产品特性
最大负载电流: 1.2 A
输出精度: ±2%(整个温度范围内)
宽输入电压范围: 3.0 V至20 V
700 kHz (ADP2300) 或 1.4 MHz (ADP2301) 开关频率选项
高效率: 最高可达 91%
电流模式控制结构
输出电压范围: 0.8 V至0.85 × V_{IN}
PFM/PWM模式自动切换
具有迟滞特性的精密使能引脚
集成高端MOSFET
集成自举二极管
内部补偿和软启动
外部元件最少化
欠压闭锁(UVLO)
过流保护(OCP) 和热关断(TSD)
可提供超小型、6引脚TSOT封装
支持ADIsimPower™设计工具

应用
数字负载应用的LDO替代产品
中间供电轨转换
通信和网络
工业和仪器仪表
医疗保健
消费电子

概述
ADP2300/ADP2301均为紧凑型、恒定频率、电流模式、降压DC-DC调节器，集成功率MOSFET，采用3.0 V至20 V输入电压工作，适合各种应用。这些器件内置精密、低压基准电压源，非常适合产生最低为0.8 V、±2%精度的调节输出电压，可提供最高1.2 A的负载电流。提供两种频率选项: ADP2300工作频率为700 kHz，ADP2301工作频率为1.4 MHz。这些选项允许用户在功效与整体解决方案尺寸之间权衡取舍，做出适当选择。电流模式控制可提供快速、稳定的线路和负载瞬态响应。ADP2300/ ADP2301器件均内置软启动功能，可防止上电时产生浪涌电流。其它重要安全特性包括短路保护、热关断(TSD)和输入欠压闭锁(UVLO)。ADP2300/ADP2301具有精密使能引脚阈值电压，因此很容易控制这些器件与其它输入/输出电源的时序；利用电阻分压器，也可以将该器件用作可编程欠压闭锁输入。

ADP2300/ADP2301采用6引脚TSOT封装，额定工作温度为−40°C至+125°C的结温范围。
目录

特性 ... 1
应用 ... 1
典型应用电路 .. 1
概述 .. 1
修订历史 .. 2
技术规格 .. 3
绝对最大额定值 .. 4
热阻 .. 4
ESD警告 ... 4
引脚配置和功能描述 ... 5
典型性能参数 ... 6
功能框图 ... 13
工作原理 .. 14
基本工作原理 ... 14
PWM模式 ... 14
省电模式 ... 14
自举电路 ... 14
精密使能 ... 14
集成软启动 ... 14
电流限制 ... 14
短路保护 ... 15
欠压闭锁(UVLO) .. 15
热关断 ... 15

修订历史

2012年11月—修订版B至修订版C
更改“订购指南”.. 26

2012年6月—修订版A至修订版B
更改特性部分 .. 1
增加“ADIsimPower设计工具”部分 .. 16

2010年6月—修订版0至修订版A
更改图54 ... 25
更改“订购指南”.. 26

2010年2月—修订版0；初始版

控制环路 .. 15
应用信息 .. 16
ADIsimPower设计工具 .. 16
输出电压编程 ... 16
电压转换限制 ... 16
低输入电压考虑因素 .. 17
精密使能编程 ... 17
电感 .. 18
续流二极管 ... 19
输入电容 ... 19
输出电容 ... 19
散热考量 ... 20
设计示例 .. 21
开关频率选择 ... 21
续流二极管选择 ... 21
电感选择 ... 21
输出电容选择 ... 21
电阻分压器选择 ... 22
电路板布局建议 ... 23
典型应用电路 ... 24
外形尺寸 ... 26
订购指南 .. 26
技术规格

除非另有说明，对于最小/最大规格，$V_{\text{IN}}=3.3\,\text{V}$，$T_j=-40^\circ\text{C}$至$+125^\circ\text{C}$；对于典型规格，$T_a=25^\circ\text{C}$。

表1.

<table>
<thead>
<tr>
<th>参数</th>
<th>符号</th>
<th>测试条件</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN} 电压范围</td>
<td>V_{IN}</td>
<td>无开关切换，$V_{\text{IN}}=12,\text{V}$</td>
<td>3</td>
<td>20</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>电源电流</td>
<td>I_{IN}</td>
<td>$V_{\text{EN}}=0,\text{V}$，$V_{\text{IN}}=12,\text{V}$</td>
<td>640</td>
<td>800</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>关断电流</td>
<td>I_{SHDN}</td>
<td>V_{IN}上升</td>
<td>18</td>
<td>35</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>欠压闭锁阈值</td>
<td>UVLO</td>
<td>V_{IN}下降</td>
<td>2.80</td>
<td>2.95</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{FB} 调节电压</td>
<td>V_{FB}</td>
<td>$T_j=0^\circ\text{C}$至$+125^\circ\text{C}$</td>
<td>0.788</td>
<td>0.800</td>
<td>0.812</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_j=-40^\circ\text{C}$至$+125^\circ\text{C}$</td>
<td>0.784</td>
<td>0.800</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td>偏置电流</td>
<td>I_{FB}</td>
<td></td>
<td>0.01</td>
<td>0.1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>SW 导通电阻</td>
<td>R_{BST}</td>
<td>$V_{\text{BST}}-V_{\text{SW}}=5,\text{V}$，$I_{\text{SW}}=150,\mu\text{A}$</td>
<td></td>
<td>440</td>
<td></td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{BST}}-V_{\text{SW}}=5,\text{V}$，$V_{\text{IN}}=12,\text{V}$</td>
<td></td>
<td>1.5</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>最短导通时间</td>
<td></td>
<td>100</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>最短关断时间</td>
<td></td>
<td>ADP2300</td>
<td>145</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADP2301</td>
<td>70</td>
<td>120</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>热关断</td>
<td></td>
<td>振荡器频率</td>
<td>ADP2300</td>
<td>0.5</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADP2301</td>
<td>1.0</td>
<td>1.4</td>
<td>1.75</td>
<td>MHz</td>
</tr>
<tr>
<td>软启动时间</td>
<td></td>
<td>ADP2300</td>
<td></td>
<td>1460</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADP2301</td>
<td></td>
<td>730</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN 输入阈值</td>
<td>V_{EN}</td>
<td></td>
<td>1.13</td>
<td>1.2</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>输入延迟</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>下拉电流</td>
<td></td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自举电压</td>
<td>V_{BOOT}</td>
<td>无开关切换，$V_{\text{IN}}=12,\text{V}$</td>
<td>5.0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>热关断</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>阈值</td>
<td></td>
<td>140</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 引脚对引脚测量。
2 通过设计保证。
绝对最大额定值

表2.

<table>
<thead>
<tr>
<th>参数</th>
<th>额定值</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN, EN</td>
<td>−0.3 V至+28 V</td>
</tr>
<tr>
<td>SW</td>
<td>−1.0 V至+28 V</td>
</tr>
<tr>
<td>BST至SW</td>
<td>−0.6 V至+6 V</td>
</tr>
<tr>
<td>BST</td>
<td>−0.3 V至+28 V</td>
</tr>
<tr>
<td>FB</td>
<td>−0.3 V至+3.3 V</td>
</tr>
<tr>
<td>工作结温范围</td>
<td>−40°C至+125°C</td>
</tr>
<tr>
<td>存储温度范围</td>
<td>−65°C至+150°C</td>
</tr>
<tr>
<td>焊接条件</td>
<td>JEDEC J-STD-020</td>
</tr>
</tbody>
</table>

注意，超出上述绝对最大额定值可能会导致器件永久性损坏。这只是额定最值，并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下，推断器件能否正常工作。长期在绝对最大额定值条件下工作会影响器件的可靠性。

绝对最大额定值仅适合单独应用，但不适合组合使用。除非另有规定，所有电压均以GND为参考。

热阻

\(\theta_{JA} \) 针对最差条件，即器件焊接在电路板上以实现表贴封装。

表3. 热阻

<table>
<thead>
<tr>
<th>封装类型</th>
<th>(\theta_{JA})</th>
<th>(\theta_{JC})</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>6引脚TSOT封装</td>
<td>186.02</td>
<td>66.34</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

\(\theta_{JA} \) 和\(\theta_{JC} \) 利用自然对流在JEDEC 4层板上测量。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。尽管本产品具有专利或专有保护电路，但在遇到高能量ESD时，器件可能会损坏。因此，应当采取适当的ESD防范措施，以避免器件性能下降或功能丧失。
引脚配置和功能描述

表4. 引脚功能描述

<table>
<thead>
<tr>
<th>引脚编号</th>
<th>名称</th>
<th>描述</th>
</tr>
</thead>
</table>
| 1 | BST | 高端MOSFET驱动器用升压电源。在SW和BST引脚间接入一个0.1 μF电容，形成一个悬空电源，将MOSFET开关的栅极拉至高于VIN电源电压。
| 2 | GND | 地。连接此引脚到地层。
| 3 | FB | 反馈电压检测输入。连接此引脚到VOUT的一个电阻分压器上。将电压设置为0.8 V以取得所需的VOUT。
| 4 | EN | 输出使能。拉高此引脚可使能输出；拉低此引脚可禁用输出。此引脚也可用作可编程UVLO输入。此引脚具有1.2 μA的对地下拉电流。
| 5 | VIN | 电源输入。连接到输入电源，并通过一个陶瓷旁路电容直接连接到GND。
| 6 | SW | 开关节点输出引脚。通过一个电感连接到VOUT，并通过一个续流二极管连接到GND。
典型性能参数

除非另有说明，$V_{\text{IN}}=3.3\, \text{V}$，$T_A=25^\circ\text{C}$，$V_{\text{EN}}=V_{\text{IN}}$

图4. 效率曲线，$V_{\text{IN}}=18\, \text{V}$，$f_{\text{SW}}=1.4\, \text{MHz}$

图7. 效率曲线，$V_{\text{IN}}=12\, \text{V}$，$f_{\text{SW}}=700\, \text{kHz}$

图5. 效率曲线，$V_{\text{IN}}=18\, \text{V}$，$f_{\text{SW}}=700\, \text{kHz}$

图8. 效率曲线，$V_{\text{IN}}=5.0\, \text{V}$，$f_{\text{SW}}=1.4\, \text{MHz}$

图6. 效率曲线，$V_{\text{IN}}=12\, \text{V}$，$f_{\text{SW}}=1.4\, \text{MHz}$

图9. 效率曲线，$V_{\text{EN}}=5.0\, \text{V}$，$f_{\text{SW}}=700\, \text{kHz}$
图10. 效率曲线，$V_{IN} = 3.3V$，使用外部5.0V自举偏置电压，
$f_{SW} = 1.4 MHz$

图11. 效率曲线，$V_{IN} = 3.3V$，使用外部5.0V自举偏置电压，
$f_{SW} = 700 kHz$

图12. 负载调节率，$V_{OUT} = 3.3V, V_{IN} = 12V$

图13. 电压调整率，$V_{OUT} = 3.3V, I_{OUT} = 500mA$

图14. 频率与温度的关系

图15. 频率与V_{IN}的关系
图16. 关断电流与V_{IN}的关系

图17. 0.8V反馈电压与温度的关系

图18. 最短导通时间与温度的关系

图19. 最短关断时间与温度的关系

图20. 限流阈值与V_{IN}的关系，V_{BST}，V_{SW} = 5.0 V

图21. 限流阈值与温度的关系
图22. 静态电流与V_{IN}的关系

图23. MOSFET $R_{DS(ON)}$与温度的关系(引脚对引脚测量)

图24. 使能阈值与温度的关系

图25. 欠压闭锁(UVLO)阈值与温度的关系

图26. 重载下的稳态，$f_{SW} = 1.4$ MHz，$I_{OUT} = 1$ A

图27. 轻载下的稳态，$f_{SW} = 1.4$ MHz，$I_{OUT} = 40$ mA
图28. 1A阻性负载下的软启动，$f_{sw} = 1.4$ MHz

图29. 空载下的软启动，$f_{sw} = 1.4$ MHz

图30. ADP2301负载瞬态响应，0.2 A至1.0 A，$V_{OUT} = 5.0$ V，$V_{IN} = 12$ V ($f_{sw} = 1.4$ MHz，$L = 4.7$ µH，$C_{OUT} = 22$ µF)

图31. ADP2301负载瞬态响应，0.2 A至1.0 A，$V_{OUT} = 3.3$ V，$V_{IN} = 12$ V ($f_{sw} = 1.4$ MHz，$L = 4.7$ µH，$C_{OUT} = 22$ µF)

图32. ADP2300负载瞬态响应，0.2 A至1.0 A，$V_{OUT} = 5.0$ V，$V_{IN} = 12$ V ($f_{sw} = 700$ kHz，$L = 10$ µH，$C_{OUT} = 22$ µF)

图33. ADP2300负载瞬态响应，0.2 A至1.0 A，$V_{OUT} = 3.3$ V，$V_{IN} = 12$ V ($f_{sw} = 700$ kHz，$L = 10$ µH，$C_{OUT} = 22$ µF)
图34. ADP2301瞬态响应，
7 V至15 V, \(V_{\text{out}} = 3.3 \) V, \(I_{\text{out}} = 1.2 \) A, \(f_{\text{sw}} = 1.4 \) MHz

图35. ADP2301短路保护，\(V_{\text{out}} = 3.3 \) V
\((f_{\text{sw}} = 1.4 \) MHz\)

图36. ADP2301短路恢复，\(V_{\text{out}} = 3.3 \) V
\((f_{\text{sw}} = 1.4 \) MHz\)

图37. ADP2301波特图，\(V_{\text{out}} = 5.0 \) V, \(V_{\text{in}} = 12 \) V
\((f_{\text{sw}} = 1.4 \) MHz, \(L = 4.7 \) µH, \(C_{\text{out}} = 10 \) µF\)

图38. ADP2301波特图，\(V_{\text{out}} = 3.3 \) V, \(V_{\text{in}} = 12 \) V
\((f_{\text{sw}} = 1.4 \) MHz, \(L = 4.7 \) µH, \(C_{\text{out}} = 22 \) µF\)

图39. ADP2300波特图，\(V_{\text{out}} = 5.0 \) V, \(V_{\text{in}} = 12 \) V
\((f_{\text{sw}} = 700 \) kHz, \(L = 10 \) µH, \(C_{\text{out}} = 22 \) µF\)
图40. ADP2300波特图，$V_{\text{oout}} = 3.3 \text{ V}$，$V_{\text{Vin}} = 12 \text{ V}$
($f_{\text{sw}} = 700 \text{ kHz}$，$L = 10 \mu\text{H}$，$C_{\text{out}} = 22 \mu\text{F}$)
功能框图

图41. ADP2300/ADP2301功能框图
工作原理
ADP2300/ADP2301均为异步降压DC-DC调节器，集成高端功率MOSFET。高开关频率和超小型6引脚TSOT封装允许使用小型降压DC-DC调节器解决方案。
ADP2300/ADP2301可采用3.0 V至20 V输入电压工作，输出电压最低可调为0.8 V。
ADP2300/ADP2301有两种固定频率选项：700 kHz(ADP2300)和1.4 MHz(ADP2301)。

基本工作原理
ADP2300/ADP2301在中载至满载时采用固定频率、峰值电流模式PWM控制结构，轻负载时切换到脉冲跳跃模式，以降低开关功耗、提高功效。当器件在固定频率PWM模式下工作时，通过控制集成MOSFET的占空比来实现输出调节。当器件在轻载条件下以脉冲跳跃模式工作时，输出电压通过延迟方式控制，具有较高的输出纹波。这种工作模式下，调节器定期将开关切换停止几个周期，以将转换损耗降到最低，改善功效。

PWM模式
PWM模式下，ADP2300/ADP2301内部振荡器设定的固定频率工作。每个振荡器周期的起始，MOSFET开关打开，给电感两端提供正向电压。电感电流增加，直至电流检测信号超过可关断MOSFET的峰值电感电流阈值。阈值由误差放大器的输出设定。在MOSFET关断期间，电感电流流经外部二极管并下降，直到下个振荡时钟脉冲开始另一个新的周期。ADP2300/ADP2301通过调节峰值电流阈值来实现输出电压调节。

省电模式
为了实现更高的功效，当输出负载低于脉冲跳跃模式阈值时，ADP2300/ADP2301平稳过渡到脉冲跳跃模式。当输出电压跌至规定值以下时，ADP2300/ADP2301进入PWM模式，并停留数个振荡器周期，直至输出电压升至规定值。在突发脉冲之间的空闲时间内，MOSFET开关断开，由输出电容提供所有输出电流。

精密使能
ADP2300/ADP2301的精密使能电路具有1.2 V基准电压和100 mV的迟滞。当EN引脚电压大于1.2 V时，器件使能。如果EN引脚的电压低于1.1 V，器件将被禁用。精密使能阈值电压使ADP2300/ADP2301能够通过其它输入/输出电源轻松实现时序控制。该阈值电压也可以通过电阻分压器用作可编程UVLO输入。内部1.2 µA的下拉电流可以防止EN引脚悬空时发生错误。

集成软启动
ADP2300/ADP2301内置软启动电路，启动时输出电压以可控方式缓升，从而限制浪涌电流。ADP2300的软启动时间通常固定为1460 µs，ADP2301的软启动时间通常固定为730 µs。

限流
ADP2300/ADP2301内置限流保护电路，限制流过高端MOSFET开关的正向电流。功率开关的正电流限值限制可从输入端流向输出端的电流量。
短路保护
ADP2300/ADP2301含频率折返技术，当输出上存在负载短路时，可防止输出电流失控。当FB引脚的电压降到一定数值以下后，开关频率降低，为电感电流的降低提供更多时间，于是在调节峰值电流的同时会增加纹波电流，这导致平均输出电流下降，以阻止输出电流失控。表5显示了开关频率与FB引脚电压之间的相关关系。

欠压闭锁(UVLO)
ADP2300/ADP2301具有固定的、内部设定的欠压闭锁电路。如果输入电压降至2.4 V以下，ADP2300/ADP2301和MOSFET开关均关断。当电压回升到2.8 V以上时，启动软启动周期，并使能器件。

热关断
在ADP2300/ADP2301结温上升到140°C以上时，热关断电路会禁止芯片工作。极端结温可能由大电流工作、线路板设计差或环境温度高等因素造成。器件设计有15°C的迟滞，因此发生热关断时，片内温度必须低于125°C，ADP2300/ADP2301才会恢复工作。从热关断恢复后，开始软启动。

控制环路
ADP2300/ADP2301实行内部补偿，将外部元件数量和成本降至最低。此外，内置斜率补偿有助于防止当占空比大于或接近50%时产生次谐波振荡。

表5. 开关频率和FB引脚电压之间的相关关系

<table>
<thead>
<tr>
<th>FB引脚电压</th>
<th>开关频率</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{FB} \geq 0.6$ V</td>
<td>f_{SW}</td>
</tr>
<tr>
<td>0.6 V > V_{FB} > 0.2 V</td>
<td>$\frac{1}{2} f_{SW}$</td>
</tr>
<tr>
<td>$V_{FB} \leq 0.2$ V</td>
<td>$\frac{1}{4} f_{SW}$</td>
</tr>
</tbody>
</table>

当负载短路($V_{FB} \leq 0.2$ V)消除后，启动软启动周期，将输出重新调节到正常工作时的值，这有助于限制浪涌电流，并防止可能的输出电压过冲。
应用信息

ADIsimPower设计工具

ADIsimPower是一个工具集，支持ADP2300/ADP2301。ADIsimPower是一个工具集合，可以根据特定设计目标产生完整的电源设计。利用这些工具，用户只需几分钟就能生成完整原理图、物料清单并计算性能。ADIsimPower可以考虑IC和所有真实外部元件的工作条件与限制，并针对成本、面积、效率和器件数量优化设计。欲了解有关ADIsimPower设计工具的更多信息，请访问www.analog.com/ADIsimPower。该工具集可通过此网站获得，用户可以通过该工具申请未填充的电路板。

输出电压编程

ADP2300/ADP2301输出电压是通过输出电压与FB引脚之间的电阻分压器进行外部设置的，如图42所示。典型输出电压设置的建议电阻值如表6所列。输出电压设置等式是:

\[V_{OUT} = 0.800 \times \left(1 + \frac{R_{FB1}}{R_{FB2}} \right) \]

其中:

- \(V_{OUT} \) 为输出电压。
- \(R_{FB1} \) 为\(V_{OUT} \)到FB之间的反馈电阻。
- \(R_{FB2} \) 为FB到GND之间的反馈电阻。

表6. 电阻分压器推荐值

<table>
<thead>
<tr>
<th>(V_{OUT}) (V)</th>
<th>(R_{FB1}) (kΩ), ±1%</th>
<th>(R_{FB2}) (kΩ), ±1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>4.99</td>
<td>10</td>
</tr>
<tr>
<td>1.8</td>
<td>12.7</td>
<td>10.2</td>
</tr>
<tr>
<td>2.5</td>
<td>21.5</td>
<td>10.2</td>
</tr>
<tr>
<td>3.3</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td>5.0</td>
<td>52.3</td>
<td>10</td>
</tr>
</tbody>
</table>

电压转换限制

对于给定的输入电压，由于最小导通时间、最小关断时间及自举压差的原因，输出电压有上下限。

输出电压的下限取决于有限、可控的最小导通时间，最小导通时间在最恶劣情况时最高为135 ns。考虑到开关频率和输入电压的变化，输出电压下限的等式为:

\[V_{OUT}(\text{min}) = t_{MIN-ON} \times f_{SW(\text{max})} \times (V_{IN(\text{max})} + V_D) - V_D \]

其中:

- \(V_{IN(\text{max})} \) 为最大输入电压。
- \(f_{SW(\text{max})} \) 为最恶劣情况下的最大开关频率。
- \(t_{MIN-ON} \) 为最小可控导通时间。
- \(V_D \) 为二极管正向压降。

输出电压的上限取决于最小可控关断时间，对于ADP2301，该关断时间在最恶劣情况时最高为120 ns。考虑到开关频率和输入电压的变化，输出电压上限的等式为:

\[V_{OUT}(\text{max}) = (1 - t_{MIN-OFF} \times f_{SW(\text{max})}) \times (V_{IN(\text{min})} + V_D) - V_D \]

其中:

- \(V_{IN(\text{min})} \) 为最小输入电压。
- \(f_{SW(\text{max})} \) 为最恶劣情况下的最大开关频率。
- \(V_D \) 为二极管正向压降。
- \(t_{MIN-OFF} \) 为最小可控关断时间。

此外，由于内部压差的原因，自举电路限制了所需输出的最小输入电压。为了在轻载下维持稳定工作，并在预偏置时确保正确启动，ADP2300/ADP2301要求输入电压和调节输出电压之间（或输入电压和预偏置电压之间的）电压差在最恶劣情况时大于2.1 V。如果电压差较小，启动时，自举电路必须依靠某个最小负载电流给自举电容充电。图43显示了3.3 V输出电压时，所需的最小输入电压与负载电流的关系。
精密使能编程
通常，EN引脚可以很容易地连接到VIN引脚上，这样，输入电源上电时，器件自动启动。不过，精密使能特性允许ADP2300/ADP2301通过一个电阻分压器连接到VIN上，来用作可编程UVLO，如图46所示。当VIN在软启动时缓升而负载电流相对较大时，这种配置可以防止启动问题的发生。

精密使能也允许ADP2300/ADP2301通过一个电阻分压器连接到另一个DC-DC输出电源上，实现精密的时序控制，如图47所示。

EN引脚具有1.2 µA的下拉电流，图46和图47中的启动电压等式为:

\[
V_{\text{STARTUP}} = \left(\frac{1.2 \text{ V}}{R_{\text{EN1}}} + 1.2 \text{ mA} \right) \times R_{\text{EN2}} + 1.2 \text{ V}
\]

其中:

- \(V_{\text{STARTUP}}\) 为用于使能芯片的启动电压。
- \(R_{\text{EN1}}\) 为直流源与EN引脚之间的电阻。
- \(R_{\text{EN2}}\) 为EN引脚与GND之间的电阻。

低输入电压考虑因素
对于3 V至5 V的低输入电压，由于内部压降的原因，内部启动调节器不能提供足够的5.0 V自举电压。因此，MOSFET R\(_{\text{DS(on)}}\)增加，降低了可输出负载电流能力。为了避免这种情况，可在5.0 V外部自举偏置电压上连接一个外部小信号肖特基二极管。由于BST和SW引脚间的绝对最大额定值为6.0 V，因此偏置电压应小于5.5 V。图45显示了外部自举电路的应用框图。

\[
\begin{align*}
3V & - 5V \\
\text{VIN} & \rightarrow \text{BST} \rightarrow \text{SCHOTTKY DIODE} \\
& \rightarrow 3V \text{ BIAS VOLTAGE} \\
\text{EN} & \rightarrow \text{GND} \rightarrow \text{FB} \\
\text{ON} & \rightarrow \text{OFF}
\end{align*}
\]

图45. 低输入电压应用中的外部自举电路
电感
ADP2300/ADP2301的高开关频率允许使用小型电感。为获得最佳性能，ADP2301使用2 µH至10 µH之间的电感值，ADP2300使用2 µH至22 µH之间的电感值。

峰值电感电流纹波的计算公式如下：

$$\Delta I_{\text{Ripple}} = \left(\frac{V_{\text{IN}} - V_{\text{OUT}}}{L \times f_{\text{sw}}} \times \frac{V_{\text{OUT}} + V_{D}}{V_{\text{IN}} + V_{D}}\right)$$

其中：
- f_{sw}为开关频率。
- L为电感值。
- V_D为二极管正向压降。
- V_{IN}为输入电压。
- V_{OUT}为输出电压。

数值较小的电感通常尺寸较小，且较为便宜，但电流纹波和输出电压纹波会增加。电感峰值电流纹波通常可以设置为最大负载电流的30%，获得最佳瞬态响应和功效。因此，可通过如下公式计算电感值：

$$L = \frac{(V_{\text{IN}} - V_{\text{OUT}})}{0.3 \times I_{\text{LOAD(max)}} \times f_{\text{sw}}} \times \frac{V_{\text{OUT}} + V_{D}}{V_{\text{IN}} + V_{D}}$$

其中，$I_{\text{LOAD(max)}}$为最大负载电流。

表7. 推荐电感

<table>
<thead>
<tr>
<th>供应商</th>
<th>值(µH)</th>
<th>产品型号</th>
<th>DCR (mΩ)</th>
<th>I_{SAT} (A)</th>
<th>尺寸: 长×宽×高(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coilcraft</td>
<td>4.7</td>
<td>LPS6225-472MLC</td>
<td>65</td>
<td>3.1</td>
<td>6.0×6.0×2.4</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>LPS6225-682MLC</td>
<td>95</td>
<td>2.7</td>
<td>6.0×6.0×2.4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>LPS6225-103MLC</td>
<td>105</td>
<td>2.1</td>
<td>6.0×6.0×2.4</td>
</tr>
<tr>
<td>Sumida</td>
<td>4.7</td>
<td>CDRHS28HPNP-4R7N</td>
<td>43</td>
<td>3.7</td>
<td>6.2×6.2×3.0</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>CDRHS28HPNP-6R8N</td>
<td>64</td>
<td>2.15</td>
<td>5.8×5.8×1.8</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>CDRHS28HPNP-6R8N</td>
<td>61</td>
<td>3.1</td>
<td>6.2×6.2×3.0</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>CDRHS28HPNP-6R8N</td>
<td>84</td>
<td>1.8</td>
<td>5.8×5.8×1.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>CDRHS28HPNP-100M</td>
<td>93</td>
<td>2.45</td>
<td>6.2×6.2×3.0</td>
</tr>
<tr>
<td>Cooper Bussmann</td>
<td>4.7</td>
<td>SD53-4R7-R</td>
<td>39</td>
<td>2.1</td>
<td>5.2×5.2×3.0</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>SD53-6R8-R</td>
<td>59</td>
<td>1.85</td>
<td>5.2×5.2×3.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>DR73-100-R</td>
<td>65</td>
<td>2.47</td>
<td>7.6×7.6×3.5</td>
</tr>
<tr>
<td>Toko</td>
<td>4.7</td>
<td>B1077AS-4R7N</td>
<td>34</td>
<td>2.6</td>
<td>7.6×7.6×4.0</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>B1077AS-6R8N</td>
<td>40</td>
<td>2.3</td>
<td>7.6×7.6×4.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>B1077AS-100M</td>
<td>58</td>
<td>1.8</td>
<td>7.6×7.6×4.0</td>
</tr>
<tr>
<td>TDK</td>
<td>4.7</td>
<td>VLC5045T-4R7M</td>
<td>34</td>
<td>3.3</td>
<td>5.0×5.0×4.5</td>
</tr>
<tr>
<td></td>
<td>6.8</td>
<td>VLC5045T-6R8M</td>
<td>46</td>
<td>2.7</td>
<td>5.0×5.0×4.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>VLC5045T-100M</td>
<td>66</td>
<td>2.1</td>
<td>5.0×5.0×4.5</td>
</tr>
</tbody>
</table>

电感峰值电流可通过以下公式计算：

$$I_{\text{PEAK}} = I_{\text{LOAD(max)}} \times \frac{\Delta I_{\text{Ripple}}}{2}$$

电感的最小电流额定值必须大于电感峰值电流。对于具有快速饱和特性和铁氧体磁芯电感，电感饱和电流额定值应该大于开关的电流限制阈值，以防止电感达到饱和点。确保在预期温度范围内对最坏情况进行验证，包括短路输出等。

电感导通损耗是由电流流过电感而产生的，它与内部直流电阻(DCR)相关。大尺寸的电感DCR较小，因此可以减少导通损耗。然而，电感的铁损也与磁芯材料和交流磁通摆幅相关，它们受峰值值电感电压影响。由于ADP2300/ADP2301是高开关频率调节器，推荐使用屏蔽铁氧体磁芯材料，其铁损低，EMI低。部分推荐电感列于表7。
续流二极管
续流二极管在内部MOSFET关断时传导电感电流。因此，正常工作时二极管上的平均电流取决于调节器的占空比及输出负载电流。

\[I_{DIODE(AVG)} = \left(1 - \frac{V_{OUT} + V_D}{V_{IN} + V_D} \right) \times I_{LOAD(max)} \]

其中，\(V_D \)为二极管正向压降。

之所以选择一个电流额定值高于正常工作所需的二极管，完全是为了应对最恶劣的情况，即短路输出。在这种情况下，二极管的电流会增大到典型峰值电流限制阈值。请务必查阅二极管数据手册，确保二极管能够在热限值和电气限值以内正常工作。

二极管的反向击穿电压额定值必须高于最高输入电压，并有一定的裕量能够承受SW节点上的反向电压。为获得最高功率，推荐采用肖特基二极管，因为它正向压降低、开关速度快。表8列出了推荐的肖特基二极管。

表8. 推荐的肖特基二极管

<table>
<thead>
<tr>
<th>供应商</th>
<th>产品型号</th>
<th>(V_{BRM}) (V)</th>
<th>(I_{AVG}) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON Semiconductor</td>
<td>MBRS230LT3</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MBRS240LT3</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Diodes Inc.</td>
<td>B230A</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B240A</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Vishay</td>
<td>SL23</td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SS24</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

输入电容
输入电容必须能够承受最大的输入工作电压和最大均方根输入电流。流过输入电容的最大均方根输入电流为\(I_{LOAD(max)} \)/2。对于应用中的最大负载电流，使用如下公式选择能够耐受均方根输入电流的输入电容:

\[I_{IN(BRM)} = I_{LOAD(max)} \times \sqrt{D(1-D)} \]

其中，\(D \)为占空比，等于

\[D = \frac{V_{OUT} + V_D}{V_{IN} + V_D} \]

推荐的输入电容是X5R或X7R电介质的陶瓷电容，它们的ESR低，温度系数小，可以获得最佳性能。不推荐Y5V和Z5U电介质，它们的温度特性差，直流偏置特性也不好。

一般来说，使用ADP2300(1.4 MHz开关频率)的大多数应用中，需要10 µF的最小输出电容值；使用ADP2300(700 kHz的开关频率)的大多数应用中，需要20 µF的最小输出电容值。当输出电压为5.0 V时，推荐的输出电容值列于表9。

表9. \(V_{OUT} \leq 5.0 \) V时推荐的电容值

<table>
<thead>
<tr>
<th>供应商</th>
<th>值</th>
<th>产品型号</th>
<th>尺寸: 长 × 宽 × 高 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>10 µF, 6.3 V</td>
<td>GRM31MR60J106KE19</td>
<td>3.2 × 1.6 × 1.15</td>
</tr>
<tr>
<td></td>
<td>22 µF, 6.3 V</td>
<td>GRM31CR60J226KE19</td>
<td>3.2 × 1.6 × 1.6</td>
</tr>
<tr>
<td>TDK</td>
<td>10 µF, 6.3 V</td>
<td>C3216X5R0J106K</td>
<td>3.2 × 1.6 × 1.6</td>
</tr>
<tr>
<td></td>
<td>22 µF, 6.3 V</td>
<td>C3216X5R0J226M</td>
<td>3.2 × 1.6 × 0.85</td>
</tr>
</tbody>
</table>
散热考虑
ADP2300/ADP2301仅在内部MOSFET导通时流过电感电流值，因此，ADP2300/ADP2301封装内功耗极少，减少了散热方面的限制。
不过，在环境温度高、占空比高、负载最大的应用中，封装内散发的热量会使芯片的结温超出125°C的最大结温。如果结温超过140°C，调节器就会进入热关断状态，当结温低于125°C时才恢复工作。
芯片的结温为环境温度和功耗引起的封装温升之和，如下等式所示：

\[T_j = T_a + T_r \]

其中：
\(T_j \) 为结温。
\(T_a \) 是环境温度。
\(T_r \) 为功耗引起的封装温度升幅。

封装的温升与封装功耗成正比。其比例常数就是芯片的结到环境温度之间的热阻，如下式所示：

\[T_r = \theta_{ja} \times P_D \]

其中：
\(T_r \) 是封装的温度升幅。
\(\theta_{ja} \) 是从芯片结到封装环境温度的热阻。
\(P_D \) 是封装内的功耗。
设计示例
本节根据表10所列的示例规格，说明了选择外部元件的步骤。此设计示例的原理图如图48所示。

表10. 降压DC-DC调节器要求
<table>
<thead>
<tr>
<th>参数</th>
<th>技术规格</th>
<th>额外要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入电压(V<sub>IN</sub>)</td>
<td>12.0 V ± 10%</td>
<td>无</td>
</tr>
<tr>
<td>输出电压(V<sub>OUT</sub>)</td>
<td>3.3V, 1.2A, 在CCM模式下1%输出纹波</td>
<td>无</td>
</tr>
<tr>
<td>可编程</td>
<td>UVLO启动电压大约为7.8V</td>
<td>无</td>
</tr>
</tbody>
</table>

开关频率选择
选择700 kHz(ADP2300)或1.4 MHz(ADP2301)的开关频率时，使用图44列出的转换限制曲线以评估各种转换限制因素(最小导通时间、最小关断时间、自举压差)。

例如，在图44中，当输出电压为3.3V时，对于700 kHz和1.4 MHz开关频率，VIN = 12V ± 10%均在转换限制范围内，但选择1.4 MHz开关频率可提供最小尺寸的解决方案。如果需要更高的功效，可选择700 kHz，不过，因为电感和输出电容变大，因而调节器的电路板面积会增大。

续流二极管选择
选择续流二极管时，为获得最高功效，推荐使用肖特基二极管，其正向压降低、开关速度快。正常工作时的续流二极管平均电流(带典型的肖特基二极管正向压降)可使用以下等式计算：

\[
I_{DIODE(AVG)} = \left(1 - \frac{V_{OUT} + V_D}{V_{IN} + V_D}\right) \times I_{LOAD(max)}
\]

其中：
V_{OUT} = 3.3 V.
V_{IN} = 12 V.
I_{LOAD(max)} = 1.2 A.
V_D = 0.4 V.
因此，I_{DIODE(AVG)} = 0.85 A。

然而，在输出短路的最差情况下，二极管电流将提高到2 A (典型值)，具体由峰值开关电流限值(见表1)决定。这种情况下，选择B230A、2.0 A/30 V贴片肖特基二极管可以使电路运行更可靠。

电感选择
利用下式选择电感：

\[
L = \frac{(V_{IN} - V_{OUT})}{0.3 \times I_{LOAD(max)} \times f_{SW}} \times \frac{V_{OUT} + V_D}{V_{IN} + V_D}
\]

其中：
V_{OUT} = 3.3 V.
V_{IN} = 12 V.
I_{LOAD(max)} = 1.2 A.
V_D = 0.4 V.
f_{SW} = 1.4 MHz.
得到L = 5.15 µH。最接近的标准值是4.7 µH。因此，Δ_{RIEPPLE} = 0.394 A。

电感峰值电流可通过以下公式计算：

\[
I_{PEAK} = I_{LOAD(max)} + \frac{\Delta V_{RIEPPLE}}{2}
\]

其中：
I_{LOAD(max)} = 1.2 A.
Δ_{RIEPPLE} = 0.394 A.
因此，计算得出的电感峰值电流为1.397 A。然而，在限流的情况下，为了防止电感达到饱和点，电感额定的饱和电流值至少为2.0 A才能可靠工作。

输出电容选择
根据下面的公式选择符合输出电压纹波要求的输出电容：

\[
\Delta V_{RIEPPLE} = \Delta I_{RIEPPLE} \times \left(\frac{1}{8 \times f_{SW} \times C_{OUT}} + ESR_{C_{OUT}}\right)
\]

其中：
Δ_{RIEPPLE} = 0.394 A.
f_{SW} = 1.4 MHz.
△_{RIEPPLE} = 33 mV.
如果陶瓷电容的ESR为3 mΩ, 则C_{OUT} = 1.2 µF。
输出电容是控制环路稳定的两个外部元件之一，因此使用ADP2301(1.4 MHz的开关频率)的大多数应用需要最低10 µF的电容来保证稳定性。根据表11列出的推荐外部元件，此例中选择22 µF，电压额定值为6.3 V的电容。
ADP2300/ADP2301

电阻分压器选择

要选择合适的电阻分压器，首先计算输出反馈电阻分压器，然后计算可编程V\textsubscript{IN}启动电压的电阻分压器。

输出反馈电阻分压器为:

$$V_{OUT} = 0.800 \times \left(1 + \frac{R_{FB1}}{R_{FB2}} \right)$$

对于3.3 V输出电压，根据表11的推荐值，选择$R_{FB1} = 31.6 \, k\Omega$和$R_{FB2} = 10.2 \, k\Omega$作为反馈电阻分压器。

可编程V\textsubscript{IN}启动电压的电阻分压器为:

$$V_{STARTUP} = \left(\frac{1.2 \, V}{R_{EN2}} + 1.2 \, \mu A \right) \times R_{EN1} + 1.2 \, V$$

如果$V_{STARTUP} = 7.8 \, V$，选择$R_{EN2} = 10.2 \, k\Omega$，然后计算$R_{EN1}$，得到56 k\Omega。

图48. 设计示例原理图

表11 1.2A负载下典型应用中推荐的外部器件

<table>
<thead>
<tr>
<th>产品型号</th>
<th>V\textsubscript{IN} (V)</th>
<th>V\textsubscript{OUT} (V)</th>
<th>I\textsubscript{OUT} (A)</th>
<th>L (µH)</th>
<th>C\textsubscript{OUT} (µF)</th>
<th>R\textsubscript{FB1} (kΩ), ±1%</th>
<th>R\textsubscript{FB2} (kΩ), ±1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP2300 (700 kHz)</td>
<td>18</td>
<td>3.3</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.0</td>
<td>1.2</td>
<td>15</td>
<td>22</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.2</td>
<td>1.2</td>
<td>6.8</td>
<td>2 × 22</td>
<td>4.99</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>1.8</td>
<td>1.2</td>
<td>6.8</td>
<td>2 × 22</td>
<td>12.7</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>21.5</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.3</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.0</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.3</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.0</td>
<td>1.2</td>
<td>10</td>
<td>22</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8</td>
<td>1.2</td>
<td>4.7</td>
<td>2 × 22</td>
<td>12.7</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5</td>
<td>1.2</td>
<td>4.7</td>
<td>22</td>
<td>21.5</td>
<td>10.2</td>
</tr>
<tr>
<td>ADP2301 (1.4 MHz)</td>
<td>18</td>
<td>3.3</td>
<td>1.2</td>
<td>4.7</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5.0</td>
<td>1.2</td>
<td>6.8</td>
<td>10</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2.5</td>
<td>1.2</td>
<td>4.7</td>
<td>22</td>
<td>21.5</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.3</td>
<td>1.2</td>
<td>4.7</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>5.0</td>
<td>1.2</td>
<td>4.7</td>
<td>10</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3.3</td>
<td>1.2</td>
<td>4.7</td>
<td>22</td>
<td>31.6</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>5.0</td>
<td>1.2</td>
<td>4.7</td>
<td>10</td>
<td>52.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.8</td>
<td>1.2</td>
<td>2.2</td>
<td>2 × 22</td>
<td>12.7</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5</td>
<td>1.2</td>
<td>2.2</td>
<td>22</td>
<td>21.5</td>
<td>10.2</td>
</tr>
</tbody>
</table>
电路板布局建议
要使ADP2300/ADP2301获得最佳性能，良好的线路板布局至关重要。不良的布局会影响调节和稳定性以及电磁干扰(EMI)和电磁兼容(EMC)性能。PCB布局示例如图50所示。参考以下准则有助于实现良好的PCB布局：

- 将输入电容、电感、续流二极管、输出电容和自举电容靠近IC放置，并使用短走线连接。
- 确保高电流环路的走线尽可能短而宽。高电流路径如图49所示。
- 最大限度增加元件侧接地金属的尺寸，以加强散热。
- 地层通过多个过孔连接到元件侧的地上，以进一步减少敏感电路节点上的噪声干扰。
- 尽量缩短FB走线的长度(FB走线用于将反馈电阻分压器的上端连接到输出)。此外，使这些走线远离高电流走线和开关节点，以避免噪声影响。

![图49. 带高电流走线(显示为蓝色)的典型应用电路](image)

![图50. ADP2300/ADP2301的推荐PCB布局](image)
典型应用电路

图51. ADP2300—700 kHz典型应用，V_{IN}=12 V，V_{OUT}=1.2 V/1.2 A，带外部使能

图52. ADP2300—700 kHz典型应用，V_{IN}=12 V，V_{OUT}=1.8 V/1.2 A，带外部使能

图53. ADP2300—700 kHz典型应用，V_{IN}=12 V，V_{OUT}=2.5 V/1.2 A，带外部使能
ADP2300/ADP2301

图54. ADP2301—1.4 MHz典型应用，V_{IN}=12 V，V_{OUT}=3.3 V/1.2 A
（带可编程7.8 V启动输入电压）

图55. ADP2301—1.4 MHz典型应用，V_{IN}=12 V，V_{OUT}=5.0 V/1.2 A，带外部使能

图56. ADP2301—1.4 MHz典型应用，V_{IN}=18 V，V_{OUT}=5.0 V/1.2 A，带外部使能

图57. ADP2301—1.4 MHz典型应用，V_{IN}=9 V，V_{OUT}=3.3 V/1.2 A，带外部使能

图58. ADP2301—1.4 MHz典型应用，V_{IN}=5 V，V_{OUT}=1.8 V/1.2 A，带外部使能

Rev. C | Page 25 of 28
外形尺寸

![外形尺寸图](image)

COMPLIANT TO JEDEC STANDARDS MD-193-AA WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.

图59. 6引脚超薄小型晶体管封装[TSOT]
(UJ-6)

图示尺寸单位：mm

订购指南

<table>
<thead>
<tr>
<th>型号</th>
<th>开关频率</th>
<th>温度范围</th>
<th>封装描述</th>
<th>封装选项</th>
<th>标识</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP2300AUJZ-R2</td>
<td>700 kHz</td>
<td>−40°C至+125°C</td>
<td>6引脚超薄小型晶体管封装[TSOT]</td>
<td>UJ-6</td>
<td>L87</td>
</tr>
<tr>
<td>ADP2300AUJZ-R7</td>
<td>700 kHz</td>
<td>−40°C至+125°C</td>
<td>6引脚超薄小型晶体管封装[TSOT]</td>
<td>UJ-6</td>
<td>L87</td>
</tr>
<tr>
<td>ADP2300-EVALZ</td>
<td></td>
<td></td>
<td>评估板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP2301AUJZ-R2</td>
<td>1.4 MHz</td>
<td>−40°C至+125°C</td>
<td>6引脚超薄小型晶体管封装[TSOT]</td>
<td>UJ-6</td>
<td>L86</td>
</tr>
<tr>
<td>ADP2301AUJZ-R7</td>
<td>1.4 MHz</td>
<td>−40°C至+125°C</td>
<td>6引脚超薄小型晶体管封装[TSOT]</td>
<td>UJ-6</td>
<td>L86</td>
</tr>
<tr>
<td>ADP2301-EVALZ</td>
<td></td>
<td></td>
<td>评估板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Z = 符合RoHS标准的器件。
注释