

AD421&AD5421 常见问题解答

编写	CAC(P)		
时间	2013/07/07		
版本	V2.0		

声明

Analog Devices 公司拥有本文档及本文档中描述内容的完整知识产权(IP)。Analog Devices 公司有权在不通知读者的情况下更改本文档中的任何描述。如果读者需要任何技术帮助,请通过 china.support@analog.com 或免费热线电话 4006-100-006 联系亚洲技术支持中心团队。其他技术支持资料以及相关活动请访问以下技术支持中心网页http://www.analog.com/zh/content/ADI_CIC_index/fca.html

Analog Devices, Inc.

版本历史

版本	日期	作者	描述
1.0	2008/9/5		文档建立
2.0	2013/7/7	CAC(P)	增加章节 1.2 参考资料
			增加章节 2.2 参数
			增加章节 3.10~3.20
			增加了 3.1 中的 AD5421 内容
			增加了 3.3 中的 AD5421 内容
			增加了 3.6 中的 AD5421 内容

目录

版本历史
目录
第1章 简介4
1.1 产品简介4
1.2 参考资料4
第2章 原理简介5
2.1 原理5
2.2 参数6
第3章 常见应用问题解答7
3.1 电流环路的回路是不是必须和 AD421 或者 AD5421 分开?7
3.2 数据手册中提供的 FET 管很难买到,有没有其他的能替代呢?7
3.3 我该如何通过单片机来控制 AD421 和 AD5421 的编程?8
3.4 为什么 AD421 的电流输出和我编程的值不相符?
3.5 如果我想让 AD421 提供超过 20mA 的电流,可以么?
3.6 当 AD421 或者 AD5421 给别的器件供电,为什么环路电流会变得不准?
3.7 如何用 AD421 来构建一个电流源?13
3.8 FET 管脚该如何与 AD421 连接?14
3.9 为什么 DN2540 很容易被损坏?14
3.10 电流环上的电流,7-20mA 时,测得的数据基本和设定值一样。但 7mA 以下,误差很
大,5mA 输出时,实际测得为 6.5mA。为什么?14
3.11 可否用一个电源给两个 AD421 来提供环路电源?14
3.12 采用下面的电路图,这里光耦型号为 4N28,发现当上拉电阻为 4.7k 时输出电流不正
确,而当上拉电阻为 10k 时,输出电流正确。为什么?16
3.13 AD421 评估板原理图中,28F0195-100 是用于 EMI 抑制的,是否有其他替代器件推
荐?17
3.14 ADI 公司还推出可以替代 AD421 或者与其类似的产品么?
3.15 AD421 与 AD5421 的区别?18
3.16 如果环路供电的系统中,外围器件的功耗需求会大于 3.25mA/3.15mA,是否有什么方
法来解决二者之间矛盾?19
3.17 如何确定环路供电的传输电缆长度?19
3.18 为何芯片有时发热比较厉害,芯片功耗与芯片的工作电压、电流以及温度间有什么关系?
19
3.19 使用万用表测量电流值正确,而使用示波器时测量的电流值不准确?20
3.20 AD5421 无 CS 引脚,是否可以使用 SYNC 当做 CS 管脚使用?20

第1章 简介

1.1 产品简介

AD421 是 ADI 公司推出的一种单片高性能数模转换器(DAC)。它由电流环路供电,16 位数字信号串行输入,4~20 mA 电流输出,完全符合设计智能变送器的工业控制标准信号输出要求,可实现远程智能工业控制。它内部含有电压调整器,可提供+5V,+3.3V或+3V输出电压,可为其自身或其他电路使用。AD421 采用 Σ Δ DAC 结构,保证 16 位的分辨率和单调性,其积分线性误差为±0.001%,增益误差为±0.2%。AD421 支持 HART通信协议。标准三线串行接口可在 10 Mbit / s 下运行,便于与微处理器或微控制器相连。

AD5421 是 AD421 的升级版本,也是一款完整的环路供电型 4 mA-20 mA 数模转换器 (DAC),专为满足工业控制领域智能变送器制造商的需求而设计。相比 AD421,其拥有更好的精度、温度范围以及工作电压范围。AD5421 内置一路稳压输出,用于为自身及变送器中的其它器件供电。此调节器提供 1.8 V 至 12 V 的调节输出电压。该器件还内置 1.22 V 和 2.5 V 基准电压源,因而不需要分立调节器和基准电压源。AD5421 可以结合标准 HART® FSK 协议通信电路使用,而且额定性能不会受到影响。高速串行接口能够以 30 MHz 速率工作,并且允许通过一个 SPI 兼容型三线式接口与常用的微处理器和微控制器简单相连。AD5421 保证 16-bit 单调性。典型条件下,积分非线性为 0.0015%,失调误差为 0.0012%,增益误差为 0.0006%。

1.2 参考资料

参考资料:

CN0278 具有额外电压输出能力的完整 4 mA 至 20 mA HART 解决方案: http://www.analog.com/zh/circuits-from-the-lab/cn0278/vc.html.

UG-250Evaluation Boardfor 16-Bit, Serial Input, Loop-Powered4 mA to 20 mA DAC: http://www.analog.com/zh/digital-to-analog-converters/da-converters/ad5421/products/EVAL-AD5421/eb.html

CN0267 具有 HART 接口的完整 4 mA 至 20 mA 环路供电现场仪器: http://www.analog.com/zh/circuits-from-the-lab/CN0267/vc.html.

AN-534 具有额外电压输出能力的完整 4 mA 至 20 mA HART 解决方案: http://www.analog.com/static/imported-files/application_notes/AN-534.pdf

第2章 原理简介

2.1 原理

AD421 主要由电压调整器、数模转换器和电流放大器组成,其功能框图如图 2-1 所示。电压调整器由一个运放、带隙基准和外接耗尽型 FET 管构成。DAC 输出电压,这个电压通过一个运算放大器和 NPN 型晶体管来设置流过 LOOP RTN 管脚的电流。通过对 NPN 晶体管控制使通过 40 Ω 电阻的电压等于 80K Ω 电阻上的电压。BOOST 管脚一般与 VCC 相连。当 DAC 输入代码从 0 到满量程(全 1)时,从 NPN 晶体管输出的电流及整个电流环电流可以从 4 mA 变化到 20 mA.。

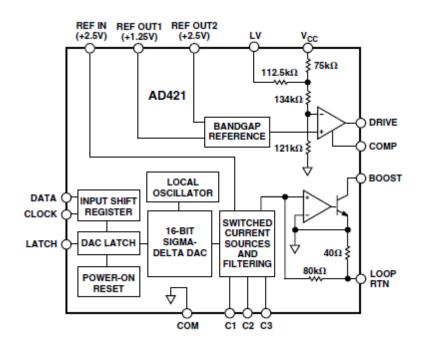


图 2-1 AD421 功能框图

AD5421 的主要结构与 AD421 类似,但内置一路稳压输出,用于为自身及变送器中的 其它器件供电。

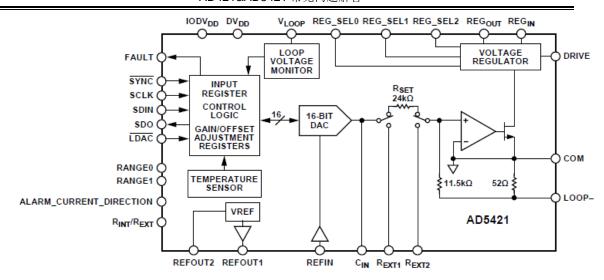


图 2-2 AD5421 功能框图

2.2 参数

下面介绍有关芯片的重要参数。

TUE 总不可调整误差: 总不可调整误差(TUE)衡量总输出误差,最大 TUE 包括 INL 误差、失调误差、增益误差和整个温度范围内的输出漂移。TUE 用%FSR 表示。对于 AD421,在 25 ℃条件下其 TUE 为±0.2%FSR; AD5421 在 25 ℃条件下,其 TUE 为± ±0.041 %FSR。

环路顺从电压裕量:环路顺从电压裕量是指输出电流与编程值相等情况下 LOOP-与 REGIN 引脚之间的最小电压。

输出温度系数(TC): 输出 TC 衡量 12 mA 输出电流随温度的变化,用 ppm FSR/℃表示。

基准电压温度系数(TC): 基准电压 TC 衡量基准输出电压随温度的变化。它利用黑盒法计算,即将 TC 定义为基准输出电压在给定温度范围内的最大变化,用 ppm/°C 表示,

计算公式如下:
$$TC = (\frac{V_{REF_{MAX}} - V_{REF_{MIN}}}{V_{REF_{NOM}} \times Temp_{Range}}) \times 10^6$$

其中:

VREF_MAX 是在整个温度范围内测得的最大基准输出电压。

VREF_MIN 是在整个温度范围内测得的最小基准输出电压。

VREF NOM 是标称基准输出电压 2.5 V。

Temp_Range 为额定温度范围。

第3章 常见应用问题解答

下面按顺序对 FAQ 进行详细的叙述。其中标题为问题的叙述,标题以下的正文为问题的详细解答。

3.1 电流环路的回路是不是必须和 AD421 或者 AD5421 分开?

是的,下图 3-1 是 AD421 的电流环路示范,电流的环路必须是浮地,否则电流环路将无法形成。此环路同样适用于 AD5421。

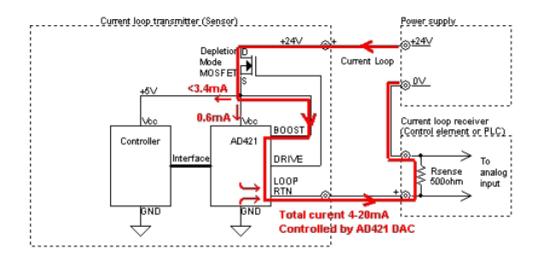


图 3-1 环路供电整体电流流向

3.2 数据手册中提供的 FET 管很难买到, 有没有其他的能替代呢?

AD421 对 FET 管的需求如下图

FET Type	N-Channel Depletion Mode
I_{DSS}	24 mA min
$\mathrm{BV}_{\mathrm{DS}}$	$(V_{LOOP} - V_{CC})$ min
V _{PINCHOFF}	V _{CC} max
Power Dissipation	$24 \text{ mA} \times (V_{LOOP} - V_{CC}) \text{ min}$

图 3-2 FET 的参数需求

您可以参考 FET 管的数据手册,只要上面几个参数符合要求的都可以替换。您也可以 参考下面的表格进行选择

表 3-1 FET 数据参考手册

.	BV _{DSX}	R _{DS(ON)}	V _{GS(off)}		I _{DSS} @ V	' _{GS} = 0V	SOT-23	TO 02	TO 220	COT 00	
Device Number	Min	Max /	Min V	Max V ▲▼	Min mA	Max mA ▲▼		10-92	△ ▼	\$01-89	Notes
DN2530	250 V	12 Ohm	-1 V	-3.5 V	200 mA			*		*	1, 2
DN2535	350 V	25 Ohm	-1.5 V	-3.5 V	150 mA			*	*		1, 2
DN2540	400 V	25 Ohm	-1.5 V	-3.5 V	150 mA			*	*	*	1, 2
DN3125	250 V	20 Ohm	-1.5 V	-3.5 V	300 mA						2
DN3135	350 V	35 Ohm	-1.5 V	-3.5 V	180 mA		*			*	2
DN3145	450 V	60 Ohm	-1.5 V	-3.5 V	120 mA					*	2
DN3525	250 V	6 Ohm	-1.5 V	-3.5 V	300 mA					*	2
DN3535	350 V	10 Ohm	-1.5 V	-3.5 V	200 mA					*	2
DN3545	450 V	20 Ohm	-1.5 V	-3.5 V	200 mA			*		*	2
LND150	500 V	1000 Ohm	-1 V	-3 V	1 mA	3 mA		*		*	2
LND250	500 V	1000 Ohm	-1 V	-3 V	1 mA	3 mA	*				2

3.3 我该如何通过单片机来控制 AD421 和 AD5421 的编程?

AD421& AD5421 使用 SPI 3 线通讯,和 MCU 的连接可以参考下面的图,通讯的隔离可以使用光耦,也可以使用 ADI 推出的 ADUM 系列隔离器件,比如 ADuM1400,ADuM144X。

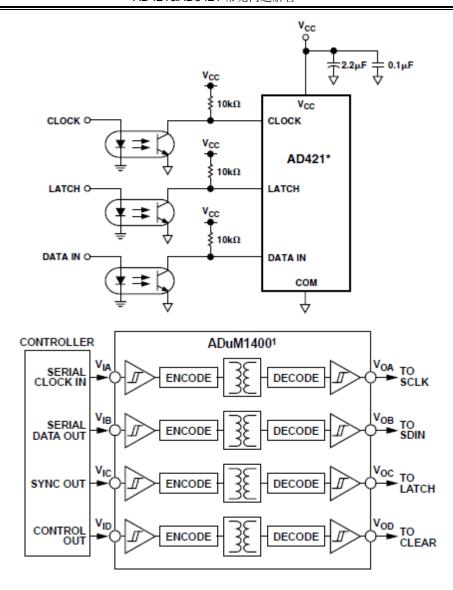


图 3-3 AD421&AD5421 隔离电路

AD421 系统的时序参考下面的时序图 3-4,需要注意的是,您必须保证两个 Latch 的脉冲之间恰好有 16 个系统时钟,否则 AD421 会进入 Alarm Current 模式。

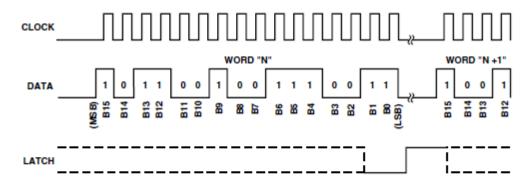


Figure 1. Serial Interface Waveforms (Normal Data Load)

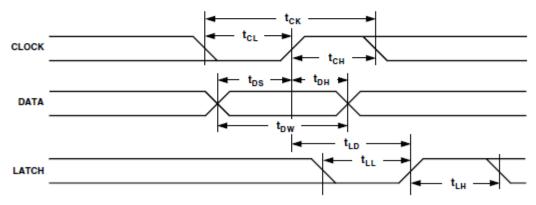


Figure 2. Serial Interface Timing Diagram

图 3-4 AD421 时序图

我们同时提供 AD421 的参考程序,可以供您参考。

AD5421 的时序参考下图 3-5,注意如果 MCU 与 AD5421 之间的超过一定的时间没有通信,则环路电流进入报警状态。

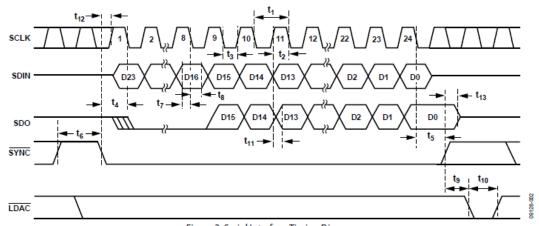


Figure 2. Serial Interface Timing Diagram

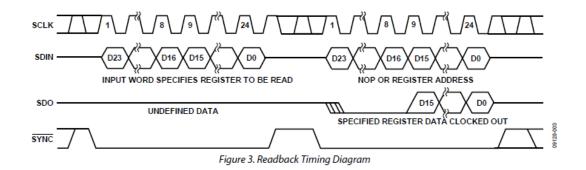


图 3-5 AD5421 时序图

我们同时提供 AD5421 的参考程序,可以供您参考。

3.4 为什么 AD421 的电流输出和我编程的值不相符?

AD421 除了电流编程模式,还有 Alarm current 模式,如果您发现输出的电流不对,请您首先检查您的程序时序是否正确的写入了寄存器,同时检查下两个 LATCH 的脉冲之间是否超过了 16 个系统时钟,如果超过了 16 个,那么 AD421 会默认进入 Alarm current模式,这种模式下输出电流和控制码的对照如下图。

代码	输出电流
0 0011 1000 0000 0000	3.5 mA
0 0011 1100 0000 0000	3.75 mA
0 0100 0000 0000 0000	4 mA
0 1000 0000 0000 0000	8 mA
1 0000 0000 0000 0000	16 mA
1 0100 0000 0000 0000	20 mA
1 0110 0000 0000 0000	22 mA
1 1000 0000 0000 0000	24 mA

图 3-6 报警电流工作模式下的理想输入/输出代码表

下图的时序是当 LATCH 脉冲之间的超过 16 个时钟周期情况下的时序图。不管两个 LATCH 之间有多少个时钟周期,只有最后 17 个对 AD421 的输出有影响。

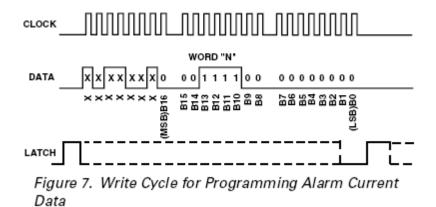


图 3-7 AD421 的时序图

3.5 如果我想让 AD421 提供超过 20mA 的电流, 可以么?

AD421 在 Alarm current 模式可以提供 3.5mA 到 24mA 的电流范围,请参考上面的问题。

3.6 当 AD421 或者 AD5421 给别的器件供电,为什么环路电流会变得不准?

请检查 AD421 VCC 同时供给其他器件的电流,如果超过 3.25mA,就可能会有这种情况,

VOLTAGE REGULATOR			
Output Voltage (V _{CC})			
3 V Mode	2.95/3.05	V min/V max	3 V Nominal. LV Pin Connected to V _{CC}
3.3 V Mode	3.25/3.35	V min/V max	3.3 V Nominal. LV Pin Connected Through 0.01 µF to VCC
5 V Mode	4.95/5.05	V min/V max	5 V Nominal. LV Pin Connected to COM
Externally Available Current	3.25	mA min	Assuming 4 mA Flowing in the Loop
Line Regulation	1	μV/V typ	
Load Regulation	15	μV/mA tvp	

图 3-8 AD421 环路电流的要求

AD5421 同样存在这样的问题,对于 AD5421,可以提供给外围器件的电流值为 3.15mA。

DV _{DD} OUTPUT					Can be overdriven up to 5.5 V
Output Voltage	3.17	3.3	3.48	V	
Externally Available Current ^{3,6}	3.15			mA	Assuming 4 mA flowing in the loop and during HART communications

图 3-9 AD5421 环路电流的要求

3.7 如何用 AD421 来构建一个电流源?

是可以的。您需要参考下面的电路图,AD421 的编程的电流 IPROG 会在 R1 上产生一个电压,因为运放的原理,同相端和反向端电压相同,所以 R2 上端的电压会跟 LOOP_RTN 的电压相同,从而也会产生一个电流,电流的大小为 $IPROG \times R1/R2$,那么整个流过负载的电压为 $IL=[1+R1/R2]\cdot IPROG$ 。您只需要选择精密的电阻就可以来控制这个精密的电流源

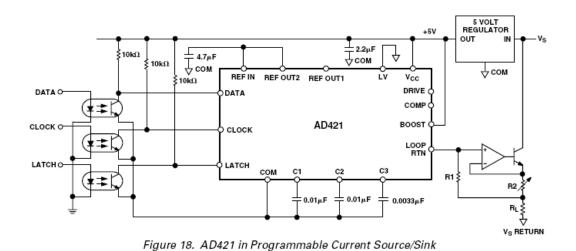


图 3-10 使用 AD421 构建电流源

3.8 FET 管脚该如何与 AD421 连接?

具体的连接请参考如下图。与 Vcc 连接的管脚为源极,与环路连接的管脚为漏极。

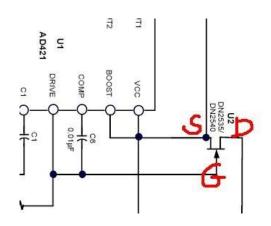


图 3-11 FET 的 3 个管脚排列

3.9 为什么 DN2540 很容易被损坏?

MOS 管是比较容易被静电击穿而损坏的器件,在器件购买和焊接时要注意做好静电保护。

3.10 电流环上的电流, 7-20mA 时, 测得的数据基本和设定值一样。但 7mA 以下, 误差很大, 5mA 输出时, 实际测得为 6.5mA。为什么?

如果系统中有其他芯片用 AD421 的 VCC 来供电,那么要保证这些芯片的功耗不能 超过 AD421VCC 的供电能力范围(4mA 输出时,VCC 能提供 3.25mA 的电流)。本例中,单片机的平均耗电在 6mA 左右,当 AD421 输出电流较低时(比如 5mA),VCC 不能提供 6mA 的电流给外部芯片,会导致芯片精度下降。在把功耗降低到 1mA 左右时,AD421 的输出变得很准确。

环路供电的变送器以及其外围器件有严格的功耗要求,低功耗是一个重要的参数。对于 AD421 其外围电路的功耗要求为不大于 3.25mA; AD5421 的外围器件的功耗要求为不大于 3.15mA。

3.11 可否用一个电源给两个 AD421 来提供环路电源?

可以。如下图所示,红线和蓝线分别为两个 AD421 环路。注意两个 AD421 的 COM

(GND1和GND2)端不能短路。

这种方法也可以扩展到多个 AD421 的应用上,同时 AD5421 也适用这种应用方法。

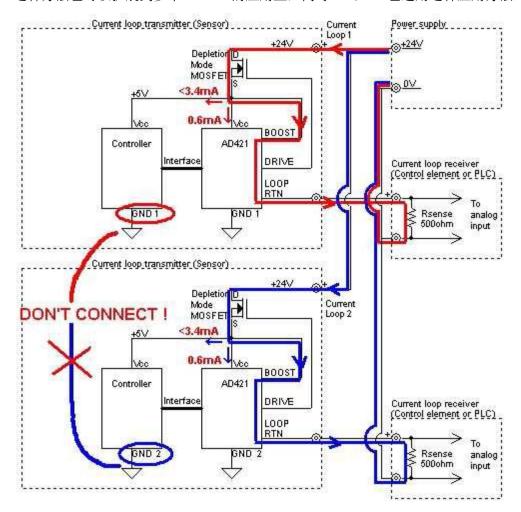


图 3-12 两个 AD421 的连接

3.12 采用下面的电路图,这里光耦型号为 4N28,发现当上拉电阻为 4.7k 时输出电流不正确,而当上拉电阻为 10k 时,输出电流正确。为什么?

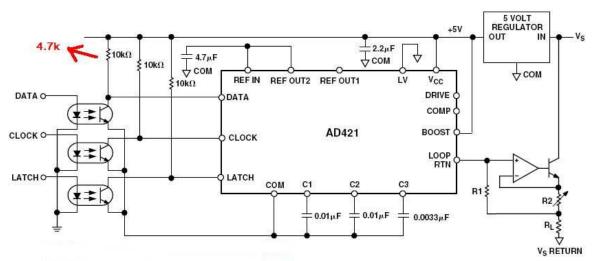


Figure 18. AD421 in Programmable Current Source/Sink

图 3-13 AD421 简易电路图

原因是因为光耦输出数字信号的上升沿或下降沿太缓慢。AD421 芯片资料中给出数字信号的上升沿或下降沿不能超过 1us。

AD421

TIMING CHARACTERISTICS 1, 2, 3 ($V_{CC} = +3$ V to +5 V, $T_A = T_{MIN}$ to T_{MAX} unless otherwise noted)

Parameter	(B Versions)	Units	Conditions/Comments
t _{CK}	100	ns min	Data Clock Period
t _{CL}	50	ns min	Data Clock Low Time
tch	50	ns min	Data Clock High Time
t _{DW}	30	ns min	Data Stable Width
t _{DS}	30	ns min	Data Setup Time
t _{DH}	0	ns min	Data Hold Time
t _{LD}	50	ns min	Latch Delay Time
t _{LL}	50	ns min	Latch Low Time
t _{LH}	50	ns min	Latch High Time

NOTES

图 3-14 AD421 对于光耦输出数字信号上升沿\下降沿的要求

而 4N28 资料中给出在 RL 为 100 ohm 时的上升沿或下降沿为 2us,如下图所示。增加 RL 会使得上升沿或下降沿时间缩短,但并不能最终解决问题。

¹Guaranteed by characterization at initial product release, not production tested.

²See Figures 1 and 2.

³All input signals are specified with tr = tf = 5 ns (10% to 90% of V_{CC}) and timed from a voltage level of (V_{IN} + V_{IL})/2; tr and tf should not exceed 1 μs on any digital input,

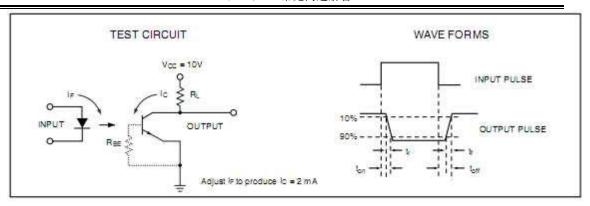


Figure 20. Switching Time Test Circuit and Waveforms

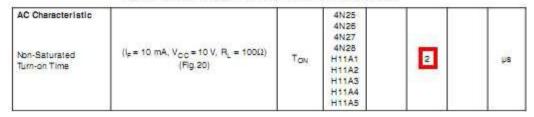


图 3-15 光耦的数据手册

数字信号缓慢的上升沿使得信号非常容易受到噪声的干扰,从而导致 AD421 的数据接收出现错误。解决办法有两个:

- 1、采用 ADI 的 iCoupler 系列产品替代 4N28;
- 2、在光耦输出增加 Schmitt-trigger 逻辑门将光耦输出的数字信号整形使得沿变得更 陡峭:

3.13 AD421 评估板原理图中, 28F0195-100 是用于 EMI 抑制的, 是否有其他替代器件推荐?

可以考虑使用 FBMH3225HM102。在下面的链接中可以找到详细的资料。

 $\underline{http://ie.farnell.com/taiyo-yuden/fbmh3225hm102nt/ferrite-bead-chip-series-fb-fb/dp/1651731?Ntt=1651731$

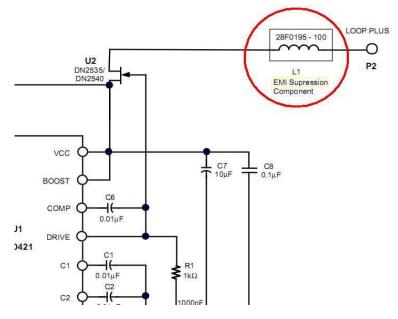


图 3-16 AD421 评估板

3.14 ADI 公司还推出可以替代 AD421 或者与其类似的产品么?

您还可以参考下面几款片子。

AD5421, 为 AD421 的升级产品,同样的 16-bit 分辨率,可以替代 AD421 使用,提供更好的精度和温度、电压范围,同时具有多种报警功能。

AD5422,可以提供 16bits 分辨率的 4-20mA, 0-20mA or 0-24mA 电流输出和 0-5V, 0-10V, ±5V, ±10V 电压输出的同时,只有 0.1%的未校准总误差和 5ppm/°C 的温漂。

AD5750,可以提供 16bits 分辨率的 4-20mA, 0-20mA or 0-24mA, ±20mA, ±24mA 的电流输出, 0-5V, 0-10V, ±5V, ±10V 电压输出,同时未校准总误差为 0.1%(B 级产品)和 0.3%(A 级产品),它的温漂也仅为 5ppm/°C

AD5420,可以提供 16bit 分辨率的 4–20mA, 0–20mA or 0–24mA 电流输出,未校准总误差为 0.1%,温漂为 5ppm/°C。

3.15 AD421 与 AD5421 的区别?

AD5421 为 AD421 的升级产品,同样的 16-bit 分辨率,可以替代 AD421 使用,提供更好的精度和温度、电压范围,同时具有多种报警功能。二者不能管脚兼容。下面就相关的重要参数进行比较。

功能:功能相同,都是环路供电的 4-20mA 变送器。但 AD5421 提供更多的报警功能。如 SPI 通信中断、超时;芯片过温;环路电流错误。

封装:二者的封装不同,不能够管脚兼容。

分辨率: 都是 16-bit 的分辨率。

接口:都是 SPI 接口。

电源电压: AD421 的最大电源电压为 5V, AD5421 的最大电源电压为 52V。

精度: AD421 的精度为±0.2%@25℃,AD5421 的精度为±0.027%@25℃,因此 AD5421 的精度更高。

芯片工作温度: AD421 的工作温度范围为-40℃-85℃; AD5421 的工作温度范围为-40℃-105℃。

3.16 如果环路供电的系统中,外围器件的功耗需求会大于

3.25mA/3.15mA. 是否有什么方法来解决二者之间矛盾?

方法是有的,可以增加 DC-DC 转换器,从高电压的环路上或者芯片电源输出管脚上取电,通过 DC-DC 转换供给除 AD5421/AD421 外的器件,从而一定程度上解决外围器件功耗与环路电流之间的矛盾。注意即使这种方式也只能在一定程度上解决二者之间的矛盾。

在设计 DC-DC 转换器时,一定要注意地的连接,需要和芯片 COM 端相连,以保持地的悬空。

3.17 如何确定环路供电的传输电缆长度?

无论是 AD421 还是 AD5421, 其传输线长度受到电流输出端口的输出电压、采样电阻 值、电缆的线阻的影响。

传输电缆的最大电阻 = $\frac{e \hat{n} \hat{m} \, \text{出端口的最大输出电压} - 20 \text{mA} * \, \text{取样电阻值}}{20 \text{mA}}$

3.18 为何芯片有时发热比较厉害,芯片功耗与芯片的工作电压、电流以及温度间有什么关系?

可以使用下图所示的电路进行简单的说明。假设电流输出的端口的负载 RL 电阻值很小,近似电阻为 0 欧姆,那么几乎所有的电压降都落在了芯片上。对于 AD5421,如果采用 24V 环路供电,那么芯片的最大功耗为 20mA*24V=480mW; 采用 32-Lead LFCSP_WQ 封装,其热阻为 40℃/W,那么芯片相对于环境温度升温为 0.48*40=19.2℃。所以有时芯片会发热。

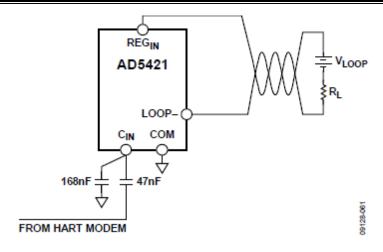


图 3-17 AD5421 简易电路图

3.19 使用万用表测量电流值正确,而使用示波器时测量的电流值不准确?

在使用示波器测量取样电阻两端的电压时时,由于示波器的地是不悬空的,有固定的 电位。所以将示波器的地连接在芯片的地上,会导致芯片的地不悬空,进而破坏电流环路。

3.20 AD5421 无 CS 引脚, 是否可以使用 SYNC 当做 CS 管脚使用?

AD5421 可以使用 SYNC 管脚替代 CS 的功能。