) resistor must be removed to allow setting the frequency with a screwdriver. If the potentiometer is set to a high value (>100k), then touching the DC2073B can produce output jitter.

Basic Test Procedure:
1. Connect power supply to V+ and GND, turrets E4 and E5.
2. Connect oscilloscope probe to OUT1 and GND.

Note: The ground lead of an oscilloscope probe has a series inductance that can generate a resonant circuit with the probe’s capacitance. Probe resonance adds transient peaks and ringing on a high speed waveform. Reliable probing of the high frequency LTC6905 and LTC6905-XXX (with corresponding demo boards DC2073B-A, -D, -E, -F or -G), must use a very short connection of the oscilloscope probe ground to the board GND (see probe tip picture in Figure 1 Test Setup).
3. Set the JP1 jumper to the N divider position for the desired frequency shown on Table 2.
4. Turn on supply.
5. The oscilloscope display shows a 3V squarewave (0V to 3V).
6. For the resistor-set ICs (DC2073B-A, -B, -C, -H, -I, -J or -K) turn the RPOT potentiometer for the desired frequency. (The frequency adjustment is very coarse when the potentiometer is turned near the fully clockwise or counter-clockwise position).

Verify Oscillator Accuracy
The f OSC accuracy of the resistor-set ICs (DC2073B-A, -B, -C, -H, -I, -J, -K), can be verified by setting RSET to the exact value from the f OSC equation shown in Table 2. For the DC2073B-A, -B, -C, -J, -K, RSET = RPOT + RSET2. RSET1 and RSET2 are never installed on the same board. Connecting an ohmmeter across RPOT and RSET1 or RSET2 forces current into the IC set pin (Pin 3 or 4) and causes an error in the ohmmeter reading. The RS resistor is in series with RPOT and equal to RSET1 or RSET2 and the equivalent RSET = RPOT + RS.

Procedure to Verify Oscillator Accuracy
a. Calculate RSET for the desired frequency (RSET in Table 2).
b. Remove the power supply leads from DC2073B and connect an ohmmeter from POT (E6) to V+ (DC2073B-A, -B, -C, -J or -K) or GND (DC2073B-H or -I).
c. Adjust RPOT for the exact value of RSET needed.

Note: If the potentiometer is turned near the fully clockwise or counter-clockwise position the RPOT adjustment may be too coarse for setting an exact RSET value. In addition, for a frequency adjustment near the upper or lower f OSC range, RSET may be greater or less than the default DC2073B RPOT + RSET1 or RSET2 value, in this case the RSET1 or RSET2 resistor must be removed and replaced with a lower or higher value.
QUICK START PROCEDURE

Figure 1. Test Setup

RJ10 is a zero ohm resistor and must be removed for RPOT adjustment.
QUICK START PROCEDURE

Table 2. f_{OSC} Frequency and N Divider Setting

<table>
<thead>
<tr>
<th>Model</th>
<th>Configuration</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTC6905, DC2073B-A</td>
<td>$f_{\text{OSC}} = \left(\frac{168.5\text{MHz}\cdot 10\text{k} \Omega}{R_{\text{SET}}} + 1.5\text{MHz} \right) \cdot \frac{1}{N}$, $R_{\text{SET}} = 168.5\text{MHz}\cdot 10\text{k} \Omega$ N</td>
<td>68.9MHz ≤ f_{OSC} ≤ 170MHz</td>
</tr>
</tbody>
</table>

N = 1 (JP1 to V+), $f_{\text{OSC}} = 168.5\text{MHz}\cdot 10\text{k} \Omega$ N
N = 2 (JP1 to OPEN), $f_{\text{OSC}} = 85\text{MHz}$ N
N = 4 (JP1 to GND), $f_{\text{OSC}} = 42.5\text{MHz}$ N

| **LTC6900, DC1073A-C** | $f_{\text{OSC}} = \frac{10\text{MHz}\cdot 20\text{k} \Omega}{N}$, $R_{\text{SET}} = \frac{10\text{MHz}\cdot 20\text{k} \Omega}{f_{\text{OSC}}}$ | N = 1 (JP1 to GND), 500kHz ≤ f_{OSC} ≤ 20MHz |

N = 10 (JP1 to OPEN), $f_{\text{OSC}} = 50\text{MHz}$ N
N = 100 (JP1 to V+), $f_{\text{OSC}} = 2\text{MHz}$ N

| **LTC6905-10, DC2073B-E** | $f_{\text{OSC}} = 100\text{MHz}$ | N = 1 (JP1 to V+), $f_{\text{OSC}} = 100\text{MHz}$ |

N = 2 (JP1 to OPEN), $f_{\text{OSC}} = 50\text{MHz}$ N
N = 4 (JP1 to GND), $f_{\text{OSC}} = 25\text{MHz}$ N

| **LTC6905-80, DC2073B-G** | $f_{\text{OSC}} = 80\text{MHz}$ | N = 1 (JP1 to V+), $f_{\text{OSC}} = 80\text{MHz}$ |

N = 2 (JP1 to OPEN), $f_{\text{OSC}} = 40\text{MHz}$ N
N = 4 (JP1 to GND), $f_{\text{OSC}} = 20\text{MHz}$ N

| **LTC6907, DC2073B-I** | $f_{\text{OSC}} = \left(\frac{4\text{MHz}\cdot 50\text{k} \Omega}{N} \right)$, $R_{\text{SET}} = \frac{4\text{MHz}\cdot 50\text{k} \Omega}{f_{\text{OSC}}}$ | N = 1 (JP1 to GND), 0.4MHz ≤ f_{OSC} ≤ 4MHz |

N = 3 (JP1 to OPEN), $f_{\text{OSC}} = 1.33\text{MHz}$ N
N = 10 (JP1 to V+), 40kHz ≤ f_{OSC} ≤ 400kHz N

| **LTC6908-1, DC2073B-K** | $f_{\text{OSC}} = \frac{10\text{MHz}\cdot 10\text{k} \Omega}{R_{\text{SET}}} = \frac{10\text{MHz}\cdot 10\text{k} \Omega}{f_{\text{OSC}}}$ | N = 1 (JP1 to GND), $f_{\text{OSC}}/16$ |

N = 2 (JP1 to OPEN), $f_{\text{OSC}}/32$ N
N = 4 (JP1 to V+), $f_{\text{OSC}}/64$ N

Complementary Outputs (0°/180°) without Modulation:
250kHz ≤ f_{OSC} ≤ 5MHz, (JP1 to DIV/MOD)

Spread Spectrum Modulation Rate:
(JP1 to GND), $f_{\text{OSC}}/16$ (JP1 to OPEN), $f_{\text{OSC}}/32$ (JP1 to V+), $f_{\text{OSC}}/64$
DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation