Regulatory Compliance

The Bluetooth EZ-Extender is designed to be used solely in a laboratory environment. The board is not intended for use as a consumer end product or as a portion of a consumer end product. The board is an open system design which does not include a shielded enclosure and therefore may cause interference to other electrical devices in close proximity. This board should not be used in or near any medical equipment or RF devices.

The Bluetooth EZ-Extender is currently being processed for certification that it complies with the essential requirements of the European EMC directive 89/336/EEC amended by 93/68/EEC and therefore carries the “CE” mark.

The Bluetooth EZ-Extender contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused extender boards in the protective shipping package.
CONTENTS

PREFACE

Product Overview ... ix
Purpose of This Manual ... xi
Intended Audience ... xi
Manual Contents ... xi
What’s New in This Manual ... xii
Technical Support ... xii
Supported Products .. xiii
Product Information .. xiv
 Analog Devices Web Site .. xiv
 EngineerZone ... xiv
Related Documents .. xv

USING THE BLUETOOTH EZ-EXTENDER

Package Contents ... 1-2
Bluetooth EZ-Extender Default Configuration 1-2
Bluetooth EZ-Extender Setup .. 1-3
Flash Memory Interface ... 1-4
UART Interface ... 1-4
Contents

Bluetooth Module ... 1-4
USB Interface ... 1-5
Expansion Interface ... 1-5
Example Programs .. 1-5

BLUETOOTH EZ-EXTENDER HARDWARE REFERENCE

System Architecture .. 2-2
Configuration Switch ... 2-3
Jumpers ... 2-5
 TWI Flash Address Configuration Jumper (JP1) 2-6
 TWI Flash Write Protect Jumper (JP2) 2-6
 Soft Reset Configuration Jumpers (JP3–4) 2-6
 Bluetooth Module Default Configuration Jumper (JP5) 2-6
 UART Receive Data Jumper (JP6) 2-6
Power LED .. 2-7
Connectors .. 2-8
 STAMP UART Connector (J1) .. 2-9
 Expansion Interface II Connector (J3) 2-9
 Expansion Interface II Connector (J5) 2-10
 Expansion Interface II Connector (P2) 2-10
 Expansion Interface II Connector (P4) 2-11
 USB Connector (P3) ... 2-11
Contents

BLUETOOTH EZ-EXTENDER BILL OF MATERIALS
BLUETOOTH EZ-EXTENDER SCHEMATIC
INDEX
Thank you for purchasing the Bluetooth EZ-Extender®, Analog Devices, Inc. daughter board to a Blackfin® evaluation system with the new expansion interface II (such as the ADSP-BF518F EZ-Board®) or the older STAMP interface (such as the ADSP-BF537 EZ-KIT Lite®).

Blackfin processors are embedded processors that support a Media Instruction Set Computing (MISC) architecture. This architecture is the natural merging of RISC, media functions, and digital signal processing characteristics towards delivering signal processing performance in a microprocessor-like environment.

The Bluetooth EZ-Extender is designed to be used in conjunction with an EZ-KIT Lite or an EZ-Board running the open source Linux operating system (OS). For more information about running Linux OS on a Blackfin processor, go to http://blackfin.uclinux.org/gf/.

Product Overview

The Bluetooth EZ-Extender is a separately sold daughter board that plugs onto an EZ-KIT Lite supporting the STAMP interface or an EZ-Board/EZ-Kit Lite supporting the expansion interface II connector. The extender board isolates the low-level configuration and communication tasks of integrating Bluetooth and radio frequency (RF) wireless technologies in your Blackfin board designs.

Please visit www.analog.com/EX2-Bluetooth for additional information, including CCES support.
Product Overview

The board extends the capabilities of the Blackfin evaluation system by providing a connection to the Bluegiga WT12 Bluetooth module.

The board features:

- Bluegiga WT12 Bluetooth module
 - Bluetooth radio antenna
 - Fully implemented protocol stack
 - HCI and iWRAP firmware
- USB interface
 - Full speed USB interface for communicating with other compatible digital devices. The WT12 module acts as a USB peripheral.
- UART interface
 - Standard UART interface for communicating with other serial devices
 - Supports hardware flow control
- Expansion interface
 - Allows other EZ-Extenders to be stacked

All of the power necessary to operate the extender is derived from the mating EZ-KIT Lite/EZ-Board. Before using any of the interfaces, follow the setup procedure in “Bluetooth EZ-Extender Setup” on page 1-3.
Preface

Purpose of This Manual

The Bluetooth EZ-Extender Manual describes operation and configuration of the extender board components. A schematic and a bill of materials are provided for reference.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors. This manual assumes that the audience has a working knowledge of the appropriate processor architecture and instruction set.

Programmers who are unfamiliar with Analog Devices processors can use this manual but should supplement it with other texts that describe your target architecture. For the locations of these documents, see “Related Documents”.

Programmers who are unfamiliar with CrossCore Embedded Studio® (CCES) or VisualDSP++® should refer to the online help and user’s manuals.

Manual Contents

The manual consists of:

- Chapter 1, “Using the Bluetooth EZ-Extender” on page 1-1
 Provides basic board information.

- Chapter 2, “Bluetooth EZ-Extender Hardware Reference” on page 2-1
 Provides information about the hardware aspects of the board.
What's New in This Manual

 Provides a list of components used to manufacture the board.

- Appendix B, “Bluetooth EZ-Extender Schematic” on page B-1
 Provides the resources to allow board-level debugging or to use as a reference guide.

What’s New in This Manual

This is revision 1.1 of the Bluetooth EZ-Extender Manual. The manual has been updated to include CCES information. In addition, modifications and corrections based on errata reports against the previous manual revision have been made.

For the latest version of this manual, please refer to the Analog Devices Web site.

Technical Support

You can reach Analog Devices processors and DSP technical support in the following ways:

- Post your questions in the processors and DSP support community at EngineerZone®:
 http://ez.analog.com/community/dsp

- Submit your questions to technical support directly at:
 http://www.analog.com/support
Preface

- E-mail your questions about processors, DSPs, and tools development software from CrossCore Embedded Studio or VisualDSP++:

 Choose Help > Email Support. This creates an e-mail to processor.tools.support@analog.com and automatically attaches your CrossCore Embedded Studio or VisualDSP++ version information and license.dat file.

- E-mail your questions about processors and processor applications to:
 processor.support@analog.com or processor.china@analog.com (Greater China support)

- In the USA only, call 1-800-ANALOGD (1-800-262-5643)

- Contact your Analog Devices sales office or authorized distributor. Locate one at: www.analog.com/adi-sales

- Send questions by mail to:
 Processors and DSP Technical Support
 Analog Devices, Inc.
 Three Technology Way
 P.O. Box 9106
 Norwood, MA 02062-9106
 USA

Supported Products

The Bluetooth EZ-Extender is designed as an extender board to the ADSP-BF518F and ADSP-BF526 EZ-Board evaluation systems. The extender also is compatible with the Blackfin evaluation systems featuring the STAMP interface, such as the ADSP-BF548 and ADSP-BF527 EZ-KIT Lites.
Product Information

Product Information

Product information can be obtained from the Analog Devices Web site and the online help.

Analog Devices Web Site

To access a complete technical library for each processor family, go to http://www.analog.com/processors/technical_library. The manuals selection opens a list of current manuals related to the product as well as a link to the previous revisions of the manuals. When locating your manual title, note a possible errata check mark next to the title that leads to the current correction report against the manual.

Also note, MyAnalog is a free feature of the Analog Devices Web site that allows customization of a Web page to display only the latest information about products you are interested in. You can choose to receive weekly e-mail notifications containing updates to the Web pages that meet your interests, including documentation errata against all manuals. MyAnalog provides access to books, application notes, data sheets, code examples, and more.

Visit MyAnalog to sign up. If you are a registered user, just log on. Your user name is your e-mail address.

EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI technical support engineers. You can search FAQs and technical information to get quick answers to your embedded processing and DSP design questions.
Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also use this open forum to share knowledge and collaborate with the ADI support team and your peers. Visit http://ez.analog.com to sign up.

Related Documents

For additional information about the product, refer to the following publications.

Table 1. Related Processor Publications

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ADSP-BF512/ADSP-BF514/ADSP-BF516/ADSP-BF518(F) Blackfin Embedded Processor Data Sheet</td>
<td>General functional description, pinout, and timing of the processor</td>
</tr>
<tr>
<td>• ADSP-BF522/ADSP-BF523/ADSP-BF524/ADSP-BF525/ADSP-BF526/ADSP-BF527 Blackfin Embedded Processor Data Sheet</td>
<td></td>
</tr>
<tr>
<td>• ADSP-BF542/ADSP-BF544/ADSP-BF547/ADSP-BF548/ADSP-BF549 Blackfin Embedded Processor Data Sheet</td>
<td></td>
</tr>
<tr>
<td>• ADSP-BF51x Blackfin Processor Hardware Reference</td>
<td>Description of the internal processor architecture and all register functions</td>
</tr>
<tr>
<td>• ADSP-BF52x Blackfin Processor Hardware Reference</td>
<td></td>
</tr>
<tr>
<td>• ADSP-BF54x Blackfin Processor Hardware Reference</td>
<td></td>
</tr>
<tr>
<td>Blackfin Processor Programming Reference</td>
<td>Description of all allowed processor assembly instructions</td>
</tr>
</tbody>
</table>
1 USING THE BLUETOOTH EZ-EXTENDER

This chapter describes the Bluetooth EZ-Extender’s package contents, configuration, installation procedure, and interfaces.

The information is presented in the following order.

- “Package Contents” on page 1-2
 Describes the product’s package contents.

- “Bluetooth EZ-Extender Default Configuration” on page 1-2
 Describes the board’s default configuration.

- “Bluetooth EZ-Extender Setup” on page 1-3
 Provides the board’s setup procedure.

- “Flash Memory Interface” on page 1-4
 Describes the on-board flash memory interface.

- “UART Interface” on page 1-4
 Describes the on-board UART interface.

- “Bluetooth Module” on page 1-4
 Describes the on-board Bluetooth interface.

- “USB Interface” on page 1-5
 Describes the on-board USB interface.
Package Contents

- “Expansion Interface” on page 1-5
 Describes the board’s expansion interface.

- “Example Programs” on page 1-5
 Describes the example programs installed with the board’s software.

For more information about the mating Blackfin processor, see documents referred to as “Related Documents”.

Package Contents

Your package contains the Bluetooth EZ-Extender.

If anything is missing, contact the vendor where you purchased your Bluetooth EZ-Extender or contact Analog Devices, Inc.

Bluetooth EZ-Extender Default Configuration

The Bluetooth EZ-Extender contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused extender boards in the protective shipping package.
Using the Bluetooth EZ-Extender

When removing the Bluetooth EZ-Extender from the package, handle the board carefully to avoid the discharge of static electricity, which can damage some components (see Figure 1-1).

![Figure 1-1. Default EZ-Extender Hardware Setup](image)

Figure 1-1 shows the default jumper and switch settings, connector locations, and LED used in installation. Confirm that your board is in the default configuration before using the board.

Bluetooth EZ-Extender Setup

It is important to set up all components of the system containing the Bluetooth EZ-Extender and then apply power to the system. Power on your system after the Bluetooth EZ-Extender has been connected to the
Flash Memory Interface

EZ-Board or EZ-KIT Lite. Do not install or remove the Bluetooth EZ-Extender when power is applied to the EZ-Board or EZ-KIT Lite.

Flash Memory Interface

The Bluetooth EZ-Extender is equipped with an I²C serial flash memory chip for data configuration. Flash memory is programmed by the factory. For more information, refer to “TWI Flash Address Configuration Jumper (JP1)” on page 2-6 and “TWI Flash Write Protect Jumper (JP2)” on page 2-6.

UART Interface

The UART interface is used for general communication between the processor and WT12 Bluegiga Bluetooth module. The interface has a maximum baud rate of 3.0 Mbaud. Flow control is supported via SW1. Refer to “Configuration Switch” on page 2-3 for more information.

Bluetooth Module

The Bluegiga WT12 module is a next-generation, class 2, Bluetooth 2.0 plus EDR module. The WT12 is a highly integrated and sophisticated Bluetooth module, containing all of the necessary elements from Bluetooth radio antenna to a fully implemented protocol stack. Therefore, the WT12 module provides an ideal solution for developers who want to integrate Bluetooth wireless technology into their design with limited knowledge of Bluetooth and RF technologies.

By default, the WT12 module is equipped with powerful and easy-to-use iWRAP firmware. iWRAP enables users to access Bluetooth functionality with simple ASCII commands delivered to the WT12 module over the UART interface.
Using the Bluetooth EZ-Extender

Besides the iWRAP firmware, the module has an option for other firmware options. Standard Host Command Interface (HCI) firmware is supported – an ideal solution for systems where the host system is capable of running the entire Bluetooth stack and profiles, and the WT12 module is utilized as the physical radio over the UART interface.

USB Interface

The device operates as a USB peripheral responding to requests from a master host controller, such as a PC. Both the OHCI and UHCI standards are supported. The set of implemented USB endpoints can behave as specified in the USB section of the Bluetooth v 2.0 and EDR specification or, alternatively, can appear as a set of endpoints appropriate to USB audio devices, such as speakers.

Expansion Interface

Expansion interface connectors on top of the Bluetooth EZ-Extender allow other EZ-Extenders to be mounted on top of the Bluetooth EZ-Extender. The UART interface is not brought up to the expansion interface because the interface is used by the WT12 Bluetooth module. All other signals are passed up to the expansion interface from the mating EZ-KIT Lite or EZ-Board through the Bluetooth EZ-Extender.

Example Programs

For more information about using the Bluetooth EZ-Extender and running μClinux on a Blackfin processor, go to http://docs.blackfin.uclinux.org/doku.php?id=hw:cards:bluetooth_ez-extender.
This chapter describes the hardware design of the Bluetooth EZ-Extender. The following topics are covered.

- "System Architecture" on page 2-2
 Describes the daughter board's configuration and explains how the board components interface with the processor and EZ-Board.

- "Configuration Switch" on page 2-3
 Shows the location and describes the board's configuration switch.

- "Jumpers" on page 2-5
 Shows the location and describes the board's jumpers.

- "Power LED" on page 2-7
 Shows the location and describes the board's power LED.

- "Connectors" on page 2-8
 Shows the locations, describes, and provides part numbers for the on-board connectors. In addition, the manufacturer and part number information is provided for the mating parts.
System Architecture

A block diagram of the Bluetooth EZ-Extender is shown in Figure 2-1.

Figure 2-1. Bluetooth EZ-Extender Block Diagram

The block diagram illustrates how the UART, SPORT, and USB ports are interfaced the Bluetooth module and processor on a mating EZ-KIT Lite/EZ-Board. The block diagram is a high-level diagram and does not show the voltage translation circuitry or the clock buffers. The schematic pages are available in “Bluetooth EZ-Extender Schematic” on page B-1.

The board supports 3.3, 2.5, and 1.8 volt I/O. The on-board voltage translator automatically translates the motherboard signals to the correct voltage levels.
The board contains a Bluegiga WT12 class 2, a Bluetooth 2.0, and EDR module, described in “Bluetooth Module” on page 1-4. The EZ-Extender is equipped with an I²C serial flash memory chip for data storage and configuration.

Configuration Switch

This section describes the board’s configuration switch (SW1). The switch location is shown in Figure 2-2.

Figure 2-2. Configuration Switch Location
Positions 7 and 8 of the configuration switch enable or disable UART flow control. Other switch positions are intended for internal Analog Devices test purposes only and not supported.

By default, SW1 is all OFF. The switch settings are shown in Table 2-1.

Table 2-1. Configuration Switch (SW1)

<table>
<thead>
<tr>
<th>SW1 Position</th>
<th>UART Flow Control Off</th>
<th>UART Flow Control On</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1.1</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.2</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.3</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.4</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.5</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.6</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>SW1.7</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>SW1.8</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>
Jumpers

This section describes functionality of the configuration jumpers. Figure 2-3 shows the jumper locations.

Figure 2-3. Jumper Locations
Jumper

TWI Flash Address Configuration Jumper (JP1)

The TWI flash address configuration jumper (JP1) controls the base address of the configuration flash memory. When multiple EZ-Extenders are stacked on top of each other, it may be necessary to change the JP1 setting to avoid any conflict with the configuration flash memory on another EZ-Extender. The default is no jumper installed.

TWI Flash Write Protect Jumper (JP2)

The TWI flash write protect jumper (JP2) is not available; the jumper is intended for internal Analog Devices test purposes only. The default is no jumper installed.

Soft Reset Configuration Jumpers (JP3–4)

The software reset configuration jumpers (JP3–4) determine which GPIO signal is used to perform a soft reset of the Bluegiga WT12 Bluetooth module. The default is no jumpers installed.

Bluetooth Module Default Configuration Jumper (JP5)

The Bluegiga WT12 Bluetooth module default configuration jumper (JP5) resets the module’s settings to the default values. This feature requires software support; refer to the example programs for more information. The default is no jumper installed.

UART Receive Data Jumper (JP6)

The UART receive data jumper (JP6) is not available; the jumper is intended for internal Analog Devices test purposes only. The default is no jumper installed.
Power LED

This section describes the power LED (LED1). When LED1 is lit up, it indicates that the board is powered. Figure 2-4 shows the LED location.

Figure 2-4. Power LED Location
Connectors

This section describes connector functionality and provides information about mating connectors. The connector locations are shown in Figure 2-5. Dashed lines indicate connectors on the bottom side of the board.

Figure 2-5. Connector Locations
STAMP UART Connector (J1)

The STAMP UART connector (J1) allows the Bluetooth EZ-Extender to be plugged onto an EZ-KIT Lite development board supporting a STAMP interface. The J1 connector is located on the bottom side of the board. For availability and pricing of the connectors, contact Samtec.

Refer to “Expansion Interface” on page 1-5 or more information.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-position 0.1”, SMT socket</td>
<td>SAMTEC</td>
<td>SSW-105-22-F-D-VS</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-position 0.1”, SMT header</td>
<td>SAMTEC TSSH</td>
<td>TSSH-105-01-L-DV-A</td>
</tr>
</tbody>
</table>

Expansion Interface II Connector (J 3)

The board-to-board connector (J3) provides signals for the SPI, TWI, UART, SPORT interfaces and general-purpose I/O (GPIO) signals of the mating EZ-Board. The connector is located on the bottom side of the board. For availability and pricing of the connectors, contact Samtec.

Refer to “Expansion Interface” on page 1-5 for more information.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-position 0.1”, SMT socket</td>
<td>SAMTEC</td>
<td>SSW-125-22-F-D-VS</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-position 0.1”, SMT header</td>
<td>SAMTEC</td>
<td>TSSH-125-01-L-DV-A</td>
</tr>
</tbody>
</table>
Connectors

Expansion Interface II Connector (J5)

The board-to-board connector (J5) provides signals for the PPI, TWI interfaces and GPIO signals of the mating EZ-Board. The connector is located on the bottom side of the board. For availability and pricing of the connectors, contact Samtec.

Refer to “Expansion Interface” on page 1-5 for more information.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-position 0.1”, SMT socket</td>
<td>SAMTEC</td>
<td>SSW-135-22-F-D-VS</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-position 0.1”, SMT header</td>
<td>SAMTEC</td>
<td>TSSH-135-01-L-DV-A</td>
</tr>
</tbody>
</table>

Expansion Interface II Connector (P2)

The board-to-board connector (P2) provides signals for the SPI, TWI, SPORT interfaces and GPIO signals of the mating EZ-Board. The connector is located on the top side of the board. For availability and pricing of the connectors, contact Samtec.

Refer to “Expansion Interface” on page 1-5 for more information.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-position 0.1”, SMT socket</td>
<td>SAMTEC</td>
<td>TSSH-125-01-L-DV-A</td>
</tr>
<tr>
<td>Mating Connector</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-position 0.1”, SMT header</td>
<td>SAMTEC</td>
<td>SSW-125-22-F-D-VS</td>
</tr>
</tbody>
</table>
Expansion Interface II Connector (P4)

The board-to-board connector (P4) provides signals for the PPI, TWI interfaces and GPIO signals of the mating EZ-Board. The connector is located on the top side of the board. For availability and pricing of the connectors, contact Samtec.

Refer to “Expansion Interface” on page 1-5 for more information.

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-position 0.1", SMT socket</td>
<td>SAMTEC</td>
<td>TSSH-135-01-L-DV-A</td>
</tr>
<tr>
<td></td>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>70-position 0.1", SMT header</td>
<td>SAMTEC</td>
<td>SSW-135-22-F-D-VS</td>
</tr>
</tbody>
</table>

USB Connector (P3)

<table>
<thead>
<tr>
<th>Part Description</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Mini-B connector</td>
<td>MOLEX</td>
<td>0675031010</td>
</tr>
<tr>
<td></td>
<td>Mating Connector</td>
<td></td>
</tr>
<tr>
<td>USB Mini-B to USB A cable</td>
<td>ASSMANN</td>
<td>AK672M/2-3</td>
</tr>
</tbody>
</table>
Connectors
A BLUETOOTH EZ-EXTENDER
BILL OF MATERIALS

The bill of materials corresponds to “Bluetooth EZ-Extender Schematic” on page B-1.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Qty.</th>
<th>Description</th>
<th>Reference Designator</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>SN74LVC1G14DB VR SOT23-5</td>
<td>U4</td>
<td>Digi-Key</td>
<td>296-11607-1-ND</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>SN74LVC1G08 SOT23-5</td>
<td>U8</td>
<td>TI</td>
<td>SN74LVC1G08DBVR</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>WT12 ICS010</td>
<td>U3</td>
<td>BLUEGIGA</td>
<td>WT12-A-AI</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>MIC94040 MLF4</td>
<td>U7</td>
<td>MICREL</td>
<td>MIC94040YFL</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M24C02 TSSOP8DW</td>
<td>U2</td>
<td>ST MICRO</td>
<td>M24C02-RDW6TP</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>SN74ALVC125 TVSOP14</td>
<td>U9</td>
<td>TI</td>
<td>SN74ALVC125DGRE4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>ADG3231 SOT23-6</td>
<td>U5</td>
<td>ANALOG DEVICES</td>
<td>ADG3231BRJZ-REEL</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>ADG3308 TSSOP20</td>
<td>U1</td>
<td>ANALOG DEVICES</td>
<td>ADG3308BRUZ</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>DIP8 SWT016</td>
<td>SW1</td>
<td>C&K</td>
<td>TDA08H0SB1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>IDC 3X2 IDC3X2_SMT</td>
<td>JP1</td>
<td>SAMTEC</td>
<td>TSM-103-01-T-DV</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>USB MINI-B 5PIN CON028</td>
<td>P3</td>
<td>MOLEX</td>
<td>0675031010</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>IDC 2X2 IDC2X2</td>
<td>JP4</td>
<td>FCI</td>
<td>68737-404HLF</td>
</tr>
<tr>
<td>Ref.</td>
<td>Qty.</td>
<td>Description</td>
<td>Reference Designator</td>
<td>Manufacturer</td>
<td>Part Number</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>IDC 4X2 IDC4X2</td>
<td>JP3</td>
<td>SULLINS</td>
<td>GEC04DAAN</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>IDC 25x2 IDC25x2_SMTA</td>
<td>P2</td>
<td>SAMTEC</td>
<td>TSSH-125-01-L-DV-A</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>IDC 35x2 IDC35x2_SMTA</td>
<td>P4</td>
<td>SAMTEC</td>
<td>TSSH-135-01-L-DV-A</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>IDC 35X2 IDC35x2_SMT_F</td>
<td>J5</td>
<td>SAMTEC</td>
<td>SSW-135-22-F-D-VS</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>IDC 25X2 IDC25x2_SMT_F</td>
<td>J3</td>
<td>SAMTEC</td>
<td>SSW-125-22-F-D-VS</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>IDC 2X1 IDC2X1_SMT</td>
<td>JP2,JP5-6</td>
<td>SAMTEC</td>
<td>TSM-102-01-T-SV</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>IDC 5X2 IDC5x2_SMT_F</td>
<td>J1</td>
<td>SAMTEC</td>
<td>SSW-105-22-F-D-VS</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>0.1UF 10V 10% 0402</td>
<td>C1-12</td>
<td>AVX</td>
<td>0402ZD104KAT2A</td>
</tr>
<tr>
<td>21</td>
<td>9</td>
<td>10K 1/16W 5% 0402</td>
<td>R1-4,R6,R14-17</td>
<td>VISHAY</td>
<td>CRCW040210K0FKED</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>22 1/16W 5% 0402</td>
<td>R11-12,R18-22</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ220X</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1.5K 1/10W 5% 0603</td>
<td>R8</td>
<td>PANASONIC</td>
<td>ERJ-3GEYJ152V</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>330 1/10W 5% 0603</td>
<td>R5</td>
<td>VISHAY</td>
<td>CRCW0603330RJNEA</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>GREEN LED001 LED1</td>
<td>PANASONIC</td>
<td>LN1361CTR</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>47.0K 1/16W 1% 0402</td>
<td>R9</td>
<td>ROHM</td>
<td>MCR01MZPF4702</td>
</tr>
<tr>
<td>27</td>
<td>2</td>
<td>10NH 5% 0402</td>
<td>L1-2</td>
<td>PANASONIC</td>
<td>ELJ-QF10NJF</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>15K 1/16W 5% 0402</td>
<td>R7,R13</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ153X</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>27K 1/16W 5% 0402</td>
<td>R10</td>
<td>PANASONIC</td>
<td>ERJ-2GEJ273X</td>
</tr>
</tbody>
</table>
BLUETOOTH DAUGHTERBOARD
I

INDEX

A
architecture, of this EZ-Extender, 2-2

B
bill of materials, A-1
Bluetooth module, 1-4, 2-2
Bluetooth module default config jumper (JP5), 2-6
board schematic (Bluetooth EZ-Extender), B-1

C
configuration, of this EZ-Extender, 1-3
configuration switch (SW1), 2-3
connectors
diagram of locations, 2-8
J1 (STAMP UART), 2-9
J3 (expansion interface), 2-9
J5 (expansion interface), 2-10
P2 (expansion interface), 2-10
P3 (USB), 2-11
P4 (expansion interface), 2-11
contents, of this EZ-Extender package, 1-2

D
default configuration, of this EZ-Extender, 1-2

E
EDR module, 1-4, 2-3
example programs, 1-5
expansion interface II
overview, 1-5
J3 connector, 2-9
J5 connector, 2-10
P2 connector, 2-10
P4 connector, 2-11

F
flash memory interface, 1-4

J
jumpers
diagram of locations, 2-5
JP1 (TWI flash address config), 2-6
JP2 (TWI flash write protect), 2-6
JP3-4 (soft reset config), 2-6
JP5 (Bluetooth module default config), 2-6
JP6 (UART receive data jumper), 2-6

L
LED1 (power), 2-7

P
power LED (LED1), 2-7
product overview, ix
Index

S
schematic, of Bluetooth EZ-Extender, B-1
setup, of this EZ-Extender, 1-2, 1-3
soft reset config jumpers (JP3-4), 2-6
STAMP UART connector (J1), 2-9
supported products, xiii
switch, SW1 (configuration), 2-3
system architecture, of this EZ-Extender, 2-2

T
technical support, xii
TWI flash address config jumper (JP1), 2-6
TWI flash write protect jumper (JP2), 2-6

U
UART
 interface, 1-4, 1-5
 receive data jumper (JP6), 2-6
USB
 connector (P3), 2-11
 interface, 1-5

V
voltage translator, 2-2

W
WT12 Bluetooth module, 1-5
WT12 module, 1-4, 2-3