Figure 5.4 (a) Functional block diagram of the AD1871 audio ADC
(b) Glueless connection of an ADSP-BF533 media processor to the AD1871
Chapter 5

I^2S (Inter-IC-Sound)

The I^2S protocol is a standard developed by Philips for the digital transmission of audio signals. This standard allows for audio equipment manufacturers to create components that are compatible with each other.

In a nutshell, I^2S is simply a three-wire serial interface used to transfer stereo data. As shown in Figure 5.5a, it specifies a bit clock (middle), a data line (bottom), and a left/right synchronization line (top) that selects whether a left or right channel frame is currently being transmitted.

In essence, I^2S is a time-division-multiplexed (TDM) serial stream with two active channels. TDM is a method of transferring more than one channel (for example, left and right audio) over one physical link.

In the AD1871 setup of Figure 5.4b, the ADC can use a divided-down version of the 12.288 MHz sampling rate it receives from the external crystal to drive the SPORT clock (RSCLK) and frame synchronization (RFS) lines. This configuration insures that the sampling and data transmission are in sync.

SPI (Serial Peripheral Interface)

The SPI interface, shown in Figure 5.5b, was designed by Motorola for connecting host processors to a variety of digital components. The entire interface between an SPI master and an SPI slave consists of a clock line (SCK), two data lines (MOSI and MISO), and a slave select (SPISELx) line. One of the data lines is driven by the master (MOSI), and the other is driven by the slave (MISO). In the example of Figure 5.4b, the Blackfin processor’s SPI port interfaces gluelessly to the SPI block of the AD1871.

Audio codecs with a separate SPI control port allow a host processor to change the ADC settings on the fly. Besides muting and gain control, one of the really useful settings on ADCs like the AD1871 is the ability to place it in power-down mode. For battery-powered applications, this is often an essential function.
DACs and Codecs

Connecting an audio DAC to a host processor is an identical process to the ADC connection we just discussed. In a system that uses both an ADC and a DAC, the same serial port can hook up to both, if it supports bidirectional transfers.

But if you’re tackling full-duplex audio, then you’re better off using a single-chip audio codec that handles both the analog-to-digital and digital-to-analog conversions. A good example of such a codec is the Analog Devices AD1836, which features three stereo DACs and two stereo ADCs, and is able to communicate through a number of serial protocols, including I²S.

AC ’97 (Audio Codec ’97)

I²S is only one audio specification. Another popular one is AC ’97, which Intel Corporation created to standardize all PC audio and to separate the analog circuitry from the less-noise-susceptible digital chip. In its simplest form, an AC ’97 codec uses a TDM scheme where control and data are interleaved in the same signal. Various timeslots in the serial transfer are reserved for a specific data channel or control word. Most processors with serial ports that support TDM mode can de-multiplex an AC ’97 signal at the expense of some software overhead. One example of an AC ’97 codec is the AD1847 from Analog Devices.