16位、串行输入、环路供电、4 mA至20 mA DAC

AD5421

产品特性
16位分辨率和单调性
引脚可选的NAMUR兼容范围
4 mA至20 mA
3.8 mA至21 mA
3.2 mA至24 mA
NAMUR兼容报警电流
下限报警电流 = 3.2 mA
上限报警电流 = 22.8 mA/24 mA
总不可调整误差(TUE): 0.05%(最大值)
积分非线性(INL)误差: 0.0035% FSR(最大值)
输出温度系数: 3 ppm/°C(典型值)
静态电流: 300 µA(最大值)
灵活的SPI兼容型串行数字接口采用施密特触发式输入
通过FAULT引脚或报警电流提供片内故障报警
每个写周期自动回读故障寄存器
压摆率控制功能
增益和失调调整寄存器
片内基准源温度系数: 4 ppm/°C(最大值)
可选的稳压输出
环路电压范围: 5.5 V至52 V
温度范围: −40°C至+105°C
TSSOP和LFCSP封装

应用
工业过程控制
4 mA至20 mA环路供电发射器
智能发射器
HART网络连接

概述
AD5421是一款完整的环路供电型4 mA-20 mA数模转换器(DAC)，专为满足工业控制领域智能发射器制造商的需求而设计。作为一种完全集成的高精度、低成本解决方案，该器件采用紧凑型TSSOP和LFCSP封装。

AD5421内置一路稳压输出，用于为自身及发射器中的其它器件供电。此稳压器提供1.8 V至12 V的调节输出电压。该器件还内置1.22 V和2.5 V基准电压源，因而不需要分立稳压器和基准电压源。

AD5421可以结合标准HART® FSK协议通信电路使用，而且额定性能不会受到影响。高速串行接口能够以30 MHz速率工作，并且允许通过一个SPI兼容型三线式接口与常用的微处理器和微控制器简单相连。

AD5421保证16位单调性。典型条件下，积分非线性为0.0015%，失调误差为0.0012%，增益误差为0.0006%。

它采用28引脚TSSOP和32引脚LFCSP封装，额定温度范围为−40°C至+105°C扩展工业温度范围。

配套低功耗产品
HART调制解调器: AD5700，AD5700-1
微控制器: ADuCM360

功能框图

图1.
目录
特性.. 1
应用.. 1
概述.. 1
配套低功耗产品.. 1
功能框图... 1
修订历史.. 3
技术规格.. 4
 交流工作特性.. 9
 时序特性... 9
绝对最大额定值... 11
 热阻.. 11
ESD警告... 11
引脚配置和功能描述... 12
典型性能参数.. 14
术语.. 20
工作原理.. 21
故障报警... 21
外部电流设置电阻.. 22
环路电流范围选择.. 22
环路电源连接.. 22
片内ADC... 23
稳压器... 23
环路电流摆率控制.. 23
上电默认值... 24
HART通信... 24
串行接口... 26
输入移位寄存器... 26
寄存器回读... 26
DAC寄存器... 27
控制寄存器... 28
故障寄存器... 29
失调调整寄存器... 30
增益调整寄存器... 30
应用信息... 32
 确定预期总误差... 32
散热和电源考量... 34
外形尺寸... 35
订购指南.. 36
修订历史

2013年1月—修订版E至修订版F
移动修订历史部分... 3
更改表7 .. 11
更改表8 .. 13
更改片内ADC部分... 23
更改表19和片内ADC传递函数公式部分......................... 29

2012年7月—修订版D至修订版E
更改图1和配套产品部分... 1
更改引脚LOOP-描述... 12
更改“应用信息”部分和图49... 31
增加图50 .. 32

2012年12月—修订版C至修订版D
更改特性部分和应用部分；添加配套产品部分............ 1
更改表1的电压调整率参数... 5
更新“外形尺寸”... 33

2011年12月—修订版B至修订版C
更改REFOUT1引脚、容性负载参数、测试条件、表1...... 4
更改REGOUT输出、容性负载参数、测试条件、表1...... 5
更改表6的ESD参数.. 10

2011年12月—修订版A至修订版B
增加32引脚LFCSP.. 通篇
更改技术规格部分、表1... 3
更改表7 .. 10
更改表8 .. 11
增加图51，重新排序... 17
更改片内ADC部分... 22
更改图46 .. 23
更改图48 .. 24
更改寄存器回读部分.. 25
更新“外形尺寸”... 33
更改“订购指南”... 34

2011年5月—修订版0至修订版A
更改表8中的REGIN、REFOUT1和REFOUT2引脚描述... 10
更改图45 .. 22
更改输入移位寄存器部分、表11和寄存器回读部分...... 24
更改图48 .. 30

2011年2月—修订版0：初始版
技术规格
环路电压 = 24 V; REF\textsubscript{IN} = 2.5 V外部基准电压; R\textsubscript{L} = 250 \Omega; 连接外部NMOS; 所有环路电流范围，除非另有说明，所有规格均相对于T\textsubscript{MIN}至T\textsubscript{MAX}而言。

表1.

<table>
<thead>
<tr>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>精度</td>
<td>16</td>
<td></td>
<td></td>
<td>位</td>
<td></td>
</tr>
<tr>
<td>分辨率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>总不可调整误差(UUE)²</td>
<td>-0.126</td>
<td>+0.126</td>
<td></td>
<td>% FSR</td>
<td>C级</td>
</tr>
<tr>
<td></td>
<td>-0.041</td>
<td>±0.0064</td>
<td>+0.041</td>
<td>% FSR</td>
<td>C级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.18</td>
<td>+0.18</td>
<td></td>
<td>% FSR</td>
<td>B级</td>
</tr>
<tr>
<td></td>
<td>-0.06</td>
<td>±0.011</td>
<td>+0.06</td>
<td>% FSR</td>
<td>B级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>+0.27</td>
<td></td>
<td>% FSR</td>
<td>A级</td>
</tr>
<tr>
<td></td>
<td>-0.08</td>
<td>±0.011</td>
<td>+0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUE长期稳定性</td>
<td>210</td>
<td></td>
<td></td>
<td>ppm FSR</td>
<td>1000小时后的漂移，T\textsubscript{A} = 125°C</td>
</tr>
<tr>
<td>相对精度(INL)</td>
<td>-0.0035</td>
<td>±0.0015</td>
<td>+0.0035</td>
<td>% FSR</td>
<td>C级</td>
</tr>
<tr>
<td></td>
<td>-0.012</td>
<td>±0.006</td>
<td>+0.012</td>
<td>% FSR</td>
<td>B级</td>
</tr>
<tr>
<td></td>
<td>-0.024</td>
<td>±0.01</td>
<td>+0.024</td>
<td>% FSR</td>
<td>A级</td>
</tr>
<tr>
<td>差分非线性(DNL)</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td>LSB</td>
<td>保证单调性</td>
</tr>
<tr>
<td>失调误差</td>
<td>-0.056</td>
<td>+0.056</td>
<td></td>
<td>% FSR</td>
<td>B级和C级</td>
</tr>
<tr>
<td></td>
<td>-0.008</td>
<td>±0.0008</td>
<td>+0.008</td>
<td>% FSR</td>
<td>B级和C级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.11</td>
<td>±0.0008</td>
<td>+0.11</td>
<td>% FSR</td>
<td>A级</td>
</tr>
<tr>
<td>失调误差TC³</td>
<td>1</td>
<td></td>
<td></td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>增益误差</td>
<td>-0.107</td>
<td>+0.107</td>
<td></td>
<td>% FSR</td>
<td>B级和C级</td>
</tr>
<tr>
<td></td>
<td>-0.035</td>
<td>±0.0058</td>
<td>+0.035</td>
<td>% FSR</td>
<td>B级和C级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.2</td>
<td>±0.0058</td>
<td>+0.2</td>
<td>% FSR</td>
<td>A级</td>
</tr>
<tr>
<td>增益误差TC³</td>
<td>4</td>
<td></td>
<td></td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>-0.126</td>
<td>+0.126</td>
<td></td>
<td>% FSR</td>
<td>B级和C级</td>
</tr>
<tr>
<td></td>
<td>-0.041</td>
<td>±0.0065</td>
<td>+0.041</td>
<td>% FSR</td>
<td>B级和C级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.25</td>
<td>±0.0065</td>
<td>+0.25</td>
<td>% FSR</td>
<td>A级</td>
</tr>
<tr>
<td>满量程误差TC³</td>
<td>5</td>
<td></td>
<td></td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.19</td>
<td>3.21</td>
<td></td>
<td>mA</td>
<td>4 mA至20 mA和3.8 mA至21 mA范围</td>
</tr>
<tr>
<td>上限报警电流</td>
<td>22.77</td>
<td>22.83</td>
<td></td>
<td>mA</td>
<td>3.2 mA至24 mA范围</td>
</tr>
<tr>
<td>精度(24 kΩ外部R\textsubscript{SET})</td>
<td>16</td>
<td></td>
<td></td>
<td>位</td>
<td>假设为理想电阻，仅适用于B级和C级；不适用于A级</td>
</tr>
<tr>
<td>分辨率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>总不可调整误差(UUE)²</td>
<td>-0.048</td>
<td>+0.048</td>
<td></td>
<td>% FSR</td>
<td>C级</td>
</tr>
<tr>
<td></td>
<td>-0.027</td>
<td>±0.002</td>
<td>+0.027</td>
<td>% FSR</td>
<td>C级，T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.08</td>
<td>+0.08</td>
<td></td>
<td>% FSR</td>
<td>B级</td>
</tr>
<tr>
<td>TUE长期稳定性</td>
<td>40</td>
<td></td>
<td></td>
<td>ppm FSR</td>
<td>1000小时后的漂移，T\textsubscript{A} = 125°C</td>
</tr>
<tr>
<td>相对精度(INL)</td>
<td>-0.0035</td>
<td>±0.0015</td>
<td>+0.0035</td>
<td>% FSR</td>
<td>C级</td>
</tr>
<tr>
<td></td>
<td>-0.012</td>
<td>±0.006</td>
<td>+0.012</td>
<td>% FSR</td>
<td>B级</td>
</tr>
<tr>
<td>差分非线性(DNL)</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td>LSB</td>
<td>保证单调性</td>
</tr>
<tr>
<td>失调误差</td>
<td>-0.021</td>
<td>+0.021</td>
<td></td>
<td>% FSR</td>
<td>T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.007</td>
<td>±0.0012</td>
<td>+0.007</td>
<td>% FSR</td>
<td>T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td>失调误差TC³</td>
<td>0.5</td>
<td></td>
<td></td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>增益误差</td>
<td>-0.03</td>
<td>+0.03</td>
<td></td>
<td>% FSR</td>
<td>T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td></td>
<td>-0.023</td>
<td>±0.0006</td>
<td>+0.023</td>
<td>% FSR</td>
<td>T\textsubscript{A} = 25°C</td>
</tr>
<tr>
<td>参数1</td>
<td>最小值</td>
<td>典型值</td>
<td>最大值</td>
<td>单位</td>
<td>测试条件/注释</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>-0.047</td>
<td>+0.047</td>
<td></td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数2</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数3</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数4</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数5</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数6</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数7</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
| 3.2 mA至24 mA范围 |

<table>
<thead>
<tr>
<th>参数8</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>增益误差 TC3</td>
<td>1</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td>−0.047</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR</td>
<td>TA = 25°C</td>
</tr>
<tr>
<td>满量程误差 TC3</td>
<td>-0.028</td>
<td>±0.0017</td>
<td>+0.028</td>
<td>ppm FSR/°C</td>
<td></td>
</tr>
<tr>
<td>下限报警电流</td>
<td>3.08</td>
<td>3.21</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 上限报警电流 | 22.78 | 23 | 24.01 | mA | 4 mA至20 mA和3.8 mA至21 mA范围
<p>| 3.2 mA至24 mA范围 |</p>
<table>
<thead>
<tr>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGOUT输出</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压</td>
<td>1.8</td>
<td>12</td>
<td>V</td>
<td></td>
<td>稳压器输出</td>
</tr>
<tr>
<td>输出电压TC³</td>
<td>110</td>
<td></td>
<td>ppm/℃</td>
<td></td>
<td>见表10</td>
</tr>
<tr>
<td>输出电压偏移</td>
<td>−4</td>
<td>±2</td>
<td>+4</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>外部可用电流³⁶</td>
<td>3.15</td>
<td></td>
<td>mA</td>
<td></td>
<td>假定HART通信期间环路中的电流为4 mA</td>
</tr>
<tr>
<td>短路电流</td>
<td>23</td>
<td></td>
<td>mA</td>
<td></td>
<td>内部NMOS</td>
</tr>
<tr>
<td>电压调整率³</td>
<td>500</td>
<td></td>
<td>μV/V</td>
<td></td>
<td>外部NMOS</td>
</tr>
<tr>
<td>负载调整率³</td>
<td>8</td>
<td></td>
<td>mV/mA</td>
<td></td>
<td>稳定工作</td>
</tr>
<tr>
<td>感性负载</td>
<td>50</td>
<td></td>
<td>μA</td>
<td></td>
<td>推荐工作模式</td>
</tr>
<tr>
<td>容性负载</td>
<td>2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADC精度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>芯片温度</td>
<td>±5</td>
<td></td>
<td>°C</td>
<td></td>
<td>可过载至最高5.5 V</td>
</tr>
<tr>
<td>V LOOP输入</td>
<td>±1</td>
<td></td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVDD OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压</td>
<td>3.17</td>
<td>3.3</td>
<td>3.48</td>
<td>V</td>
<td>假定HART通信期间环路中的电流为4 mA</td>
</tr>
<tr>
<td>外部可用电流³⁶</td>
<td>3.15</td>
<td></td>
<td>mA</td>
<td></td>
<td>0 mA和3 mA负载下测量</td>
</tr>
<tr>
<td>短路电流</td>
<td>7.7</td>
<td></td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>负载调整率</td>
<td>45</td>
<td></td>
<td>mW/mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>数字输入³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入高电压Vih</td>
<td>0.7 × IODVDD</td>
<td></td>
<td>V</td>
<td></td>
<td>SCLK, SYNC, SDIN, LDAC</td>
</tr>
<tr>
<td>输入低电压Vil</td>
<td>0.25 × IODVDD</td>
<td></td>
<td>V</td>
<td></td>
<td>IODVDD = 1.8 V</td>
</tr>
<tr>
<td>迟滞</td>
<td>0.21</td>
<td>0.63</td>
<td>1.46</td>
<td></td>
<td>IODVDD = 3.3 V</td>
</tr>
<tr>
<td>输入电流</td>
<td>−0.015</td>
<td>+0.015</td>
<td>μA</td>
<td></td>
<td>每引脚</td>
</tr>
<tr>
<td>引脚电容</td>
<td>5</td>
<td></td>
<td>pF</td>
<td></td>
<td>每引脚</td>
</tr>
<tr>
<td>数字输出³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDO引脚</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出低电压VOL</td>
<td>IODVDD − 0.5</td>
<td></td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出高电压VOH</td>
<td>IODVDD + 0.01</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高阻抗漏电流</td>
<td>5</td>
<td></td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高阻抗输出电容</td>
<td>0.4</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAULT引脚</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出低电压VOL</td>
<td>IODVDD + 0.01</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出高电压VOH</td>
<td>IODVDD + 0.4</td>
<td></td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>故障阈值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I LOOP欠流</td>
<td>I LOOP − 0.01% FSR</td>
<td></td>
<td>mA</td>
<td></td>
<td>温度≤125°C时故障消除</td>
</tr>
<tr>
<td>I LOOP过流</td>
<td>I LOOP + 0.01% FSR</td>
<td></td>
<td>mA</td>
<td></td>
<td>温度≤85°C时故障消除</td>
</tr>
<tr>
<td>温度140°C</td>
<td>133</td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>温度100°C</td>
<td>90</td>
<td></td>
<td>°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V LOOP 6V</td>
<td>0.3</td>
<td></td>
<td>V</td>
<td></td>
<td>V LOOP ≥ 0.4 V时故障消除</td>
</tr>
<tr>
<td>V LOOP 12V</td>
<td>0.6</td>
<td></td>
<td>V</td>
<td></td>
<td>V LOOP ≥ 0.7 V时故障消除</td>
</tr>
</tbody>
</table>
AD5421

<table>
<thead>
<tr>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>电源要求</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{REG}</td>
<td>5.5</td>
<td>52</td>
<td></td>
<td>V</td>
<td>相对于LOOP−</td>
</tr>
<tr>
<td>$I_{ODV_{DD}}$</td>
<td>1.71</td>
<td>5.5</td>
<td></td>
<td>V</td>
<td>相对于COM</td>
</tr>
<tr>
<td>静态电流</td>
<td>260</td>
<td>300</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

1. 温度范围：−40°C至+105°C，+25°C（典型值）。
2. 总不可调整误差是AD5421经工厂校准后的总测量误差(失调误差 + 增益误差 + 线性误差 + 整个温度范围内的输出漂移)。系统级总误差可以利用失调和增益寄存器降低。
3. 通过设计和特性保证，但未经生产测试。
4. LOOP−与V_{REG}之间的电压必须为5.5 V或更大。
5. AD5421经过工厂校准，条件是将外部2.5 V基准电压源连接到REFIN。
6. 这是输出能够流出的电流，负载电流源自环路，因而是总功耗值的一部分。

Rev. F | Page 7 of 36
环路电压 = 24 V；REFIN = REFOUT (2.5 V内部基准电压)；R_L = 250 Ω；连接外部NMOS；所有环路电流范围；除非另有说明，所有规格均相对于T_MIN至T_MAX而言。

表2.

<table>
<thead>
<tr>
<th>参数</th>
<th>C级</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>精度（内部R_SET）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>总不可调整误差(TUE)³</td>
<td></td>
<td>−0.157</td>
<td>+0.157</td>
<td>% FSR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>相对精度(INL)</td>
<td></td>
<td>−0.117 ±0.0172</td>
<td>+0.117</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>失调误差</td>
<td></td>
<td>−0.04</td>
<td>+0.04</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>失调误差TC</td>
<td></td>
<td>−0.025 ±0.0025</td>
<td>+0.025</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>增益误差</td>
<td></td>
<td>1</td>
<td>+0.128</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益误差TC</td>
<td></td>
<td>−0.093 ±0.0137</td>
<td>+0.093</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td></td>
<td>−0.157</td>
<td>+0.157</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>满量程误差TC</td>
<td></td>
<td>−0.117 ±0.0172</td>
<td>+0.117</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>精度(24 kΩ外部R_SET)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>总不可调整误差(TUE)³</td>
<td></td>
<td>−0.133</td>
<td>+0.133</td>
<td>% FSR</td>
<td></td>
<td>假设为理想电阻</td>
</tr>
<tr>
<td>相对精度(INL)</td>
<td></td>
<td>−0.133 ±0.0252</td>
<td>+0.133</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>失调误差</td>
<td></td>
<td>−0.04</td>
<td>+0.04</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>失调误差TC</td>
<td></td>
<td>−0.029 ±0.0038</td>
<td>+0.029</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>增益误差</td>
<td></td>
<td>0.5</td>
<td>+0.11</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益误差TC</td>
<td></td>
<td>−0.11 ±0.0197</td>
<td>+0.106</td>
<td>% FSR</td>
<td>T_A = 25°C</td>
<td></td>
</tr>
<tr>
<td>满量程误差</td>
<td></td>
<td>−0.133</td>
<td>+0.133</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>满量程误差TC</td>
<td></td>
<td>−0.133 ±0.0252</td>
<td>+0.133</td>
<td>ppm FSR/°C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 温度范围: −40°C至+105°C，+25°C(典型值)。
2 规格通过设计和特性保证。未经生产测试。
3 总不可调整误差是AD5421经工厂校准后的总测量误差(失调误差 + 增益误差 + 线性误差 + 整个温度范围内的输出漂移)。系统级总误差可以利用失调和增益寄存器降低。
交流工作特性
环路电压 = 24 V；REFIN = 2.5 V外部基准电压；R_L = 250 Ω；除非另有说明，所有规格均相对于T_MIN至T_MAX而论。

<table>
<thead>
<tr>
<th>参数</th>
<th>最小值</th>
<th>最小值</th>
<th>最大值</th>
<th>单位</th>
<th>测试条件/注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>动态性能</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>环路电流建立时间</td>
<td>50</td>
<td></td>
<td></td>
<td>µs</td>
<td>至0.1%FSR，C_IN = 开路</td>
</tr>
<tr>
<td>环路电流压摆率</td>
<td>400</td>
<td></td>
<td></td>
<td>µA/µs</td>
<td>C_IN = 开路</td>
</tr>
<tr>
<td>交流环路电压灵敏度</td>
<td>1.3</td>
<td></td>
<td></td>
<td>µA/V</td>
<td>1200 Hz至2200 Hz，5 V p-p，R_L = 3 kΩ</td>
</tr>
</tbody>
</table>

1 温度范围: −40°C至+105°C，+25°C(典型值)。

时序特性
环路电压 = 24 V；REFIN = 2.5 V外部基准电压；R_L = 250 Ω；所有规格均相对于T_MIN至T_MAX而言。

<table>
<thead>
<tr>
<th>参数</th>
<th>在T_MIN至T_MAX的限值</th>
<th>单位</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>33</td>
<td>ns(最小值)</td>
<td>SCLK 周期时间</td>
</tr>
<tr>
<td>t2</td>
<td>17</td>
<td>ns(最小值)</td>
<td>SCLK 高电平时间</td>
</tr>
<tr>
<td>t3</td>
<td>17</td>
<td>ns(最小值)</td>
<td>SCLK 低电平时间</td>
</tr>
<tr>
<td>t4</td>
<td>17</td>
<td>ns(最小值)</td>
<td>SCLK下降沿到SCLK下降沿建立时间</td>
</tr>
<tr>
<td>t5</td>
<td>10</td>
<td>ns(最小值)</td>
<td>SCLK下降沿到SYNC上升沿</td>
</tr>
<tr>
<td>t6</td>
<td>25</td>
<td>µs(最小值)</td>
<td>最小SYNC高电平时间</td>
</tr>
<tr>
<td>t7</td>
<td>5</td>
<td>ns(最小值)</td>
<td>数据建立时间</td>
</tr>
<tr>
<td>t8</td>
<td>5</td>
<td>ns(最小值)</td>
<td>数据保持时间</td>
</tr>
<tr>
<td>t9</td>
<td>25</td>
<td>µs(最小值)</td>
<td>SYNC下降沿到SCLK下降沿</td>
</tr>
<tr>
<td>t10</td>
<td>10</td>
<td>ns(最小值)</td>
<td>LDAC低电平脉冲宽度</td>
</tr>
<tr>
<td>t11</td>
<td>70</td>
<td>ns(最大值)</td>
<td>SCLK上升沿到SDO有效(C_L SDO = 30 pF)</td>
</tr>
<tr>
<td>t12</td>
<td>0</td>
<td>ns(最小值)</td>
<td>SYNC下降沿到SCLK上升沿建立时间</td>
</tr>
<tr>
<td>t13</td>
<td>70</td>
<td>ns(最大值)</td>
<td>SYNC上升沿至SDO三态(C_L SDO = 30 pF)</td>
</tr>
</tbody>
</table>

1 通过设计和特性保证，但未经生产测试。
2 所有输入信号均指定t_R = t_F = 5 ns(DVDD的10%到90%)，并从1.2 V电平开始计时。
3 参见图2和图3。

SPI看门狗超时时间

<table>
<thead>
<tr>
<th>参数</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td>50</td>
<td>59</td>
<td>ms</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>87</td>
<td>100</td>
<td>117</td>
<td>ms</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>436</td>
<td>500</td>
<td>582</td>
<td>ms</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>873</td>
<td>1000</td>
<td>1163</td>
<td>ms</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1746</td>
<td>2000</td>
<td>2326</td>
<td>ms</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2619</td>
<td>3000</td>
<td>3489</td>
<td>ms</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3493</td>
<td>4000</td>
<td>4652</td>
<td>ms</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4366</td>
<td>5000</td>
<td>5814</td>
<td>ms</td>
</tr>
</tbody>
</table>

1 规格通过设计和特性保证，未经生产测试。
时序图

图2. 串行接口时序图

图3. 回读时序图
绝对最大额定值

除非另有说明，$T_A = 25°C$。100 mA以下的瞬态电流不会造成SCR闩锁。

<table>
<thead>
<tr>
<th>参数</th>
<th>额定值</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGIN 至 COM</td>
<td>−0.3 V至+60 V</td>
</tr>
<tr>
<td>REGOUT 至 COM</td>
<td>−0.3 V至+14 V</td>
</tr>
<tr>
<td>COM RANGE0、RANGE1、RINT/REXT、ALARM_CURRENT_DIRECTION、REG_SEL0、REG_SEL1、REG_SEL2的数字输入</td>
<td>−0.3 V至IODV_DD + 0.3 V或+7 V (取较小者)</td>
</tr>
<tr>
<td>COM SCLK、SDIN、SYNC、LDAC的数字输入</td>
<td>−0.3 V至+7 V</td>
</tr>
<tr>
<td>COM SDO、FAULT的数字输出</td>
<td>−0.3 V至+4.7 V</td>
</tr>
<tr>
<td>REFIN 至 COM</td>
<td>−0.3 V至+7 V</td>
</tr>
<tr>
<td>REFOUT1、REFOUT2</td>
<td>−0.3 V至+4.7 V</td>
</tr>
<tr>
<td>V_LOOP 至 COM</td>
<td>−0.3 V至+60 V</td>
</tr>
<tr>
<td>LOOP−至COM</td>
<td>−5 V至+0.3 V</td>
</tr>
<tr>
<td>DVDD 至 COM</td>
<td>−0.3 V至+7 V</td>
</tr>
<tr>
<td>IODV_DD 至 COM</td>
<td>−0.3 V至+4.3 V</td>
</tr>
<tr>
<td>REXT1、CIN 至 COM</td>
<td>−0.3 V至+0.3 V</td>
</tr>
<tr>
<td>REXT2 至 COM</td>
<td>−0.3 V至+11 V</td>
</tr>
<tr>
<td>DRIVE 至 COM</td>
<td>−40°C至+105°C</td>
</tr>
<tr>
<td>工作温度范围 (T_A)</td>
<td>−65°C至+150°C</td>
</tr>
<tr>
<td>存储温度范围</td>
<td>125°C</td>
</tr>
<tr>
<td>结温 (TJM)</td>
<td>(TJM − T_A)/θJA</td>
</tr>
<tr>
<td>功耗</td>
<td>JEDEC工业标准J-STD-020</td>
</tr>
<tr>
<td>引脚温度，焊接 (10秒)</td>
<td>ESD警告</td>
</tr>
<tr>
<td>ESD</td>
<td>ESD(静电放电)敏感器件。</td>
</tr>
<tr>
<td>人体模型</td>
<td>3 kV</td>
</tr>
<tr>
<td>场感应充电器件模型</td>
<td>2 kV</td>
</tr>
<tr>
<td>机器放电模型</td>
<td>200 V</td>
</tr>
</tbody>
</table>

注意，超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定值，并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下，推断器件能否正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

热阻

θ_{JA}针对最差条件，即器件焊接在电路板上以实现表贴封装。

<table>
<thead>
<tr>
<th>封装类型</th>
<th>θ_{JA}</th>
<th>θ_{IC}</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>28引脚TSSOP_EP(RE-28-2)</td>
<td>32</td>
<td>9</td>
<td>°C/W</td>
</tr>
<tr>
<td>32引脚LFCSW_Q(CP-32-11)</td>
<td>40</td>
<td>7</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

ESD警告

- ESD(静电放电)敏感器件。
- 带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路，但在遇到高能量ESD时，器件可能会损坏。因此，应当采取适当的ESD防范措施，以避免器件性能下降或功能丧失。
引脚配置和功能描述

引脚名称	描述
IODVDD | 数字接口电源引脚。数字阈值参考施加于此引脚的电压。1.71 V至5.5 V电压可施加于此引脚。
SDO | 串行数据输出。用于从输入移位寄存器逐个输出数据。数据在SCLK上升沿逐个输出，而且在SCLK下降沿有效。
SCLK | 串行时钟输入。数据在SCLK下降沿读入输入移位寄存器。此输入的工作时钟速率最高达30 MHz。
SYNC | 帧同步输入，低电平有效。这是串行接口的帧同步信号。当SYNC处于低电平时，数据在SCLK下降沿传输。输入移位寄存器数据在SYNC的上升沿锁存。
SDIN | 串行数据输入。数据必须在SCLK的下降沿有效。
LDAC | 加载DAC输入，低电平有效。此引脚用于更新DAC寄存器和输出电流。当LDAC永久接为低电平时，在SYNC的上升沿时更新DAC寄存器。如果LDAC在写入周期保持高电平，输入寄存器会更新，但输出直到LDAC的下降沿才会更新。LDAC引脚不能悬空。
FAULT | 故障报警输出引脚。高电平有效。检测到故障时，此引脚置为高电平。可检测的故障包括SPI接口失控、通信错误（PEC）、环路电流超出范围、环路电压不足和过温。详见“故障报警”部分。
DVDD | 3.3 V数字电源输出。此引脚应通过100 nF和4.7 μF电容去耦至COM。
ALARM_CURRENT_DIRECTION | 报警电流方向选择。此引脚用于选择报警电流是上限(22.8 mA/24 mA)还是下限(3.2 mA)。此引脚连接到DVDD时，选择上限报警电流(22.8 mA/24 mA)，此引脚连接到COM时，选择下限报警电流(3.2 mA)。详见“上电默认值”部分。
Rint/REXT | 电流设置电阻选择。此引脚连接到DVDD时，选择内部电流设置电阻。此引脚连接到COM时，选择外部电流设置电阻。外部电阻可以连接在REXT1与REXT2引脚之间。
RANGE0, RANGE1 | 数字输入引脚。这两个引脚选择环路电流范围(参见“环路电流范围选择”部分)。

表8. 引脚功能描述

<table>
<thead>
<tr>
<th>引脚编号</th>
<th>TSSOP</th>
<th>LFCSP</th>
<th>引脚名称</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29</td>
<td>IODVDD</td>
<td>数字接口电源引脚。数字阈值参考施加于此引脚的电压。1.71 V至5.5 V电压可施加于此引脚。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>SDO</td>
<td>串行数据输出。用于从输入移位寄存器逐个输出数据。数据在SCLK上升沿逐个输出，而且在SCLK下降沿有效。</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>SCLK</td>
<td>串行时钟输入。数据在SCLK下降沿读入输入移位寄存器。此输入的工作时钟速率最高达30 MHz。</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>SYNC</td>
<td>帧同步输入，低电平有效。这是串行接口的帧同步信号。当SYNC处于低电平时，数据在SCLK下降沿传输。输入移位寄存器数据在SYNC的上升沿锁存。</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>SDIN</td>
<td>串行数据输入。数据必须在SCLK的下降沿有效。</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>LDAC</td>
<td>加载DAC输入，低电平有效。此引脚用于更新DAC寄存器和输出电流。当LDAC永久接为低电平时，在SYNC的上升沿时更新DAC寄存器。如果LDAC在写入周期保持高电平，输入寄存器会更新，但输出直到LDAC的下降沿才会更新。LDAC引脚不能悬空。</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>故障</td>
<td>故障报警输出引脚。高电平有效。检测到故障时，此引脚置为高电平。可检测的故障包括SPI接口失控、通信错误（PEC）、环路电流超出范围、环路电压不足和过温。详见“故障报警”部分。</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>DVDD</td>
<td>3.3 V数字电源输出。此引脚应通过100 nF和4.7 μF电容去耦至COM。</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>ALARM_CURRENT_DIRECTION</td>
<td>报警电流方向选择。此引脚用于选择报警电流是上限(22.8 mA/24 mA)还是下限(3.2 mA)。此引脚连接到DVDD时，选择上限报警电流(22.8 mA/24 mA)，此引脚连接到COM时，选择下限报警电流(3.2 mA)。详见“上电默认值”部分。</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Rint/REXT</td>
<td>电流设置电阻选择。此引脚连接到DVDD时，选择内部电流设置电阻。此引脚连接到COM时，选择外部电流设置电阻。外部电阻可以连接在REXT1与REXT2引脚之间。</td>
<td></td>
</tr>
<tr>
<td>11, 12</td>
<td>8, 10</td>
<td>RANGE0, RANGE1</td>
<td>数字输入引脚。这两个引脚选择环路电流范围(参见“环路电流范围选择”部分)。</td>
<td></td>
</tr>
<tr>
<td>引脚编号</td>
<td>TSSOP</td>
<td>LFCSP</td>
<td>引脚名称</td>
<td>描述</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>13, 14</td>
<td>4, 11, 12</td>
<td>COM</td>
<td>AD5421的接地基准引脚。建议在LOOP−和COM引脚之间放置4.7 V齐纳二极管。详情“应用信息”部分。</td>
<td></td>
</tr>
<tr>
<td>15, 16, 13, 14, 15</td>
<td>REG_SEL2, REG_SEL1, REG_SEL0</td>
<td>REG_SEL2, REG_SEL1, REG_SEL0</td>
<td>这三个引脚一起用于选择调节器输出(REGOUT)电压(参见“电压调节器”部分)。</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>REG_SEL2, REG_SEL1, REG_SEL0</td>
<td>这三个引脚一起用于选择调节器输出(REGOUT)电压(参见“电压调节器”部分)。</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>REFIN</td>
<td>基准电压输入。针对额定性能，$V_{RFIN} = 2.5 \text{ V}$。</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>REfout2</td>
<td>内部基准电压输出(1.22 V)。建议在此引脚与COM之间连接一个100 nF电容。</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>REfout1</td>
<td>内部基准电压输出(2.5 V)。建议在此引脚与COM之间连接一个100 nF电容。</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>CN</td>
<td>外部电容连接和HART FSK输入。从C_{n}连接到COM的外部电容实现输出压摆率控制功能(参见“环路电流环路控制”部分)。HART FSK信号也可以通过一个连接到此引脚的电容耦合(参见“HART通信”部分)。</td>
<td></td>
</tr>
<tr>
<td>22, 23</td>
<td>21, 22</td>
<td>R_{EXT1}, R_{EXT2}</td>
<td>外部电流设置电阻的连接引脚。可以在这些引脚之间连接一个精密24 kΩ电阻以改善性能。</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>23</td>
<td>LOOP−</td>
<td>环路电流回路引脚。As shown in Figure 1, the COM and LOOP− pins can be used to sense the loop current across the internal 52 Ω resistor. 注意：LOOP−处测得的电压相对于COM是负值。</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>V_LOOP</td>
<td>电压输入引脚。电压输入范围为0 V至2.5 V。施加于此引脚的电压经数字化转换为8位，可在故障寄存器中获得。此引脚可以用于通用电压监控，但主要用于监控环路电源电压。如果将环路电压通过一个20:1电阻分压器连接到此引脚，则AD5421可以监控并反馈环路电压。如果环路电压接近最小工作电压值，则AD5421也会产生一个报警信号(参见“环路电压故障”部分)。</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>DRIVE</td>
<td>外部耗尽型MOSFET的栅极连接引脚。详见“连接到环路电源”部分。</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>REGN</td>
<td>稳压器输入。环路电压可以直接连接到此引脚，或者为了降低片内功耗，可以将一个外部调节管连接到此引脚以阻断环路电压。详见“连接到环路电源”部分。</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>REGOUT</td>
<td>稳压器输出。可以通过REG_SEL0, REG_SEL1和REG_SEL2引脚选择1.8 V至12 V范围内的值(参见“电压调节器”部分)。如果REGOUT驱动一个微转换器电源(见图49)，此引脚应通过1 μF以上电容去耦到COM。</td>
<td></td>
</tr>
<tr>
<td>N/A1</td>
<td>9, 16, 25</td>
<td>NC</td>
<td>不连接。请勿连接该引脚。</td>
<td></td>
</tr>
<tr>
<td>EPAD</td>
<td>EPAD</td>
<td>EPAD</td>
<td>裸露焊盘 应连接到与COM引脚相同的电位，并连接到铜层以实现最佳散热性能。</td>
<td></td>
</tr>
</tbody>
</table>

1 N/A表示不适用。
典型性能参数

图6. 积分非线性误差与代码的关系

图7. 差分非线性误差与代码的关系

图8. 总不可调误差与代码的关系

图9. 失调误差与温度的关系

图10. 增益误差与温度的关系

图11. 积分非线性误差与温度的关系
图12. 差分非线性误差与温度的关系

图13. 总不可调整误差与温度的关系

图14. 满量程误差与温度的关系

图15. 积分非线性误差与环路电源电压的关系

图16. 总不可调整误差与环路电源电压的关系

图17. 失调误差与环路电源电压的关系
图18. 增益误差与环路电源电压的关系

图19. 满量程误差与环路电源电压的关系

图20. 负载电阻负载调整与环路电源电压的关系

图21. 均流输出电压裕量与温度的关系

图22. 均流误差与REGOUT负载电流的关系

图23. 均流电流噪声，0.1 Hz至10 Hz带宽
1.0 – 1.0 – 0.8 – 0.6 – 0.4 – 0.2 0 0.2 0.6 0.8 0.4 0.1 VOLTAGE ACROSS 500Ω LOAD RESISTOR (mV) TIME (Seconds)

VLOOP = 24V E XT NMOS IN T VREF ILOOP = 4mA RLOAD = 500Ω TA = 25°C

1.33mV p-p 0.2mV rms

图24. 环路电流噪声，500 Hz至10 kHz带宽(HART带宽)

0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

VOLTAGE ACROSS 250Ω LOAD RESISTOR (V) TIME (µs)

FALLING RISING

VLOOP = 24V E XT NMOS RLOAD = 250Ω TA = 25°C CIN = OPEN CIRCUIT

图25. 满量程环路电流阶跃

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

IODVDD CURRENT (µA) DIGITAL LOGIC VOLTAGE (V)

IODVDD = 1.8V TA = 25°C DECREASING INCREASING

图27. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 1.8 V

IODVDD = 3.3V TA = 25°C DECREASING INCREASING

图28. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 3.3 V

IODVDD = 5V TA = 25°C DECREASING INCREASING

图29. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 5 V

图24. 环路电流噪声，500 Hz至10 kHz带宽(HART带宽)

图25. 满量程环路电流阶跃

图26. 满量程环路电流阶跃，CIN = 22 nF

图27. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 1.8 V

图28. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 3.3 V

图29. IODVDD电流与数字逻辑电压的关系，提高和降低，IODVDD = 5 V
图36. REFOUT1电压与温度的关系（60个C级器件）

图37. REFOUT1温度系数直方图（C级器件）

图38. 内ADC代码与芯片温度的关系

图39. 内ADC代码与V_LOOP引脚输入电压的关系
术语

总不可调整误差
总不可调整误差(TUE)衡量总输出误差，最大TUE包括INL错误、失调误差、增益误差和整个温度范围内的输出漂移。TUE用% FSR表示。

相对精度或积分非线性(INL)误差
相对精度或积分非线性(INL)误差是指输出电流与通过传递函数端点的直线之间的最大偏差，用% FSR表示。

差分非线性(DNL)误差
差分非线性(DNL)误差是任意两个相邻码之间所测得变化值与理想的1 LSB变化值之间的差异。最大±1 LSB的额定差分非线性可确保单调性。

失调误差
失调误差衡量将零电平代码载入DAC寄存器时的输出误差，用% FSR表示。

失调误差温度系数(TC)
失调误差TC衡量失调误差随温度的变化，用% FSR/°C表示。

增益误差
增益误差衡量DAC的量程误差，是DAC传递函数的斜率与理想值的偏差，用% FSR表示。

增益误差温度系数(TC)
增益误差TC衡量增益误差随温度的变化，用% FSR/°C表示。

满量程误差
满量程误差衡量将满量程代码载入DAC寄存器时的输出误差，用% FSR表示。

满量程误差温度系数(TC)
满量程误差TC衡量满量程误差随温度的变化，用% FSR/°C表示。

环路恒流输出电压裕量
环路恒流输出电压裕量是指输出电流与编程值相等情况下LOOP−与REGIN引脚之间的最小电压。

输出温度系数(TC)
输出TC衡量12 mA输出电流随温度的变化，用ppm FSR/°C表示。

基准电压热滞
基准电压源热滞滞是指+25°C时测得的输出电压与温度从+25°C到−40°C到+105°C最后回到+25°C完成整个变化周期时测得的输出电压之间的偏差，其额定值针对的是第一和第二温度循环，表示为mV。

基准电压温度系数(TC)
基准电压源TC衡量基准输出电压随温度的变化。它利用黑盒法计算，即将TC定义为基准输出电压在给定温度范围内的最大变化，用ppm/°C表示，计算公式如下：

$$TC = \frac{V_{REF_MAX} - V_{REF_MIN}}{V_{REF_NOM} \times Temp_Range} \times 10^4$$

其中：
V_{REF_MAX}是在整个温度范围内测得的最大基准输出电压。
V_{REF_MIN}是在整个温度范围内测得的最小基准输出电压。
V_{REF_NOM}是基准输出电压的标称值2.5 V。
Temp_Range为额定温度范围(−40°C至+105°C)。
工作原理
AD5421是一款集成器件，设计用于环路供电型4-20 mA智能发射器应用。AD5421在单芯片内提供如下特性和功能：16位DAC和电流放大器，用于对环路电流进行数字控制；用于为整个发射器供电的稳压器；基准电压源；故障报警功能；灵活的SPI兼容型串行接口；增益和失调调整寄存器；以及其它特性和功能。下面说明AD5421的特性。

故障报警
AD5421提供多个故障报警特性。所有故障信号均通过FAULT引脚和故障寄存器提供给控制器。如果AD5421与微控制器之间的通信丧失(SPI故障)，AD5421就会将环路电流设置为报警值。如果控制器检测到FAULT引脚变为高电平，控制器应该读取故障寄存器以确定故障原因。

SPI故障
如果没有任何有效的信息被发送到AD5421的任一寄存器，并且这种情况的持续时间超过了用户定义的周期，则SPI故障置位。用户可以使用控制寄存器的SPI看门狗超时Bits设置该周期。故障寄存器的SPI故障位在总线上显示错误。由于故障原因可能是控制器与AD5421之间的通信丧失，因此环路电流也被强制设置为报警值。

报警电流的方向（下限或上限）通过ALARM_CURRENT_DIRECTION引脚选择。此引脚连接到DVDD时，选择上限报警电流(22.8 mA/24 mA)；此引脚连接到COM时，选择下限报警电流(3.2 mA)。

分组差错校验(PEC)
为验证噪声环境下数据接收是否正确，AD5421提供了一个基于8位循环冗余校验(CRC)的纠错选项。向AD5421写入一个32位串行帧（其中最低有效的8位是帧校验序列FCS）时，数据包纠错(PEC)使能。负责控制AD5421的器件应使用下列多项式生成8位FCS：

\[C(x) = x^8 + x^2 + x + 1 \]

8位FCS被添加到数据字末尾，即在SYNC变为高电平之前有32个数据位被发送到AD5421。如果校验有效，则接受数据。如果校验失败，则FAULT引脚置位，同时故障寄存器的PECBit置1。读取故障寄存器后，PECBit复位为低电平，FAULT引脚也变回低电平。

对于数据回读的情况，如果用一个32位帧寻址AD5421，则它会产生8位帧校验序列并将其添加到24位数据流的末尾，以构成一个32位数据流。

电流环路故障
当实际环路电流不在所设环路电流的±0.01% FSR范围内时，电流环路(ILOOP)故障置位。如果测得的环路电流小于设置的环路电流，则故障寄存器的ILOOP_Under bit置1。如果测得的环路电流大于设置的环路电流，则故障寄存器的ILOOP_Over bit置1。无论何种情况，FAULT引脚都会变为逻辑高电平。

过温故障
故障寄存器中有两个过温报警位：Temp 100°C和Temp 140°C。如果AD5421的芯片温度超过100°C或140°C，相关的位就会置1。如果故障寄存器中的Temp 140°C Bit置1，FAULT引脚就会变为逻辑高电平。
环路电压故障
故障寄存器中有一个环路电压报警位：V_LOOP 12 V 和 V_LOOP 6 V。如果 V_LOOP 与 COM 引脚之间的电压降至 0.6 V（对应于 12 V 环路电源电压值）以下，V_LOOP 12 V 位就会置 1；当该电压回至 0.7 V 以上时，此位清 0。同理，如果 V_LOOP 与 COM 引脚之间的电压降至 0.3 V（对应于 6 V 环路电源电压值）以下，V_LOOP 6 V 位就会置 1；当该电压回至 0.4 V 以上时，此位清 0。如果故障寄存器中的 V_LOOP 6 V 位置 1，FAULT 引脚就会变为逻辑高电平。

图 41 说明电阻分压器如何支持利用 V_LOOP 输入来监控环路电源。

该电阻分压器建议由一个 1 MΩ 电阻和一个 19 MΩ 电阻组成，以提供 20:1 的比值，使得 V_LOOP 引脚的 2.5 V 输入范围能够监控最高达 50 V 的环路电源。

采用 20:1 的分压比时，故障寄存器的 V_LOOP 6 V 和 V_LOOP 12 V 预设报警位根据其预设的值产生环路电源故障信号。如果使用其它分压比，故障 Bit 产生故障信号所依据的值将不是 6 V 和 12 V。

图 41. V_LOOP 引脚的电阻分压器连接

外部电流设置电阻
图 1 所示的 24 kΩ 电阻 RSET 用于将 DAC 输出电压转换为电流，然后以 221 的增益镜像到 LOOP− 引脚。环路电流在整个温度范围内的稳定性取决于 RSET 的温度系数。

表 1 和表 2 给出了 AD5421 内部 RSET 电阻和外部 24 kΩ RSET 电阻下的性能规格。使用内部 RSET 电阻时，可以优于 0.126% FSR 的总不可调整误差。使用外部电阻时，该性能提高到 0.048% FSR。这一指标假设使用理想电阻，实际的性能取决于所用电阻的绝对值和温度系数。详见“确定预期总误差”部分。

环路电流范围选择
若要选择环路电流范围，请按照表 9 所示将 RANGE0 和 RANGE1 引脚连接到 COM 和 DVDD 引脚。

表 9. 环路电流范围

<table>
<thead>
<tr>
<th>RANGE1 引脚</th>
<th>RANGE0 引脚</th>
<th>环路电流范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>COM</td>
<td>4 mA 至 20 mA</td>
</tr>
<tr>
<td>COM</td>
<td>DVDD</td>
<td>3.8 mA 至 21 mA</td>
</tr>
<tr>
<td>DVDD</td>
<td>COM</td>
<td>3.2 mA 至 24 mA</td>
</tr>
<tr>
<td>DVDD</td>
<td>DVDD</td>
<td>3.8 mA 至 21 mA</td>
</tr>
</tbody>
</table>

连接到环路电源
AD5421 由 4 mA 至 20 mA 电流环路供电。通常来说，电源远离发射器，其值为 24 V。AD5421 可以直接连接到环路电源，耐压范围可达 52 V（参见图 42）。

图 42. AD5421 直接连接到环路电源

图 42 显示了 AD5421 如何直接连接到环路电源。图 43 显示了另一种电源连接，AD5421 与环路电源之间连接一个耗尽型 N 沟道 MOSFET，使用该器件可将 AD5421 上的压降保持在大约 12 V，从而将最差情况片内功耗限制在 288 mW (12 V × 24 mA = 288 mW)。如果 AD5421 按照图 42 所示直接连接到环路电源，对端于 24 V 的环路电源，可能的最差情况片内功耗为 576 mW (24 V × 24 mA = 576 mW)。功耗与环路电源电压成比例。

图 43. 通过 MOSFET 将 AD5421 连接到环路电源
片内ADC
AD5421内置一个片内ADC，用于测量芯片温度或V_{LOOP}与COM引脚之间的电压，并将其反馈给故障寄存器。控制寄存器的选择ADC输入Bit(Bit D8)选择要转换的参数。命令字节00001000(当自动故障回读禁用时才使用)启动转换，该命令字节会使ADC上电并执行转换。读取故障寄存器可返回转换结果。如果要求自动回读故障寄存器，则首先必须将控制寄存器的片内ADC Bit(Bit D7)置1，以使ADC上电。

由于FAULT引脚可在长达30μs的时间内保持高电平，在回读V_{LOOP}电压后执行芯片温度测量时必须小心。从V_{LOOP}测量切换到芯片温度测量时，不应对在切换后30μs内读取FAULT引脚，因为可能出现误触发(故障寄存器内容不受影响)。

电压调节器
片内稳压器提供调节电压输出，以便为AD5421和发射器电路的其余部分供电。输出电压范围为1.8 V至12 V，由三个数字输入引脚的状态进行选择(参见表10)。稳压器输出通过REGOUT引脚提供。

表10. 设置稳压器输出

<table>
<thead>
<tr>
<th>REG_SEL2</th>
<th>REG_SEL1</th>
<th>REG_SEL0</th>
<th>调节输出电压(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM</td>
<td>COM</td>
<td>COM</td>
<td>1.8</td>
</tr>
<tr>
<td>COM</td>
<td>COM</td>
<td>DVDD</td>
<td>2.5</td>
</tr>
<tr>
<td>COM</td>
<td>DVDD</td>
<td>COM</td>
<td>3.0</td>
</tr>
<tr>
<td>COM</td>
<td>DVDD</td>
<td>DVDD</td>
<td>3.3</td>
</tr>
<tr>
<td>DVDD</td>
<td>COM</td>
<td>COM</td>
<td>5.0</td>
</tr>
<tr>
<td>DVDD</td>
<td>COM</td>
<td>DVDD</td>
<td>9.0</td>
</tr>
<tr>
<td>DVDD</td>
<td>DVDD</td>
<td>COM</td>
<td>12.0</td>
</tr>
</tbody>
</table>

环路电流压摆率控制
环路电流的变化率可以通过C_{IN}引脚与COM引脚之间连接的一个外部电容控制，这样有助于降低环路电流的变化率。DAC的输出电阻(R_{DAC})与C_{SLEW}电容一起产生一个时间常数，该时间常数决定环路电流的响应(见图44)。

对于4 mA至20 mA和3.8 mA至21 mA环路电流范围，DAC的电阻典型值为15.22 kΩ。选择3.2 mA至24 mA的环路电流范围时，DAC电阻变为16.11 kΩ。

该电路的时间常数表示为:

$$\tau = R_{DAC} \times C_{SLEW}$$

假设达到最终值需要5个时间常数，则C_{SLEW}可以根据所需的响应时间t确定:

$$C_{SLEW} = \frac{t}{5 \times R_{DAC}}$$

其中:

t为输出电流达到最终值所需的时间。

R_{DAC}为DAC内核的电阻15.22 kΩ或16.11 kΩ，取决于选定的环路电流范围。

对于5 ms的响应时间，

$$C_{SLEW} = \frac{5 \text{ ms}}{5 \times 15,220} \approx 68 \text{nF}$$

对于10 ms的响应时间，

$$C_{SLEW} = \frac{10 \text{ ms}}{5 \times 15,220} \approx 133 \text{nF}$$

这些配置下的响应曲线如图45所示。

图45. 压摆率控制下的4 mA至20 mA阶跃响应

C_{IN}引脚也可以用作HART FSK信号的耦合输入。HART信号必须交流耦合到C_{SLEW}电容。上述计算中必须考虑耦合HART信号的电容，总电容等于$C_{SLEW} + C_{HART}$。详见“HART通信”部分。
AD5421

上电默认值
AD5421上电时，所有寄存器加载默认值，报警状态中的环路电流设置为3.2 mA或22.8 mA/24 mA（取决于ALARM_CURRENT_DIRECTION引脚的状态和选定的范围）。AD5421将保持该状态，直到写入新值。SPI看门狗定时器默认使能，超时时间1秒。如果AD5421在上电后的1秒内没有通信发生，FAULT引脚就会置位。

HART通信
AD5421可以与可寻址远程传感器高速通道(HART)调制解调器接口，以便通过2线环路连接支持HART数字通信。图46显示了调制解调器频移键控(FSK)输出与AD5421的连接方式。

为在环路获得1 mA p-p FSK电流信号，C_IN引脚的电压必须为111 mV p-p。假设HART调制解调器提供500 mV p-p输出，则该信号必须衰减4.5倍。下式可以用来计算CHART和C_SLEW电容的值：

$$4.5 = \frac{C_{HART} + C_{SLEW}}{C_{HART}}$$

从该等式可知，CHART与C_SLEW的比值为1比3.5，该比值设置环路上HART FSK信号的幅度。电容的绝对值设置环路电流的响应时间。以及连接于C_IN引脚的HART信号的可用带宽，该带宽必须通过从500 Hz到10 kHz的频率。上述两个电容与内部阻抗R_DAC形成一个高通滤波器，该高通滤波器的3 dB频率应低于500 Hz，可通过下式计算：

$$f_{3dB} = \frac{1}{2\pi \times R_{DAC} \times (C_{HART} + C_{SLEW})}$$

为实现500 Hz的高通3 dB截止频率，C_HART和C_SLEW的组合值应为21 nF。为确保电流环路上的HART信号具有正确的幅度，电容的峰值值应为；C_HART = 4.7 nF, C_SLEW = 16.3 nF。

静默期间的输出噪声和模拟变化率
AD5421对HART通信协议相关的两个重要参数有直接影响：静默期间的输出噪声和模拟变化率。图24给出了AD5421在HART扩展带宽中的输出噪声测量结果：噪声为0.2 mV rms，在要求的2.2 mV rms范围内。

为了满足模拟变化率要求，4 mA至20 mA电流的变化率必须足够慢，不会干扰HART数字信号。这可以通过如下方法来实现：让一个满量程环路电流变化通过一个500Ω负载，并将由此产生的电流信号提供给HART数字滤波器(HCF_TOOL-31)，该信号在滤波器输出端的峰值幅度必须小于150 mV。为此，环路电流的变化率必须限制在大约1.3 mA/ms以下。

AD5421输出的自然压摆率约为880 mA/ms，该速率太快，不满足HART通信要求。为降低压摆率，可以按照“环路电流压摆率控制”部分所述，在C_IN引脚与COM引脚之间连接一个电容。为了充分降低压摆率以便符HART要求，需要大约4.7 µF的电容值，由此产生的满量程转换时间约为500 ms。许多应用会认为该时间太慢，如果这样的话，则需要通过数字方式控制压摆率，方法是将一系列代码写入DAC寄存器，使得输出响应符合期望的曲线。

图47显示了经过数字控制的满量程阶跃以及由此获得的滤波器输出。从图47可以看出，滤波器输出信号的峰值幅度小于要求的150 mV，转换时间约为30 ms。

![图46: 连接HART调制解调器与AD5421](image)

![图47: 经过数字控制的满量程阶跃以及由此获得的HART数字滤波器输出信号](image)
图48给出了测量所用的电路图。47 nF的C_{HART}值和168 nF的C_{CSLEW}值为数字阶跃提供充分的滤波，确保阶跃不引起干扰。
串行接口

AD5421通过多功能三线式串行接口进行控制，接口的工作时钟频率高达30 MHz，并且与SPI、QSPI™、MICROWIRE®和DSP标准兼容。图2给出了时序图。接口采用连续或非连续选通突发时钟脉冲工作。

写序列开始于SYNC信号的下降沿，数据在SCLK下降沿通过SDIN数据线输入。在SYNC上升沿，24位数据被锁存，然后传输到相关的寄存器并执行规定的功能(DAC输出改变或工作模式改变)。

如果需要使用循环冗余校验码在SPI接口上执行数据包纠错校验，则必须将额外的8 Bits写入AD5421形成一个32位串行接口。这种情况下，待32位数据写入AD5421后，SYNC变为高电平。

输入移位寄存器

输入移位寄存器为24位(如果需要对数据进行CRC纠错校验，则为32位)。24/32位字宽的数据在串行时钟输入SCLK的控制下以串行方式输入器件的MSB位。输入移位寄存器由8位地址/命令字节、16位数据字和可选的8位CRC组成，如表12和表13所示。

地址/命令字节解码如表11所示。

<table>
<thead>
<tr>
<th>地址/命令字节</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000011</td>
<td>写入失调调整寄存器</td>
</tr>
<tr>
<td>00000100</td>
<td>写入增益调整寄存器</td>
</tr>
<tr>
<td>00000101</td>
<td>载入DAC</td>
</tr>
<tr>
<td>00000110</td>
<td>强制报警电流</td>
</tr>
<tr>
<td>00001000</td>
<td>复位(器件复位后，建议等待50μs再写入下一个命令)</td>
</tr>
<tr>
<td>00001001</td>
<td>无操作</td>
</tr>
<tr>
<td>10000001</td>
<td>读取DAC寄存器</td>
</tr>
<tr>
<td>10000010</td>
<td>读取控制寄存器</td>
</tr>
<tr>
<td>10000011</td>
<td>读取失调调整寄存器</td>
</tr>
<tr>
<td>10000100</td>
<td>读取增益调整寄存器</td>
</tr>
<tr>
<td>10000101</td>
<td>读取故障寄存器</td>
</tr>
</tbody>
</table>

在加载DAC、强制报警电流、复位、启动Vloop/温度测量或无操作命令字节后写入的16 Bits数据字为无关位(参见表12和表13)。

寄存器回读

若要回读寄存器，必须将控制寄存器的Bit D11设为逻辑1，以禁止故障寄存器的自动回读功能。在读取命令后写入的16 Bits数据字为无关位(参见表12和表13)。

通过读取命令访问的寄存器数据在后续写入命令中通过SDO逐个输出(参见图3)。

表11. 地址/命令字节功能

<table>
<thead>
<tr>
<th>地址/命令字节</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000001</td>
<td>入DAC寄存器</td>
</tr>
<tr>
<td>00000010</td>
<td>写入控制寄存器</td>
</tr>
</tbody>
</table>

表12. 输入移位寄存器

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D23</td>
<td>D22</td>
</tr>
<tr>
<td>D21</td>
<td>D20</td>
</tr>
<tr>
<td>D19</td>
<td>D18</td>
</tr>
<tr>
<td>D17</td>
<td>D16</td>
</tr>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
<tr>
<td>D13</td>
<td>D12</td>
</tr>
<tr>
<td>D11</td>
<td>D10</td>
</tr>
<tr>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>D7</td>
<td>D6</td>
</tr>
<tr>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

地址/命令字节 | 数据字

表13. 带CRC的输入移位寄存器

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D31</td>
<td>D30</td>
</tr>
<tr>
<td>D29</td>
<td>D28</td>
</tr>
<tr>
<td>D27</td>
<td>D26</td>
</tr>
<tr>
<td>D25</td>
<td>D24</td>
</tr>
<tr>
<td>D23</td>
<td>D22</td>
</tr>
<tr>
<td>D21</td>
<td>D20</td>
</tr>
<tr>
<td>D19</td>
<td>D18</td>
</tr>
<tr>
<td>D17</td>
<td>D16</td>
</tr>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
<tr>
<td>D13</td>
<td>D12</td>
</tr>
<tr>
<td>D11</td>
<td>D10</td>
</tr>
<tr>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>D7</td>
<td>D6</td>
</tr>
<tr>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

地址/命令字节 | 数据字 | CRC
DAC寄存器
DAC寄存器是一个读/写寄存器，其编址描述如表11所示。写入DAC寄存器的数据决定环路电流，如“理想输出传递函数”部分和表15所示。

理想输出传递函数
传递函数描述写入DAC寄存器的数据与环路电流之间的关系，由下列三个公式表示。
对于4 mA至20 mA输出范围，环路电流可以表示为：

\[I_{\text{LOOP}} = \left(\frac{16 \text{ mA}}{2^{16}} \right) \times D + 4 \text{ mA} \]

其中D为DAC寄存器的十进制值。

对于3.8 mA至21 mA输出范围，环路电流可以表示为：

\[I_{\text{LOOP}} = \left(\frac{17.2 \text{ mA}}{2^{16}} \right) \times D + 3.8 \text{ mA} \]

对于3.2 mA至24 mA输出范围，环路电流可以表示为：

\[I_{\text{LOOP}} = \left(\frac{20.8 \text{ mA}}{2^{16}} \right) \times D + 3.2 \text{ mA} \]

表14. DAC寄存器Bit映射

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表15. DAC寄存器代码与理想环路电流之间的关系(增益 = 65,536；失调 = 0)

<table>
<thead>
<tr>
<th>DAC寄存器代码</th>
<th>4 mA至20 mA范围</th>
<th>3.8 mA至21 mA范围</th>
<th>3.2 mA至24 mA范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0000</td>
<td>4</td>
<td>3.8</td>
<td>3.2</td>
</tr>
<tr>
<td>0x0001</td>
<td>0.00024</td>
<td>0.00026</td>
<td>0.00033</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0x7FFF</td>
<td>11.9997</td>
<td>12.39974</td>
<td>13.59977</td>
</tr>
<tr>
<td>0x8000</td>
<td>12</td>
<td>12.4</td>
<td>13.6</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0xFFFFE</td>
<td>19.9995</td>
<td>20.99947</td>
<td>23.9994</td>
</tr>
<tr>
<td>0xFFFF</td>
<td>19.9997</td>
<td>20.99974</td>
<td>23.99974</td>
</tr>
</tbody>
</table>
AD5421

控制寄存器

控制寄存器是一个读/写寄存器，其编址描述如表11所示。写入控制寄存器的数据决定AD5421的工作模式。

表16. 控制寄存器Bit映射

<table>
<thead>
<tr>
<th>Bit</th>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D14</td>
<td>D13</td>
</tr>
<tr>
<td>D12</td>
<td>D11</td>
<td>D10</td>
</tr>
<tr>
<td>D9</td>
<td>D8</td>
<td>D7</td>
</tr>
<tr>
<td>D6</td>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>D3</td>
<td>D2</td>
<td>D1</td>
</tr>
<tr>
<td>D0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **SPI看门狗超时**
- **自动故障回读**
- **SPI故障时报警**
- **设置最小坏路电流**
- **选择ADC输入**
- **片内ADC**
- **关断内部基准电压源**
- **V_LOOP故障报警**

表17. 控制寄存器Bit功能描述

<table>
<thead>
<tr>
<th>控制位</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI看门狗超时</td>
<td>用户可以通过T0、T1和T2 Bit设置看门狗超时时间。对AD5421的任一寄存器执行有效的写操作时，或者写入NOP命令时，看门狗定时器复位。</td>
</tr>
<tr>
<td>T0 T1 T2</td>
<td>超时时间</td>
</tr>
<tr>
<td>0 0 0</td>
<td>50 ms</td>
</tr>
<tr>
<td>0 0 1</td>
<td>100 ms</td>
</tr>
<tr>
<td>0 1 0</td>
<td>500 ms</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 sec(默认)</td>
</tr>
<tr>
<td>1 0 0</td>
<td>2 sec</td>
</tr>
<tr>
<td>1 0 1</td>
<td>3 sec</td>
</tr>
<tr>
<td>1 1 0</td>
<td>4 sec</td>
</tr>
<tr>
<td>1 1 1</td>
<td>5 sec</td>
</tr>
</tbody>
</table>
| SPI看门狗定时器 | 0 = SPI看门狗定时器使能(默认)。
1 = SPI看门狗定时器禁用。 |
| 自动故障回读 | 该Bit决定每次执行写操作时是否自动通过SDO引脚逐个输出故障寄存器的内容。(故障寄存器总是可供回读。)
0 = 故障寄存器内容通过SDO引脚输出(默认)。
1 = 故障寄存器内容不通过SDO引脚输出。 |
| SPI故障时报警 | 该Bit决定检测到SPI故障时(即看门狗定时器超时)是否将环路电流驱动至报警值。当检测到SPI故障时，故障寄存器的SPI故障Bit和FAULT引脚始终会置1。
0 = 检测到SPI故障时不将环路电流驱动至报警值(默认)。
1 = 检测到SPI故障时将环路电流驱动至报警值。 |
| 设置最小坏路电流 | 0 = 正常工作(缺省)
1 = 环路电流设置为最小值，环路中流动的总电流仅包括AD5421及其相关电路的工作电流。 |
| 选择ADC输入 | 0 = 片内ADC测量V_LOOP与COM引脚之间的电压(默认)。
1 = 片内ADC测量AD5421芯片的温度。 |
| 片内ADC | 0 = 片内ADC禁用(默认)。
1 = 片内ADC使能。 |
| 关断内部基准电压源 | 0 = 内部基准电压源上电(默认)。
1 = 内部基准电压源关断，需要使用外部基准电压源。 |
| V_LOOP故障报警 | 该位决定当V_LOOP与COM引脚之间的电压降至约0.3 V时，FAULT引脚是否置1。(故障寄存器的V_LOOP 6 V位始终会置1)。
0 = 当V_LOOP − COM电压降至约0.3 V时，FAULT引脚不置1。
1 = 当V_LOOP − COM电压降至约0.3 V时，FAULT引脚置1。 |

Rev. F Page 28 of 36
故障寄存器
故障寄存器是一个只读寄存器，其编址描述如表11所示。故障寄存器中的各位表示一系列可能的故障状况。

<table>
<thead>
<tr>
<th>故障报警</th>
<th>FAULT 引脚置1</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI</td>
<td>是</td>
<td>此Bit置1表示SPI接口信号丢失。如果没有任何有效信息通过SPI接口发送到AD5421，并且这种状况持续的时间超过用户定义的超时时间，就会发生这种故障。如果控制寄存器的位D10设为逻辑0，则发生此故障时，环路电流会被驱动至报警值。报警电流的方向由ALARM_CURRENT_DIRECTION引脚的状态决定。当利用循环冗余校验(CRC)差错检测方法检测到SPI通信错误时，此Bit置1。详见"数据包纠错"部分。</td>
</tr>
<tr>
<td>PEC(数据包纠错)</td>
<td>是</td>
<td>当实际的环路电流大于设置的环路电流时，此Bit置1。当实际的环路电流小于设置的环路电流时，此Bit置1。当VLOOP与COM引脚之间的电压降至约0.3 V(代表6 V环路电源电压、在使用20:1电阻分压器连接于VLOOP的情况)以下时，该Bit置1。当电压又回到约0.4 V以上时，该Bit置0。</td>
</tr>
<tr>
<td>V_LOOP电压</td>
<td>是</td>
<td>当实际的环路电流大于设置的环路电流时，此Bit置1。当实际的环路电流小于设置的环路电流时，此Bit置1。当VLOOP与COM引脚之间的电压降至约0.3 V(代表6 V环路电源电压、在使用20:1电阻分压器连接于VLOOP的情况)以下时，该Bit置1。当电压又回到约0.4 V以上时，该Bit置0。</td>
</tr>
</tbody>
</table>
| V_LOOP/温度值 | 不适用 | 这8 Bits代表V_LOOP与COM引脚之间的电压或AD5421芯片温度，具体取决于控制寄存器Bit D8的设置(参见"片内ADC传递函数公式"部分)。芯片温度的传递函数公式为：

芯片温度 = (−1.559 × D) + 312
其中D是片内ADC返回的8位数字代码。

片内ADC传递函数公式
用于测量V_LOOP与COM引脚之间的电压的传递函数公式为：

V_LOOP − COM = (2.5/256) × D
其中D是片内ADC返回的8位数字代码。
AD5421

失调调整寄存器
失调调整寄存器是一个读/写寄存器，其编址描述如表11所示。

表20. 失调调整寄存器Bit映射

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
<tr>
<td>D13</td>
<td>D12</td>
</tr>
<tr>
<td>D11</td>
<td>D10</td>
</tr>
<tr>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>D7</td>
<td>D6</td>
</tr>
<tr>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

16位失调调整数据

表21. 失调调整寄存器调整范围

<table>
<thead>
<tr>
<th>失调调整寄存器数据</th>
<th>数字失调调整(LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535</td>
<td>+32767</td>
</tr>
<tr>
<td>65534</td>
<td>+32766</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>32769</td>
<td>+1</td>
</tr>
<tr>
<td>32768(默认值)</td>
<td>0</td>
</tr>
<tr>
<td>32767</td>
<td>−1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>−32767</td>
</tr>
<tr>
<td>0</td>
<td>−32768</td>
</tr>
</tbody>
</table>

增益调整寄存器
增益调整寄存器是一个读/写寄存器，其地址如表11所示。

表22. 增益调整寄存器Bit映射

<table>
<thead>
<tr>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
<tr>
<td>D13</td>
<td>D12</td>
</tr>
<tr>
<td>D11</td>
<td>D10</td>
</tr>
<tr>
<td>D9</td>
<td>D8</td>
</tr>
<tr>
<td>D7</td>
<td>D6</td>
</tr>
<tr>
<td>D5</td>
<td>D4</td>
</tr>
<tr>
<td>D3</td>
<td>D2</td>
</tr>
<tr>
<td>D1</td>
<td>D0</td>
</tr>
</tbody>
</table>

16位增益调整数据

表23. 增益调整寄存器调整范围

<table>
<thead>
<tr>
<th>增益调整寄存器数据</th>
<th>满量程输出时的数字增益调整(LSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535(默认值)</td>
<td>0</td>
</tr>
<tr>
<td>65534</td>
<td>−1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>32769</td>
<td>−32767</td>
</tr>
<tr>
<td>32768</td>
<td>−32768</td>
</tr>
<tr>
<td>32767</td>
<td>−32769</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>−65534</td>
</tr>
<tr>
<td>0</td>
<td>−65535</td>
</tr>
</tbody>
</table>
失调和增益调整值的传递函数公式

考虑失调调整和增益调整寄存器值时，传递函数可以用下列公式表示。

对于4 mA至20 mA输出范围，环路电流可以表示为：

$$I_{LOOP} = \left[\left(\frac{16 \text{ mA}}{2^{16}} \right) \times \text{Gain} \right] \times D$$

$$+ \left(4 \text{ mA} + \left(\frac{16 \text{ mA}}{2^{16}} \right) \times (\text{Offset} - 32,768) \right)$$

对于3.8 mA至21 mA输出范围，环路电流可以表示为：

$$I_{LOOP} = \left[\left(\frac{17.2 \text{ mA}}{2^{16}} \right) \times \text{Gain} \right] \times D$$

$$+ \left(3.8 \text{ mA} + \left(\frac{17.2 \text{ mA}}{2^{16}} \right) \times (\text{Offset} - 32,768) \right)$$

对于3.2 mA至24 mA输出范围，环路电流可以表示为：

$$I_{LOOP} = \left[\left(\frac{20.8 \text{ mA}}{2^{16}} \right) \times \text{Gain} \right] \times D$$

$$+ \left(3.2 \text{ mA} + \left(\frac{20.8 \text{ mA}}{2^{16}} \right) \times (\text{Offset} - 32,768) \right)$$

其中：

D为DAC寄存器的十进制值。

$Gain$为增益调整寄存器的十进制值。

$Offset$为失调调整寄存器的十进制值。

注意，失调调整寄存器无法下调零电平输出值。
应用信息

图49给出了AD5421配置在HART智能发射器中的典型连接图。这种支持HART的智能发射器是ADI公司开发的参考演示电路。该电路(功能框图见图50)已通过验证，并注册为HART通信基金会认证的HART解决方案。

为了降低芯片的功耗，可以按照图49所示在环路电压与AD5421之间连接一个耗尽型MOSFET(T1)，如DN2540或BSP129。如果环路电压较低，则不需要插入T1，环路电压可以直接连接到REGIN(参见图42)。在图49中，所有接口信号线都连接到微控制器。为了减少接口信号线的数量，可以将LDAC信号连接到COM，而SDO和FAULT线可以不连接，但这种配置会禁用故障报警功能。

在正常工作条件下，COM与LOOP–之间的电压不超过1.5 V，LOOP–电压相对于COM为负值。如果LOOP–电压相对于COM可能为正值，或者LOOP–与COM之间的电压差可能超过5 V，则应在COM与LOOP–引脚之间放置一个4.7 V低泄漏齐纳二极管以保护AD5421，如图49所示。

确定预期总误差

AD5421可以采用多种不同的配置，每种配置实现不同的精度。如表1和表2所示，内部基准电压源和内部R_SET使能在-40°C至+105°C的温度范围内，C级器件可以实现满量程范围0.157%的最大总误差。

其它配置则要求使用外部基准电压源和/或外部R_SET电阻，这些配置中的性能规格假设外部基准电压源和外部R_SET电阻是理想的。因此，为了确定整体性能，必须将这些元件的相关误差增加到数据手册规格中，具体性能取决于这些元件的特性。
为了确定最差情况的绝对总误差，可以将基准电压源和R_{SET}的误差与AD5421额定最大误差直接相加。例如，当使用外部基准电压源和外部R_{SET}电阻时，AD5421的最大误差为满量程范围的0.048%。假设基准电压源和R_{SET}电阻的绝对误差分别为0.04%和0.05%，温度系数分别为3 ppm/°C和2 ppm/°C，则最差情况的总误差为：

$$
\text{最差情况误差} = \text{AD5421误差} + V_{REF} \text{绝对误差} + V_{REF} \text{ TC} + R_{SET} \text{绝对误差} + R_{SET} \text{ TC}
$$

最差情况误差 = 0.048% + 0.04% + [(3/106) × 100 × 145]% + 0.05% + [(2/106) × 100 × 145]% = 0.21% FSR

这就是AD5421工作在-40°C至+105°C温度范围内的最差情况绝对误差值。误差达到该值的可能性极小，因为各器件的温度系数不是向同一方向漂移，因而会抵消一部分误差。因此，TC值应以平方和的平方根形式增加到总误差中。

在零电平和满量程处执行两点校准，从而将基准电压和R_{SET}电阻的绝对误差降至1 LSB或0.0015% FSR的组合误差，可以进一步改善性能。执行校准后，最大总误差变为：

$$
\text{总误差} = 0.048\% + 0.0015\% + \sqrt{(0.0435\%)^2 + (0.029\%)^2} = 0.102\% \text{ FSR}
$$

若还要进一步降低此误差，则必须选择温度系数更低的基准电压源和R_{SET}电阻。

散热和电源考虑

AD5421设计的最大工作结温为125°C。为使产品终生都能以额定性能可靠地工作，必须确保器件不在可能引起结温超过此值的条件下工作。调节高值环路电流时，如果AD5421的引脚上出现高压，就可能发生结温过高的情况。最终的结温与环境温度有关。表24列出了器件在最高环境温度和最大电源电压下工作的边界条件。图51和图52以图示方式显示了该信息。这些图表假设裸露焊盘连接到约6 cm²大的铜层上。

表24. 散热和电源考虑(未连接外部MOSFET)

<table>
<thead>
<tr>
<th>参数</th>
<th>描述</th>
<th>32引脚LFCSP</th>
<th>28引脚TSSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大功耗</td>
<td>在105°C环境温度下工作时的最大容许功耗</td>
<td>$T_{J_{MAX}} - T_A = \frac{125 - 105}{40} = 500 \text{ mW}$</td>
<td>$T_{J_{MAX}} - T_A = \frac{125 - 105}{32} = 625 \text{ mW}$</td>
</tr>
<tr>
<td>最高环境温度</td>
<td>采用52 V电源供电并调节22.8 mA环路电流时的最高容许环境温度</td>
<td>$T_{J_{MAX}} - P_D \times \theta_J = 125 - ((52 \times 0.0228) \times 40) = 77°C$</td>
<td>$T_{J_{MAX}} - (P_D \times \theta_J) = 125 - ((52 \times 0.0228) \times 32) = 87°C$</td>
</tr>
<tr>
<td>最大电源电压</td>
<td>在105°C环境温度下工作并调节22.8 mA环路电流时的最大容许电源电压</td>
<td>$T_{I_{MAX}} - I_{LOOP} \times \theta_I = 125 - 105 \times 0.0228 \times 40 = 21 \text{ V}$</td>
<td>$T_{I_{MAX}} - I_{LOOP} \times \theta_I = 125 - 105 \times 0.0228 \times 32 = 27 \text{ V}$</td>
</tr>
</tbody>
</table>
外形尺寸

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.

图53. 32引脚引脚架构芯片级封装[LFCSP_WQ]
5 mm x 5 mm，超薄体
(CP-32-11)
尺寸单位：mm

图54. 28引脚裸露焊盘、超薄紧凑小型封装[TSSOP_EP]
(RE-28-2)
尺寸单位：mm
订购指南

<table>
<thead>
<tr>
<th>型号</th>
<th>温度范围</th>
<th>封装描述</th>
<th>封装选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD5421ACPZ-REEL7</td>
<td>−40°C至+105°C</td>
<td>32脚 LFCSP_WQ</td>
<td>CP-32-11</td>
</tr>
<tr>
<td>AD5421BCPZ-REEL7</td>
<td>−40°C至+105°C</td>
<td>32脚 LFCSP_WQ</td>
<td>CP-32-11</td>
</tr>
<tr>
<td>AD5421BREZ</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>AD5421BREZ-REEL</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>AD5421BREZ-REEL7</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>AD5421CREZ</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>AD5421CREZ-RL</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>AD5421CREZ-RL7</td>
<td>−40°C至+105°C</td>
<td>28脚 TSSOP_EP</td>
<td>RE-28-2</td>
</tr>
<tr>
<td>EVAL-AD5421SDZ</td>
<td></td>
<td>评估板</td>
<td></td>
</tr>
</tbody>
</table>

1. Z = 符合RoHS标准的器件。