1 GHz、5500 V/μs
低失真放大器

AD8009

产品特性
超高速
压摆率: 5500 V/μs（4 V 阶跃，G = +2）
上升时间: 545 ps（2 V 阶跃，G = +2）
大信号带宽
440 MHz，G = +2
320 MHz，G = +10
小信号带宽(-3 dB)
1 GHz，G = +1
700 MHz，G = +2
0.1%建立时间为: 10 ns（2 V 阶跃，G = +2）
宽带宽范围内低失真
无杂散动态范围(SFDR)
-66 dBc（20 MHz，二次谐波）
-75 dBc（20 MHz，三次谐波）
三阶交调截点(3IP)
26 dBm（70 MHz，G = +10）
良好的视频规格
0.1 dB 增益平坦度达 75 MHz
0.01% 差分增益误差，R_L = 150 Ω
0.01% 差分相位误差，R_L = 150 Ω
高输出驱动
175 mA 输出负载驱动电流
10 dBm 且 SFDR 为 -38 dBc（70 MHz，G = +10）
电源供电
电源电压: +5 V 至 ±5 V
电源电流: 14 mA（典型值）

应用
脉冲放大器
中频/射频增益级/放大器
高分辨率视频图像
高速仪器仪表
CCD 成像放大器

产品描述
AD8009 是一款超高速电流反馈型放大器，压摆率达到惊人的5500 V/μs，上升时间仅为545 ps，因而非常适合用作脉冲放大器。

高压摆率降低可压摆率限幅效应，使大信号带宽达到440 MHz，从而满足高分辨率视频系统的需求。信号质量在整个宽带宽范围内均保持较高水平，最差情况下的失真为-40 dBc（250 MHz，G = +10，1 V p-p）。对于中频信号链等具有多音信号的应用，相同频率的三阶交调截点（3IP）为12 dBc。这种失真性能配合电流反馈结构，使AD8009可灵活地应用于IF/RF信号链中的增益级放大器。

AD8009能够提供175 mA以上的负载电流，驱动四个后部端接的视频负载，同时保持低差分增益和相位误差（分别为0.02%和0.04°）。高驱动能力还体现在它能够提供10 dBm的输出功率，当频率为70 MHz和无杂散动态范围(SFDR)为-38 dBc时。

AD8009提供小型SOIC封装，工作温度范围为-40°C至+85°C工业温度范围。该器件还提供SOT-23-5封装，工作温度范围为0°C至70°C商用温度范围。
AD8009

(除非另有说明，$T_a = 25^\circ C$，$V_s = \pm 5 V$，$R_L = 100 \Omega$；对于R封装：$R_\pi = 301 \Omega$ (G = +1, +2)、$R_\pi = 200$ (G = +10)；对于RT封装：$R_\pi = 332 \Omega$ (G = +1)、$R_\pi = 226 \Omega$ (G = +2)和$R_\pi = 191 \Omega$ (G = +10)。)

<table>
<thead>
<tr>
<th>型号</th>
<th>条件</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>动态性能</td>
<td>$-3,\text{dB}$小信号带宽, $V_o = 0.2,V,p-p$</td>
<td>$G = +1, R_F = 301,\Omega$</td>
<td>1,000</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +1, R_F = 332,\Omega$</td>
<td>845</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_{1+} = 301,\Omega$ (G = +1, +2)</td>
<td>480</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_{1+} = 332,\Omega$ (G = +1)</td>
<td>300</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_{1+} = 226,\Omega$ (G = +2)</td>
<td>390</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_{1+} = 191,\Omega$ (G = +10)</td>
<td>235</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大信号带宽, $V_o = 2,V,p-p$</td>
<td>$G = +2, R_L = 150,\Omega$</td>
<td>45</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 4,\text{V阶跃}$</td>
<td>4,500</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 2,\text{V阶跃}$</td>
<td>5,500</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益平坦度0.1dB, $V_o = 0.2,V,p-p$</td>
<td>$G = +2, R_L = 150,\Omega$</td>
<td>0.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_o = 0.2,V,p-p, L = 150,\Omega$</td>
<td>0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益</td>
<td>$G = +2, R_L = 150,\Omega$</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 4,\text{V阶跃}$</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 2,\text{V阶跃}$</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益平坦度0.1dB, $V_o = 0.2,V,p-p$</td>
<td>$G = +2, R_L = 150,\Omega, 4,\text{V阶跃}$</td>
<td>0.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 2,\text{V阶跃}$</td>
<td>0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>增益平坦度0.1dB, $V_o = 0.2,V,p-p$</td>
<td>$G = +2, R_L = 150,\Omega, 4,\text{V阶跃}$</td>
<td>0.1</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 2,\text{V阶跃}$</td>
<td>0.2</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上升和下降时间</td>
<td>$G = +2, R_L = 150,\Omega, 4,\text{V阶跃}$</td>
<td>0.725</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$G = +2, R_L = 150,\Omega, 2,\text{V阶跃}$</td>
<td>2.5</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>分数/噪声性能</td>
<td>二次谐波 $G = +2, V_o = 2,V,p-p$</td>
<td>10 MHz</td>
<td>73</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 MHz</td>
<td>66</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 MHz</td>
<td>56</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 MHz</td>
<td>77</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 MHz</td>
<td>75</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70 MHz</td>
<td>58</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三次谐波</td>
<td>70 MHz</td>
<td>26</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 MHz</td>
<td>18</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 MHz</td>
<td>12</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>三阶交调点 (3IP) W.R.T.输出, $G = +10$</td>
<td>70 MHz</td>
<td>1.9</td>
<td>nV/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 MHz</td>
<td>1.8</td>
<td>nV/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 MHz</td>
<td>1.7</td>
<td>nV/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入电压噪声</td>
<td>$f = 10,MHz$</td>
<td>46</td>
<td>pA/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$f = 10,MHz, +In$</td>
<td>41</td>
<td>pA/Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>差分输出增益误差</td>
<td>NTSC, $G = +2, R_L = 150,\Omega$</td>
<td>0.01</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 37.5,\Omega$</td>
<td>0.02</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>差分相位误差</td>
<td>NTSC, $G = +2, R_L = 150,\Omega$</td>
<td>0.01</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 37.5,\Omega$</td>
<td>0.04</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>直流性能</td>
<td>输入失调电压</td>
<td>2</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>7</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>4</td>
<td>µV/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>50</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>150</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>75</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>150</td>
<td>µA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>90</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>250</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>170</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入特性</td>
<td>正输入</td>
<td>110</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>负输入</td>
<td>8</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>正输入</td>
<td>2.6</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>正输入</td>
<td>3.8</td>
<td>±V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{CM} = 2.5$</td>
<td>50</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>dB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出特性</td>
<td>输出电压摆幅</td>
<td>$R_L = 10,\Omega, P_{OUT} = 0.7,\text{W}$</td>
<td>±3.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>短路电流</td>
<td>150</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>静态电流</td>
<td>175</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>短路电流</td>
<td>330</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>电源</td>
<td>工作范围</td>
<td>$T_{MIN} \leq T \leq T_{MAX}$</td>
<td>+5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>静态电流</td>
<td>14</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>电源抑制比</td>
<td>$V_{CC} = 4,V$ 至 $6,V$</td>
<td>64</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 4,V$ 至 $6,V$</td>
<td>70</td>
<td>dB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

规格如有变更恕不另行通知。
技术规格

$(T_a = 25^\circ\text{C}, \ V_i = +5 \ \text{V}, \ R_i = 100 \ \Omega)$，对于R封装；$R_s = 301 \ \Omega$ ($G = +1, +2$)，$R_s = 200 \ \Omega$ ($G = +10$)。

<table>
<thead>
<tr>
<th>型号</th>
<th>条件</th>
<th>AD8009AR/JRT</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>动态性能</td>
<td>$-3 \ \text{dB}$小信号带宽，$V_o = 0.2 \ \text{V p-p}$</td>
<td></td>
<td>$G = +1, R_s = 301 \ \Omega$</td>
<td>630</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = +2$</td>
<td>430</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = +10$</td>
<td>300</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>大信号带宽，$V_o = 2 \ \text{V p-p}$</td>
<td></td>
<td>$G = +2$</td>
<td>365</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = +10$</td>
<td>250</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>增益平坦度$0.1 \ \text{dB}$，$V_o = 0.2 \ \text{V p-p}$</td>
<td></td>
<td>$G = +2, R_s = 150 \ \Omega$</td>
<td>65</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>压摆率</td>
<td></td>
<td>$G = +2, R_s = 150 \ \Omega, 4 \ \text{V阶跃}$</td>
<td>2,100</td>
<td>V/μs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1%建立时间</td>
<td>$G = +2, R_s = 150 \ \Omega, 2 \ \text{V阶跃}$</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$G = +10, 2 \ \text{V阶跃}$</td>
<td>25</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>上升和下降时间</td>
<td></td>
<td>$G = +2, R_s = 150 \ \Omega, 4 \ \text{V阶跃}$</td>
<td>0.725</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>谐波/噪声性能</td>
<td>二次谐波$G = +2, V_o = 2 \ \text{V p-p}$</td>
<td></td>
<td>10 MHz</td>
<td>-74</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 MHz</td>
<td>-67</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70 MHz</td>
<td>-48</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>三次谐波</td>
<td></td>
<td>10 MHz</td>
<td>-76</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20 MHz</td>
<td>-72</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70 MHz</td>
<td>-44</td>
<td>dBc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入电压噪声</td>
<td>$f = 10 \ \text{MHz}$</td>
<td></td>
<td>1.9</td>
<td>nV/√Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入电流噪声</td>
<td>$f = 10 \ \text{MHz}, +\ln$</td>
<td></td>
<td>46</td>
<td>pA/√Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$-\ln$</td>
<td>41</td>
<td>pA/√Hz</td>
<td></td>
</tr>
<tr>
<td>直流性能</td>
<td>输入失调电压</td>
<td></td>
<td>1</td>
<td>4</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>负输入偏置电流</td>
<td></td>
<td>50</td>
<td>150</td>
<td>±μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>正输入偏置电压</td>
<td></td>
<td>50</td>
<td>150</td>
<td>±μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入特性</td>
<td>正输入</td>
<td></td>
<td>110</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>负输入</td>
<td></td>
<td>8</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入电容</td>
<td>正输入</td>
<td></td>
<td>2.6</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输入共模电压范围</td>
<td></td>
<td>1.2至3.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>共模抑制比</td>
<td>$V_{cm} = 1.5 \ \text{V至} 3.5 \ \text{V}$</td>
<td>50</td>
<td>52</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>输出特性</td>
<td>输出电压摆幅</td>
<td></td>
<td>$R_s = 10 \ \Omega, P_{leak} = 0.7 \ \text{W}$</td>
<td>1.1至3.9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>输出电流</td>
<td></td>
<td>175</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>短路电流</td>
<td></td>
<td>330</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>电源</td>
<td>工作范围</td>
<td></td>
<td>$+5$</td>
<td>10</td>
<td>±6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>静态电流</td>
<td></td>
<td>12</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>电源抑制比</td>
<td>$V_i = 4.5 \ \text{V至} 5.5 \ \text{V}$</td>
<td>64</td>
<td>70</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

规格如有变更恕不另行通知。
AD8009

绝对最大额定值

电源电压
内部功耗
小型封装(R)
输入电压(共模)
差分输入电压
输出短路持续时间
存储温度范围(R封装)
工作温度范围(A级)
工作温度范围(J级)
引脚温度范围(焊接,10秒)

-40°C至+85°C
-40°C至+85°C
-40°C至+85°C
-40°C至+85°C

1. 注意，超出上述绝对最大额定值可能会导致器件永久性损坏。这只
是额定限值，并不能以这些条件或者在任何其它超出本技术规范操
作章节中所列的条件下推断器件能否正常工作。长期在绝对
最大额定值条件下工作会影响器件的可靠性。
2. 针对空气中的器件而言：
8引脚SOIC封装：θJA = 155°C/W。
5引脚SOT-23封装：θJA = 240°C/W。

最大功耗

AD8009安全工作的最大功耗受限于结温的升高。封装器件
的最大安全结温由塑料的玻璃化转变温度决定，约为
150°C。即便只是暂时超过此限值，由于封装对芯片作用
的应力改变，参数性能也可能发生改变。长时间超过
175°C的结温可能会导致器件失效。

虽然AD8009提供内部短路保护，但这可能不足以保证所有
情况下均不会超过最大结温(150°C)。为了确保正常工作，
必须观察最大功率减额曲线。

订购指南

<table>
<thead>
<tr>
<th>型号</th>
<th>温度范围</th>
<th>封装描述</th>
<th>封装选项</th>
<th>标识</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD8009AR</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009AR-REEL</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009AR-REEL7</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009ARZ *</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009ARZ-REEL *</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009ARZ-REEL7 *</td>
<td>-40°C至+85°C</td>
<td>8引脚SOIC</td>
<td>R-8</td>
<td></td>
</tr>
<tr>
<td>AD8009JRT-2</td>
<td>0°C至70°C</td>
<td>5引脚SOT-23</td>
<td>RT-5</td>
<td>HKJ</td>
</tr>
<tr>
<td>AD8009JRT-REEL</td>
<td>0°C至70°C</td>
<td>5引脚SOT-23</td>
<td>RT-5</td>
<td>HKJ</td>
</tr>
<tr>
<td>AD8009JRT-REEL7</td>
<td>0°C至70°C</td>
<td>5引脚SOT-23</td>
<td>RT-5</td>
<td>HKJ</td>
</tr>
<tr>
<td>AD8009JRTZ-REEL *</td>
<td>0°C至70°C</td>
<td>5引脚SOT-23</td>
<td>RT-5</td>
<td>HKJ</td>
</tr>
<tr>
<td>AD8009JRTZ-REEL7 *</td>
<td>0°C至70°C</td>
<td>5引脚SOT-23</td>
<td>RT-5</td>
<td>HKJ</td>
</tr>
<tr>
<td>AD 8009A CHIPS</td>
<td></td>
<td>芯片</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Z = 无锡器件。

警告

ESD(静电放电)敏感器件。静电电荷很容易在人体和测试设备上累积，可高达4000 V，
并可能在没有察觉的情况下放电。尽管AD8009具有专有ESD保护电路，但在遇到高能
量静电放电时，可能会发生永久性器件损坏。因此，建议采取适当的ESD防护措施，
以避免器件性能下降或功能丧失。

EW.png
TPC 1. 频率响应; $G = +1, +2, +10$, R和RT封装

TPC 2. 大信号频率响应; $G = +2$

TPC 3. 大信号频率响应与温度的关系; $G = +2$

TPC 4. 增益平坦度; $G = +2$

TPC 5. 增益平坦度; $G = +2$; $V_S = 5 \text{ V}$

TPC 6. 大信号频率响应; $G = +10$
TPC 7. 大信号频率响应与温度的关系，$G = +10$

TPC 8. 失真与频率的关系，$G = +2$

TPC 9. 失真与频率的关系，$G = +2$，$V_s = 5V$

TPC 10. 二次谐波与P_{out}的关系，$G = +10$

TPC 11. 差分增益和相位

TPC 12. 失真与频率的关系，$G = +10$
TPC 13. 三次谐波失真与P_{out}的关系, $(G = +10)$

TPC 14. 双音、三阶IMD交调与频率的关系, $G = +10$

TPC 15. 跨阻和相位与频率的关系

TPC 16. PSRR与频率的关系

TPC 17. 电流噪声与频率的关系

TPC 18. CMRR与频率的关系
AD8009

TPC 19. 输出电阻与频率的关系

TPC 20. 电压噪声与频率的关系

TPC 21. 噪声系数

TPC 22. 输入VSWR，G = +10

TPC 23. 最大输出功率与频率的关系

TPC 24. 反向隔离(S_{12})，G = +10
TPC 25. 输出VSWR, $G = +10$

TPC 26. 过驱恢复, $G = +10$

TPC 27. 2V瞬态响应, $G = +2$

TPC 28. 2V瞬态响应, $G = +2$

TPC 29. 4V瞬态响应, $G = +2$

TPC 30. 小信号瞬态响应, $G = +10$
AD8009

TPC 31. 2 V瞬态响应，G = +10

TPC 32. 4 V瞬态响应，G = +10

TPC 33. 小信号瞬态响应，V_s = 5 V，G = +2

TPC 34. 2 V瞬态响应，V_s = 5 V，G = +2

TPC 35. 小信号频率响应与寄生电容的关系

TPC 36. 小信号脉冲响应与寄生电容的关系
应用
所有电流反馈型运算放大器均受-INPUT的杂散电容影响。TPC 35和36显示了AD8009对这类电容的响应。

TPC 35显示了将一个电容与增益电阻并联可以扩展带宽。
TPC 36显示了与电容/带宽增加所对应的小信号脉冲响应。
出于实际考虑，-INPUT与GND的电容越大，则所需的Rg也越大，以便最大程度降低峰化和振铃。

RF滤波驱动器
AD8009的输出驱动能力、宽带宽和低失真特性非常适合创建可以驱动RF滤波器的增益模块。许多此类滤波器要求输
入端由50 Ω源驱动，而输出端则必须采用50 Ω电阻端接，此类滤波器才能表现出额定的频率响应。
TPC 37显示了驱动和测量滤波器频率响应的电路，这是调整至50 MHz中心频率的Wavetek 5201可调带通滤波器。HP8753D
网络提供了测量用的激励信号。分析仪具有50 Ω的源阻抗，
驱动端通过电缆接到AD8009高阻抗同相输入端的50 Ω端接。
AD8009的增益设置为+2。输出端的50 Ω串联电阻以及滤波器及其端接提供的50 Ω端接电阻产生使测量路径的总增益为
一。TPC 38的频率响应曲线图显示了通带中插入损耗为1.3 dB
且阻带中大约75 dB抑制的电路。
RGB Monitor Drivers

High-resolution computer monitors require very high bandwidth signals to achieve the best possible resolution. Driving these monitors' RGB signals typically requires a current output RAMDAC, which can directly drive 75 Ω coaxial cable. Sometimes, multiple monitors need to be driven from the same output. Each monitor's internal termination does not allow for simple parallel connection of multiple monitors. Additional buffering is required.

Figure 4 shows the connection diagram for two high-resolution monitors driven by ADV7160 or ADV7162, with ADV7160 or ADV7162 being 220 MHz (200 million pixels per second) three-channel RAMDACs. This pixel rate necessitates a driver with a full-power bandwidth at least half the pixel rate, i.e., 110 MHz. This is to provide good resolution in the worst-case scenario where adjacent pixels vary from zero to full scale.

The primary monitor is connected traditionally, with a 75 Ω termination resistor at both ends of the coaxial cable. The configuration is often referred to as “balanced,” as it uses a high output impedance current source.

For additional monitors, each RGB signal is connected to the AD8009 (gain configuration to 2) high input impedance, non-inverting input. Each output is driven by a 75 Ω serial resistor, cable and monitor terminate resistor, attenuating the output signal by a factor of two, providing a total gain of unity. This configuration is referred to as “terminated,” which is used when the driver is a low output impedance voltage source.

The termination is required to be twice the monitor's value. Balanced termination requires the output current to be twice the monitor's current value.
驱动容性负载

根据运算放大器的架构，利用运算放大器来驱动类似某些模数转换器所具有的容性负载有时可能是一大挑战。大多数问题是运算放大器的输出阻抗与其驱动电容构成的极点引起的。这会产生相移，最终使得运算放大器不稳定。

驱动电容时防止不稳定性并改善建立时间的一种方式是在运算放大器输出端和该电容之间插入一个串联电阻。反馈电阻仍然直接连接到运算放大器的输出端，而串联电阻则在容性负载与运算放大器输出端之间提供了一定的隔离。

图5显示了用AD8009驱动50 pF负载的电路。R_s=0时，AD8009电路会不稳定。增益为+2和+10时，实验发现如果将R_s设为42.2 Ω，输出端采用2 V阶跃的0.1%建立时间会降到最低。此电路的0.1%建立时间经测量为40 ns。

对于更小的负载，更小的R_s会产生最优的建立时间，而对于更大的容性负载，则需要更大的R_s。当然，电容越大，建立至给定精度所需的时间就越长；同时，由于所需的R_s增加，因此建立时间会更长。最好情况下，给定的RC组合本身将需要大约七个时间常数来建立到0.1%，因此将会达到限值，那时给定的运算放大器无法驱动过大的电容但依然满足系统要求的建立时间规格。

图5. 容性负载驱动电路
外形尺寸

8引脚标准小型封装[SOIC]（R-8）

图示尺寸单位：mm和（inch）

5引脚小型晶体管封装[SOT-23]（RT-5）

图示尺寸单位：mm
修订历史

9/04——数据手册从修订版E升级到修订版F。

<table>
<thead>
<tr>
<th>位置</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>更改“订购指南”</td>
<td>4</td>
</tr>
<tr>
<td>更改TPC 37</td>
<td>11</td>
</tr>
</tbody>
</table>

2003年3月——数据手册从修订版D升级到修订版E

<table>
<thead>
<tr>
<th>位置</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>更新了数据手册格式</td>
<td>全文更改</td>
</tr>
<tr>
<td>“产品特性”</td>
<td>1</td>
</tr>
<tr>
<td>更改图2</td>
<td>1</td>
</tr>
<tr>
<td>更改“技术规格”</td>
<td>2</td>
</tr>
<tr>
<td>从“订购指南”中删除了AD8009EB</td>
<td>4</td>
</tr>
<tr>
<td>插入新的TPC 5</td>
<td>5</td>
</tr>
<tr>
<td>插入新的TPC 9</td>
<td>6</td>
</tr>
<tr>
<td>插入新的TPC 12</td>
<td>6</td>
</tr>
<tr>
<td>插入新的TPC 33和34</td>
<td>10</td>
</tr>
<tr>
<td>更新“外形尺寸”</td>
<td>14</td>
</tr>
</tbody>
</table>