特点

- 开关速度更快、效率更高
- 使用小型电感器：4.7μH
- 均为表面贴装器件
- 占板面积仅有 0.5 平方英寸
- 极低的最小电源电压：2.7V
- 静态电流：4mA (典型值)
- 电流受限功率开关：1.5A
- 可调整电流输出或负载输出
- 关断状态下的电源电流：12μA (典型值)
- 容易与外部同步
- 8 引脚 SO 或 PDIP 封装

描述

LT®1372/LT1377 是单片高频开关稳压器，它们可工作于所有标准开关结构，包括升压、降压、反激、前馈、负输出及 "Cuk"。硅片上包括一个 1.5A 高效开关以及所有振荡器、控制与保护电路。LT1372/LT1377 的所有功能均集成在 8 引脚 SO/PDIP 封装之内。

LT1372/LT1377 的典型静态电流仅为 4mA，并且比先前的器件有更高的效率。高频开关允许使用非常小的电感器。所有表面贴装元件所占用的线路板面积还不到 0.5 平方英寸。

新的设计技术提高了灵活性，同时保持了使用简便性。开关电路易与外部逻辑电平信号同步。在校准引脚上施加逻辑低电平可将电源电流减少到 12μA。独特的误差放大器电路可调整式或负的输出电压，同时保持简单的频率补偿技术。非线性误差放大器的跨导减少了启动或过载恢复时的输出过冲。

LTC 和 LT 是凌特公司的注册商标。
LT1372/LT1377

绝对最大额定值（注1）
电源电压 ... 30V
开关电压
 LT1372/LT1377 ... 35V
 LT1372HV .. 42V
S/S引脚电压 .. 30V
反馈引脚电压（瞬态时间10ms）.............................. ±10V
反馈引脚电流 ... 10mA
负反馈引脚电压
 (瞬态时间10ms) .. 300°C
点工作温度范围
 商用型 .. 0°C至125°C
 工业型 .. -40°C至125°C
短路 ... 0°C至150°C
贮存温度范围 .. -65°C至150°C
引脚温度 (焊接时间10秒) 300°C

电特性
凡标注“*”表示该指标适合整个工作温度范围，否则其工作温度为

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>条件</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{REF}</td>
<td>基准电压</td>
<td>在反馈引脚测量</td>
<td>V_{C} = 0.8V</td>
<td>1.230</td>
<td>1.245</td>
<td>1.260</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.225</td>
<td>1.245</td>
<td>1.265</td>
</tr>
<tr>
<td>I_B</td>
<td>反馈输入电流</td>
<td>V_{FB} = V_{REF}</td>
<td></td>
<td>250</td>
<td>550</td>
<td>900</td>
</tr>
<tr>
<td>I_{FB}</td>
<td>反馈电流调整</td>
<td></td>
<td>2.7V = V_{FB} = 25V · V_{C} = 0.8V</td>
<td></td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>反馈基准电压</td>
<td>在反馈引脚测量</td>
<td></td>
<td>-2.540</td>
<td>-2.490</td>
<td>-2.440</td>
</tr>
<tr>
<td></td>
<td></td>
<td>在反馈引脚开路</td>
<td></td>
<td>-2.570</td>
<td>-2.490</td>
<td>-2.410</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-45</td>
<td>-30</td>
<td>-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>反馈电流调整</td>
<td>2.7V = V_{FB} = 25V · V_{C} = 0.8V</td>
<td></td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔI_C</td>
<td>ΔI_C = 25A</td>
<td></td>
<td>1100</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>700</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1400</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>高电平</td>
<td>V_{FB} = 150mv · V_{C} = 1.5V</td>
<td></td>
<td>1.70</td>
<td>1.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>低电平</td>
<td>V_{FB} = 1.5V</td>
<td></td>
<td>0.25</td>
<td>0.40</td>
</tr>
<tr>
<td>A_{V}</td>
<td>电隙放大器增益</td>
<td></td>
<td>500</td>
<td></td>
<td>500</td>
<td>V/V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>电隙放大器增益</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{C}</td>
<td>开关温度</td>
<td>占空比 = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

对于具有更宽工作温度范围的器件，请向该公司的技术支持部门查询。

* 对于具有数据编号（Date Code）9552 以前的器件，其额定最大工作温度为 100°C。
电特性
凡标注●表示该指标适合整个工作温度范围，否则其工作温度为 $T_A = 25^\circ C$，$V_{IN} = 5V$，$V_C = 0.6V$，$V_{FB} = V_{REF}$，V_{SW}，S/S及 NFB 引脚为开路，除非特别说明。

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>条件</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>最大开关占空比</td>
<td>●</td>
<td>65</td>
<td>95</td>
<td>95</td>
<td>%</td>
</tr>
<tr>
<td>min</td>
<td>开关电流限制保持时间</td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>260</td>
</tr>
<tr>
<td>B_V</td>
<td>输出开关击穿电压</td>
<td>LT1372/LT1377</td>
<td>35</td>
<td>47</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ C \leq T_J \leq 125^\circ C$</td>
<td>42</td>
<td>47</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ C \leq T_J < 0^\circ C$ (1 级)</td>
<td>40</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{GAT}</td>
<td>输出开关“导通”电阻</td>
<td>$I_{GW} = 1A$</td>
<td>0.5</td>
<td>0.8</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>I_{LIM}</td>
<td>开关电流限制</td>
<td>$V_{GAT} = 50%$</td>
<td>1.5</td>
<td>1.9</td>
<td>2.7</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{GAT} = 80%$ (注 2)</td>
<td>1.3</td>
<td>1.7</td>
<td>2.5</td>
<td>A</td>
</tr>
<tr>
<td>I_{MAX}</td>
<td>开关导通期间电流电流增量</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>I_{MOW}</td>
<td>控制电压至开关电流的可导</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>I_{MIN}</td>
<td>最小输入电流</td>
<td></td>
<td></td>
<td></td>
<td>2.4</td>
<td>2.7</td>
</tr>
<tr>
<td>I_{B}</td>
<td>电源电流</td>
<td>$2.7V \leq V_{IN} \leq 25V$</td>
<td>4</td>
<td>5.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>断开电源电流</td>
<td>12</td>
<td>30</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2.7V \leq V_{IN} \leq 25V$，$V_{SS} = 0.8V$</td>
<td>50</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$0^\circ C \leq T_J \leq 125^\circ C$</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$-40^\circ C \leq T_J < 0^\circ C$ (1 级)</td>
<td></td>
<td></td>
<td></td>
<td>μA</td>
</tr>
</tbody>
</table>

注 1：绝对最大额定值超出该指标则器件寿命可能受到影响。
注 2：占空比 DC (Duty Cycle) 在 50% 至 90% 之间，可保证的最小开关电流如下式给出：$I_{GAT} = 0.667 (2.75 - DC)$。

典型性能特征
LT1372/LT1377

典型性能特征

关断延迟和门限与温度的关系曲线

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Delay (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>10</td>
</tr>
<tr>
<td>-25</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>75</td>
<td>45</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>125</td>
<td>85</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

最小同步电压与温度的关系曲线

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>0.5</td>
</tr>
<tr>
<td>-25</td>
<td>0.6</td>
</tr>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>25</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>2.0</td>
</tr>
<tr>
<td>75</td>
<td>2.5</td>
</tr>
<tr>
<td>100</td>
<td>3.0</td>
</tr>
<tr>
<td>125</td>
<td>3.5</td>
</tr>
<tr>
<td>150</td>
<td>4.0</td>
</tr>
</tbody>
</table>

误差放大器输出电流与反馈引脚电压的关系曲线

<table>
<thead>
<tr>
<th>Feedback Pin Voltage (V)</th>
<th>Error Amplifier Output Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-100</td>
</tr>
<tr>
<td>0.1</td>
<td>-50</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>0.3</td>
<td>50</td>
</tr>
<tr>
<td>0.4</td>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
<td>150</td>
</tr>
<tr>
<td>0.6</td>
<td>200</td>
</tr>
<tr>
<td>0.7</td>
<td>250</td>
</tr>
<tr>
<td>0.8</td>
<td>300</td>
</tr>
<tr>
<td>0.9</td>
<td>350</td>
</tr>
<tr>
<td>1.0</td>
<td>400</td>
</tr>
</tbody>
</table>

S/S引脚输入电流与电压的关系曲线

<table>
<thead>
<tr>
<th>S/S Pin Voltage (V)</th>
<th>Input Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0</td>
<td>-20</td>
</tr>
<tr>
<td>-4.0</td>
<td>-15</td>
</tr>
<tr>
<td>-3.0</td>
<td>-10</td>
</tr>
<tr>
<td>-2.0</td>
<td>-5</td>
</tr>
<tr>
<td>-1.0</td>
<td>0</td>
</tr>
<tr>
<td>0.0</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
</tr>
<tr>
<td>2.0</td>
<td>15</td>
</tr>
<tr>
<td>3.0</td>
<td>20</td>
</tr>
<tr>
<td>4.0</td>
<td>25</td>
</tr>
<tr>
<td>5.0</td>
<td>30</td>
</tr>
</tbody>
</table>

开关频率与反馈引脚电压的关系曲线

<table>
<thead>
<tr>
<th>Feedback Pin Voltage (V)</th>
<th>Switching Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>50</td>
</tr>
<tr>
<td>0.1</td>
<td>45</td>
</tr>
<tr>
<td>0.2</td>
<td>40</td>
</tr>
<tr>
<td>0.3</td>
<td>35</td>
</tr>
<tr>
<td>0.4</td>
<td>30</td>
</tr>
<tr>
<td>0.5</td>
<td>25</td>
</tr>
<tr>
<td>0.6</td>
<td>20</td>
</tr>
<tr>
<td>0.7</td>
<td>15</td>
</tr>
<tr>
<td>0.8</td>
<td>10</td>
</tr>
<tr>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

误差放大器跨导与温度的关系曲线

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Transconductance (μS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>1000</td>
</tr>
<tr>
<td>-25</td>
<td>1100</td>
</tr>
<tr>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>25</td>
<td>1300</td>
</tr>
<tr>
<td>50</td>
<td>1400</td>
</tr>
<tr>
<td>75</td>
<td>1500</td>
</tr>
<tr>
<td>100</td>
<td>1600</td>
</tr>
<tr>
<td>125</td>
<td>1700</td>
</tr>
<tr>
<td>150</td>
<td>1800</td>
</tr>
</tbody>
</table>

Vc引脚门限和高阈位电压与温度的关系曲线

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Vc (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>1.0</td>
</tr>
<tr>
<td>-25</td>
<td>1.1</td>
</tr>
<tr>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>1.3</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
</tr>
<tr>
<td>75</td>
<td>1.5</td>
</tr>
<tr>
<td>100</td>
<td>1.6</td>
</tr>
<tr>
<td>125</td>
<td>1.7</td>
</tr>
<tr>
<td>150</td>
<td>1.8</td>
</tr>
</tbody>
</table>

反馈输入电流与温度关系曲线

<table>
<thead>
<tr>
<th>Feedback Pin Current (μA)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100</td>
<td>0</td>
</tr>
<tr>
<td>-50</td>
<td>25</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

负反馈输入电流与温度的关系曲线

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>Feedback Pin Current (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30</td>
<td>-100</td>
</tr>
<tr>
<td>-25</td>
<td>-90</td>
</tr>
<tr>
<td>0</td>
<td>-80</td>
</tr>
<tr>
<td>25</td>
<td>-70</td>
</tr>
<tr>
<td>50</td>
<td>-60</td>
</tr>
<tr>
<td>75</td>
<td>-50</td>
</tr>
<tr>
<td>100</td>
<td>-40</td>
</tr>
<tr>
<td>125</td>
<td>-30</td>
</tr>
<tr>
<td>150</td>
<td>-20</td>
</tr>
</tbody>
</table>

Linear Technology
引脚功能

\(V_C \) **(引脚1)**: 该补偿引脚用于频率补偿, 电流限制和软启动。它是误差放大器的输出和电流比较器的输入。环路频率补偿可用连接于 \(V_C \) 引脚至地之间的一个 RC 网络来实现。

FB (引脚2): 该反馈引脚用于正输出电压检测和振荡器频率移动。它是误差放大器的反相输入。该放大器的同相输出在内部连接于一个 1.245V 基准。当 NFB 引脚被使用时, FB 引脚上的负载不应超过 250μA。参见“应用信息”部分。

NFB (引脚3): 该负反馈引脚用于负输出电压的检测。它通过一个 100kΩ电阻连接于负反馈放大器的反相输入。

S/S (引脚4): 关断与同步引脚。S/S 引脚与逻辑电平兼容，关断功能为有源低，关断延时的典型值为 1.3V。在正常工作中，可将 S/S 引脚拉高，连接于 \(V_{IN} \) 或浮置不用。在同步启动时，将 S/S 引脚驱动为 600kHz 与 800kHz 之间 (LT1372) 或 1.2MHz 至 1.6MHz 之间 (LT1377)。

\(V_{IN} \) **(引脚5)**: 使用 10μF 或更大的电容对输入电源引脚进行旁路。当 \(V_{IN} \) 降至 2.5V 以下时，该器件将进入欠压低功状态。欠压低功会停止开关操作并将 \(V_C \) 引脚拉低。

GND (引脚6): 该地检测引脚是一个“干净的”地。内部基准、误差放大器及负反馈放大器均以该地检测引脚为基准。将该引脚连接于地，保持输出电阻分压器的接地通路和 \(V_C \) 补偿网络没有大接地阻抗。

GND (引脚7): 该地引脚为功率开关的发射极连接点，并有大电流通过。它应直接连接于质量良好的地平面。

Vsw (引脚8): 该开关引脚为功率开关的集电极，并有大电流通过。要使通往开关元件的线路板走线尽量短，以最大限度减少辐射和电压尖峰。

方框图

![LT1372/LT1377方框图](image-url)
LT1372/LT1377

工作方式

LT1372/LT1377 为电流模式开关稳压器。这意味着该开关在开启时直接控制开关电流，而不是输出电压。为此，它能对输入电压的变化立即做出反应，这与电压模式开关稳压器不同。众所周知，后者的特点是动态响应比较慢。第二，它减少了开环补偿设计中的逻辑相位移动。在输入电压或输出负载条件的变化范围较大时，这意味着省略了开环补偿设计。最后，它可实现自动运行的脉冲响应时间变化的电压限制，从而使在输出数据或短路条件下提供最大的开关保护。一个低容降内部稳压器可为所有内部电路提供一个 2.3V 电源。该低容降设计允许输入电压在 2.7V 至 25V 之间变化，而实际上对器件性能没有影响。一个 500kH (LT1372) 或 1MHz (LT1377) 基准为所有内部时序的基本时钟。它通过逻辑和驱动器电路将输出开关“导通”。特殊的适应性抗饱和电路可检测功率开关的饱和情况，并通过调整驱动器电流限制开关的饱和度，从而减少了驱动器的功率，而能较快地关断开关。

一个 1.245V 非准确基准电压用于偏置误差放大器的正输入。放大器的负输入被引出，用于正输出电压的检测。误差放大器具有非线性跨导，可减少启动或过载恢复时的输出过冲。当反馈电压超过基准 40mV 时，误差放大器的跨导将增加 10 倍，从而减少输出过冲。反馈电压还引发振荡器频率的移动，有助于过载条件下保护元件。当反馈电压下降到 0.6V 以下时，振荡器频率按 5：1 减少。更低的开关频率减少了最小开关占空比，因此可对开关电流限制实施完全的控制。

独有的误差放大器电路允许 LT1372/LT1377 直接对反馈电压进行调整。负反馈放大器的 100k 源电阻被引出，用于负输出电压的检测。NFB 引脚调整于 -2.49V，同时放大器输出在内部将 FB 引脚驱动至 1.245V。这种结构采用同一误差放大器，可防止功能重复，并保持了使用的简便性。关于可在 -1.25V 调整的器件，请向凌特公司咨询。

放大器输出端产生的误差信号被引至外部输入。该引脚 (Vc) 有三个不同的功能。它可用于频率补偿、电流限值调节和软启动。在正常的稳压器工作时，该引脚处 1V (低输出电流) 和 1.9V (高输出电流) 之间的电压。误差放大器为电流输出 (gm) 类型，因此该电压可外部被箝位，以降低电流限值。同样，一个电容器耦合的外部箝位可提供软启动。如果 Vc 引脚被拉低至控制引脚门限以下，开关占空比将变为零，使 LT1372/LT1377 处于一种闲置模式。

应用信息

正输出电压的设置

LT1372/LT1377 在 FB 引脚至地之间形成一个 1.245V 基准 (VREF)。将 FB 引脚连接于一个输出电阻分压器可设定输出电压 (图1)。FB 引脚的偏置电流代表一个小误差，在 R2 的值高达 7k 时通常可以忽略。建议的 R2 值为 619k。NFB 引脚在输出应用中通常是空置。正固定电压的型号也有供应（请向凌特公司咨询）。

图1：正输出电阻分压器
应用信息

负输出电压的设置

LT1372/LT1377 在 NFB 引脚至地之间形成一个
\(-2.49\) V 基准 (V_{NFB})。将 NFB 引脚与输出电阻分压器
连接可设定输出电压 (图 2)。\(-30\mu\text{A}\) 的 NFB 引
脚偏置电流 (I_{NFB}) 可造成输出电压误差，不应被忽
视。这在图 2 的公式中被计算进去。R2 的建议值
为 2.49k。FB 引脚在负输出应用中通常空置。
参见“双极性输出电压检测”部分中有关 NFB 引脚
被使用时 FB 引脚加载的限制条件。

![图 2：负输出电阻分压器](image)

双极性输出电压检测

同时对正输出电压和负输出电压进行检测对某些应用有一些好处。一个例子是“典型应用”部分中
的“具有过压保护的双输出反激转换器”电路。每个
输出电压均使用分压器分别按上述设置。当 FB
和 NFB 引脚都被使用时，LT1372/LT1377 将防止各个输出超
出预设的输出电压。比如在这种应用中，如果正输出
的负载比负输出更大，那么负输出将更大并调整
在所希望的预设点电压。正输出会稍微低于其预设
点电压。该技术可防止所有输出在无负载时无法调
整而失真。请注意：在 NFB 引脚被使用时，FB 引脚
上的负载不应超过 200μA。这种情况下发生于电阻分压
器一个用于 FB 和 NFB 时。FB 上的真正负载并不是
分压器的全部电流，除非正输出与地短接。请参考
双输出反激转换器的应用。

关断与同步

双功能 SS 引脚提供简便的关断与同步。它是逻
应用信息

电感的选择

对于大多数应用，电感值在2.2μH至22μH的范围内。选择低电感值可减少电感器的尺寸。较大的电感值允许更大的输出电流，因为它们可降低功率开关所承受的电流峰值，它的限值为1.5A。较大的电感值还会减少输入纹波电压及磁芯损耗。

当选择电感器时，你必须考虑以下众多因素：最大负载电流、磁芯与铜线损耗、元器件允许高度、输出电压纹波、EMI、电感器中的故障电流、饱和，当然还有成本。建议采用以下步骤来处理这些既复杂又相互矛盾的要求：

1. 假定一个升压转换器的平均电感电流等于负载电流乘上VOUT/VIN，并确定电感是否必须承受连续的过载条件，比如，如果在最大负载电流下平均电感电流为0.5A，那么0.5A的电感器可能无法承受连续的1.5A过载条件。还应注意升压转换器没有短路保护，并且在输出短路条件下，电感电流仅受限于电源的电流限制。

2. 计算全负载电流下的峰值电感电流，以确保电感器不会饱和。峰值电流可能比输出电流高出很多，特别是在电感体积较小，并且负载较轻的时候，因此不能省略这一步骤。因为铁粉磁性是湿包和，因此不可能被考虑使用；而铁氧体磁芯则会突然饱和，其它磁芯材料则介于两者之间。下面的公式假定了连续工作模式，但在断续模式下仅在高端出现轻微的误差，因此可用于所有条件。

 $I_{PEAK} = I_{OUT} \times \frac{V_{OUT}}{V_{IN}} + \frac{V_{IN}(V_{OUT} - V_{IN})}{2(t(L/L)(V_{OUT})}$

 $V_{IN} = \text{最小输入电压}$

 $f = 500kHz \text{ 开关频率 (LT1372) 或 } 1MHz \text{ 开关频率 (LT1377)}$

3. 确定设计是否能够接受一个“开放式”的磁芯形状，比如磁条或磁环，它们有高的磁场辐射，或者是否需要闭合式的磁芯(如磁环)，以防止EMI问题。比如，在磁性存储介质的旁边就不能采用开放式磁芯！这是一个艰难的决定，因为磁条或磁环既便宜又小巧，并且当磁芯辐射是一个问题时，无法找到有用的指引来计算。

4. 开始选择在磁芯形状、峰值电流(避免饱和)、平均电流(限制发热量)以及故障电流等条件符合要求的电感器。如果电感器过热，绕组中的绝缘层会熔化，造成绕组各匝之间的短路。记住：所有美好的事情，如高效率、低高度及高工作温度都是以成本为代价的，有时代价还非常昂贵。

5. 在作出初步选择之后，再考虑第二类因素，如输出电压纹波、其它可用供应商等。如果你对最终的选择犹豫不决，请咨询凌特公司应用部门的专家。他们对于范围广泛的电感器类型都有丰富的经验，可告诉您有关低高度、表面贴装等方面的最新进展。

输出电容器

输出电容器通常根据其有效串联电阻(ESR)来选择，因为这是决定输出纹波电压的因素。在500kHz，任何有极性的电容器在本质上都呈现一定的电阻。要获得低ESR则必须牺牲体积，因此体积较小的电容器在ESR方面较高。LT372与LT377典型应用的ESR范围在0.05Ω至0.5Ω之间。一个典型的输出电容器是AVX类型的TAP，25V时为22μF，其ESR保证低于0.2Ω。这是一种“D”尺寸的表面贴装固态钽电容器，TAP电容器在特别的制造与测试，具有低ESR，因此电容在给定体下具有最低的ESR，为进一步减少ESR，可并联使用多个输出电容器，微法电容值并不特别关键的因素，从22μF至500μF以上的容量都工作得很好，但在对ESR方面的天性不能逃离，如果你找到一个小巧的22μF固态钽电容器，它有高ESR，输出纹波电压会大得惊人。表1列出某些典型的表面贴装固态钽电容器的性能。
应用信息

表1：表面贴装固态钽电容器的 ESR 与纹波电流

<table>
<thead>
<tr>
<th>形尺寸</th>
<th>ESR (最大Ω)</th>
<th>纹波电流 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVX TPS, Sprague 593D</td>
<td>0.1 至 0.3</td>
<td>0.7 至 1.1</td>
</tr>
<tr>
<td>AVX TAJ</td>
<td>0.7 至 0.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

当电池或高容值电源“带电”连接时，输入电容器会出现极高的浪涌电流。在这种条件下，固态钽电容器会缺失。数家制造商已开发出一系列专门经过了耐受力测试的固态钽电容器 (比如 AVX TPS 系列)，但若这种元件在输入电压接近电容器的最大电压额定值时也可能失效。AVX 建议在高浪涌应用中将电容器的电压值按 2:1 增加。陶瓷和铝电解电容器亦可使用，它们对启动浪涌电流有高的承受能力。

陶瓷电容器

容值更高、成本更低的陶瓷电容器现在有更小的外形尺寸出现，由于它们具有极低的 ESR，因此对开关整流器较为适用。但遗憾的是，由于它们的 ESR 过低，可能带来环路稳定性方面的问题。固态钽电容器的 ESR 在5kHz 至50kHz 之间产生一个环路“零”，它能够有效地提供一个可接受的环路相位余量。陶瓷电容器在300kHz 以上仍表现为容性，并且在 ESR 有效之前通常其与 ESL 形成共振。它们用于输入旁路还是合适的，因为它们具有高的纹波电流额定值及启动浪涌电流耐受力。凌特公司计划在不远的将来发表一个有关陶瓷电容器使用方法的“设计要点”。

输入电容器

升压转换器的输入电容器比较不重要，这是由于输入电流波形为三角波，并不象输出电容器那样包含大的方波电流。电容器在10μF 至100μF 的范围和 ESR 为 0.3Ω 或更小时可在全幅1.5A 开关电流下良好工作。在低开关电流时，ESR 较高的电容器也可接受。升压转换器的输入电容器纹波电流为:

\[
I_{\text{ripple}} = \frac{0.3(V_{\text{IN}})(V_{\text{OUT}} - V_{\text{IN}})}{(f)(L)(V_{\text{OUT}})}
\]

\[
f = 500kHz \text{ 开关频率 (LT1372) 或, } 1MHz \text{ 开关频率 (LT1377)}
\]

输出二极管

输出二极管 (D1) 建议使用一个1N5818 肖特基二极管，或 Motorola 的对等型号MBR130。它的额定值为 1A 平均正向电流和 30V 反向电压。1A 电流下典型正向电压为 0.42V。该二极管仅在开关关闭期间有电流流过。用于升压转换器的峰值反向电压等于稳压器的输出电压。在正常工作时平均正向电流等于输出电流。
频率补偿

环路频率补偿是在误差放大器的输出端（VC 引脚）利用一个串联 RC 网络来进行的。其主要网络极
是由串联电阻和误差放大器输出阻抗（\(\approx 500 \text{ \Omega} \)）构成的。极的频率在 2Hz 至 20Hz 范围内。串联电阻在
1kHz 至 5kHz 之间产生一个“零”，这改善了环路稳定性与瞬态响应。通常在体积上为主补偿电容器十分
之一的第二个电容器，有时也用来降低 VC 引脚上的
开关频率纹波。VC 引脚上的纹波是输出电压纹波经
输出分压器衰减再经误差放大器增倍后形成的。若
无第二个电容器，VC 引脚纹波则为：

\[V_C \text{ 引脚纹波} = \frac{1.245(V_{ripple})(g_m)(R_C)}{V_{OUT}} \]

\[V_{ripple} = \text{输出纹波} (V_{OP}) \]

\[g_m = \text{误差放大器跨导} \]

\[R_C = \text{VC 引脚的串联电阻} \]

\[V_{OUT} = \text{DC 输出电压} \]

为防止出现异常的开关操作，VC 引脚纹波应被
控制在 50mV_{OP} 以下。最大的 VC 引脚纹波发生在最
大输出负载电流的情况下，并且在使用质量较差的
（高 ESR）输出电容器时更是雪上加霜。在 VC 引脚上
增加一个 0.0047\mu F 电容器可将开关频率纹波减少到
仅数个毫伏。采用低 R_C 值也可减少 VC 引脚纹波，
但环路相位余量则不够充裕。

开关节点的考虑

为获得最大效率，开关的上升和下降时间要尽
量短。为防止辐射和高频共振等问题，连接于开关
节点的元器件布局尤为关键。将输出二极管、开关
引脚及输出旁路电容器引脚设计得尽量短，这样可
最大限度地减少 B 垍 (磁场) 辐射。将连接于开关引
脚的所有走线长度和面积做得尽量短至可将 E 垍辐
射控制在低水平上。在开关电路之下必须设有地平
面，以防止各层之间的耦合。

高速开关电流的通路如图 3 的原理图所示。该
通路中的最短引线长度极为重要，可保证洁净的开
关操作和低 EMI，包括开关、输出二极管和输出电
容器在内的通路是唯一具有纳秒级上升和下降时间
的通路，要使该通路尽量短。

更多的帮助

要获得关于开关稳压器电路的更多详细资料，
请参阅“应用指南 19 (Application Note 19)”。凌特公
司还提供一个电子软件程序 SwitcherCAD，用于帮助
设计开关转换器。此外，我们的应用部门也愿意随
时提供帮助。
典型应用

具有直接反馈的正电压至负电压转换器

具有过压保护的双输出反激转换器

低纹波 5V 至 -3V “Cuk” 升压

90% 高效 CCFL 电源

由凌特公司提供的资料均视为准确可靠，但本公司不对此应用承担责任。如果使用此所描述的电路侵犯了相关专利权，则与本公司无关。
LT1372/LT1377

典型应用

双锂离子电池至5V的SEPIC转换器

封装描述 尺寸单位为英寸（毫米），除非特别说明

N8封装
8引脚PDP (窄0.300)
(LTC DWG #05-08-1510)

S8封装
8引脚塑料小外形 (窄0.150)
(LTC DWG #05-08-1610)

相关器件

<table>
<thead>
<tr>
<th>型号</th>
<th>描述</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT1370</td>
<td>高效率DC/DC转换器</td>
<td>42V·6A·500kHz开关</td>
</tr>
<tr>
<td>LT1767</td>
<td>1.5A·1.25MHz降压开关稳压器</td>
<td>3V至25V输入，VREF=1.2V，可同步至2MHz，MSOP封装</td>
</tr>
<tr>
<td>LT1774</td>
<td>高效率降压开关稳压器</td>
<td>25V·4.5A·500kHz开关</td>
</tr>
<tr>
<td>LTC1373-1</td>
<td>带电源良好引脚的高效率降压控制器</td>
<td>输出短路保护，16引脚SSOP和SO-8封装</td>
</tr>
<tr>
<td>LTC3402</td>
<td>单节电池、大电流(2A)、微功耗同步3MHz升压型DC/DC转换器</td>
<td>VIN=0.7V至5V，高达95%效率可同步振荡器从100kHz至3MHz</td>
</tr>
</tbody>
</table>