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Dozens of processors control every performance aspect of today’s 
automobiles, and not a single feature of the “vehicle experience” 
remains untouched by technology. Whether it’s climate control, 
engine control, or entertainment, there has been constant evolution 
of capabilities in manufacturer offerings over the last decade. 
One of the forces behind this evolution, the rapidly increasing 
performance-to-cost ratio of signal processors, is about to have a 
profound impact on another critical automotive component—the 
safety subsystem. 

While most currently available safety features utilize a wide 
array of sensors—principally involving microwaves, infrared 
light, lasers, accelerometers, or position detection—only recently 
have processors been introduced that can meet the real-time 
computation requirements that allow video image processing to 
contribute substantially to safety technology. The Analog Devices 
Blackfin media-processor family offers attractive solutions for this 
growing market, with its high processing speeds, versatile data-
movement features, and video-specific interfaces. This article will 
discuss the roles that Blackfin processors can play in the emerging 
field of video-based automotive safety. 

VIDEO IN AUTOMOTIVE SAFETY SYSTEMS
In many ways, car safety can be greatly enhanced by video-based 
systems that use high-performance media processors. Because 
short response times are critical to saving lives, however, image 
processing and video filtering must be done deterministically in 
real time. There is a natural tendency to use the highest video 
frame rates and resolution that a processor can handle for a given 
application, since this provides the best data for decision making. 
In addition, the processor needs to compare vehicle speeds and 
relative vehicle-object distances against desired conditions—again 
in real time. Furthermore, the processor must interact with many 
vehicle subsystems (such as the engine, braking, steering, and 
airbag controllers), process sensor information from all these 
systems, and provide appropriate audiovisual output to the driver. 
Finally, the processor should be able to interface to navigation 
and telecommunication systems to react to and log malfunctions, 
accidents, and other problems.

Figure 1 shows the basic video operational elements of an 
automotive safety system, indicating where image sensors might 
be placed throughout a vehicle, and how a lane departure system 
might be integrated into the chassis. There are a few things 
worth noting. First, multiple sensors can be shared by different 
automotive safety functions. For example, the rear-facing sensors 
can be used when the vehicle is backing up, as well as to track lanes 
as the vehicle moves forward. In addition, the lane-departure 
system might accept feeds from any of a number of camera sources, 
choosing the appropriate inputs for a given situation. In a basic 
system, a video stream feeds its data to the embedded processor. 
In more advanced systems, the processor receives other sensor 
information, such as position data from GPS receivers.
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Figure 1. Basic camera-placement regions for 
automotive safety applications.

Smart Airbags
An emerging use of media processors in automotive safety is for 
“intelligent airbag systems,” which base deployment decisions on 
who is sitting in the seat affected by the airbag. At present, weight-
based systems are in widest use, but video sensing will become 
popular within five years. Either thermal or regular cameras 
may be used, at rates up to 200 frames per second, and more 
than one might be employed—to provide a stereo image of each 
occupant. The goal is to characterize the position and posture of 
the occupants—not just their size. In the event of a collision, the 
system must choose whether to restrict deployment entirely, deploy 
with a lower force, or deploy fully. In helping to determine body 
position, image-processing algorithms must be able to differentiate 
between a person’s head and other body parts. 

In this system, the media processor must acquire multiple image 
streams at high frame rates, process the images to profile the 
size and position of each occupant under all types of lighting 
conditions, and constantly monitor all the crash sensors, located 
throughout the car, in order to make the best deployment decision 
possible in a matter of milliseconds.

Collision Avoidance and Adaptive Cruise Control 
Another high-profile safety application is adaptive cruise control 
(ACC), a subset of collision avoidance systems. ACC is a convenience 
feature that controls engine and braking systems to regulate the 
speed of the car and its distance from the vehicle ahead. The 
sensors employed involve a combination of microwave, radar, 
infrared, and video technology. A media processor might 
process between 17 and 30 frames per second in real time 
from a camera—focused on the roadway—mounted near the 
car’s rear-view mirror. The image-processing algorithms may 
include frame-to-frame image comparisons, object recognition, 
and contrast equalization for varying lighting scenarios. Goals 
of the video sensor input are to provide information about lane 
boundaries and road curvature, and to categorize obstacles, 
including vehicles ahead of the car.

ACC systems are promoted as a convenience feature, while true 
collision avoidance systems actively aim to avoid accidents by 
coordinating the braking, steering, and engine controllers of 
the car. As such, they have been slower to evolve because of the 
complexity of the task, the critical reliability considerations, and 
legal and social consequences. It is estimated that deployment 
of these systems may be well on its way by 2010. In view of the 
typical 5-year automotive design cycle, such system designs are 
already underway. 
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Collision warning systems, like ACC, are a subset of the collision-
avoidance category. These provide a warning of a possibly 
impending accident, but they don’t actively avoid it. There are 
two main subcategories within this niche:

Blind spot monitors—Cameras are mounted strategically around 
the periphery of the vehicle to provide a visual display of the 
driver’s blind spots—and to sound a warning if the processor 
senses the presence of another vehicle in a blind-spot zone. 
In reverse gear, these systems also serve as back-up warnings, 
cautioning the driver about obstructions in the rear of the car. A 
display could be integrated with the rear-view mirror, providing 
a full, unobstructed view of the car’s surroundings. Moreover, 
the system might include a video of “blind spots” within the 
car cabin, allowing the driver to monitor a rear-facing infant, 
for example.

Lane-departure monitors—These systems can notify drivers 
if it is unsafe to change lanes or if they are straying out of a 
lane or off the road—thus aiding in detecting driver fatigue. 
Forward-facing cameras monitor the car’s position relative to 
the roadway’s centerline and side markers, up to 50 to 75 feet 
in front of the car. The system sounds an alarm if the car starts 
to leave the lane unintentionally.

LANE DEPARTURE—A SYSTEM EXAMPLE
In addition to the role that a media processor can play in video-
based automotive safety applications, it is instructive to analyze 
typical components of just such an application. To that end, let’s 
probe further into a lane-departure monitoring system that could 
employ the Blackfin media processor. 

The overall system diagram of Figure 2 is fairly straightforward, 
considering the complexity of the signal processing functions 
being performed. Interestingly, in a video-based lane departure 
system, the bulk of the processing is image-based, and is carried 
out within a signal processor rather than by an analog signal chain. 
This represents a big savings on the system bill-of-materials. The 
output to the driver consists of a warning to correct the car’s 
projected path before the vehicle leaves the lane unintentionally. 
It may be an audible “rumble-strip” sound, a programmed chime, 
or a voice message.

The video input system to the embedded processor must perform 
reliably in a harsh environment, including wide and drastic 
temperature shifts and changing road conditions. As the data 
stream enters the processor, it is transformed—in real time—into 
a form that can be processed to output a decision. At the simplest 

level, the lane departure system looks for the vehicle’s position with 
respect to the lane markings in the road. To the processor, this 
means the incoming stream of road imagery must be transformed 
into a series of lines that delineate the road surface. 

The processor can find lines within a field of data by looking for 
edges. These edges form the boundaries within which the driver 
should keep the vehicle while it is moving forward. The processor 
must track these line markers and determine whether to notify the 
driver of irregularities. 

Keep in mind that several other automobile systems also influence 
the lane-departure system. For example, use of the braking system 
and the turn signals typically will block lane departure warnings 
during intentional lane changes and slow turns.
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Figure 2. Basic steps in a lane-departure algorithm and 
how the processor might connect to the outside world.

Let’s now drill deeper into the basic components of the lane-
departure system example. Figure 3 follows the same basic 
operational flow as Figure 2 but with more insight into the 
algorithms being performed. The video stream coming into the 
system needs to be filtered and smoothed to reduce noise caused by 
temperature, motion, and electromagnetic interference. Without 
this step, it would be difficult to find clean lane markings. 

The next processing step involves edge detection; if the system is 
set up properly, the edges found will represent the lane markings. 
These lines must then be matched to the direction and position 
of the vehicle. The Hough transform will be used for this step. Its 
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Figure 3. Algorithm flow, showing results of intermediate image-processing steps.
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output will be tracked across frames of images, and a decision 
will be made based on all the compiled information. The final 
challenge is to send a warning in a timely manner without sounding 
false alarms. 

Image Acquisition
An important feature of the Blackfin Processor is its parallel 
peripheral interface (PPI), which is designed to handle incoming 
and outgoing video streams. The PPI connects without external 
logic to a wide variety of video converters. In addition to ITU-R 
656-compliant video encoders and decoders, the PPI can connect 
to CMOS camera chips and LCD displays, which find common 
use in the automotive industry. Because it can capture video in 
real time, the PPI is instrumental for the kinds of auto safety 
applications discussed in this article. 

In devices supporting ITU-R 656, each boundary between blanking 
data and active video data is set using a 4-byte data sequence that is 
embedded within the data stream. The PPI automatically decodes 
this sequence, without processor intervention, to collect the 
incoming active video frames. With this embedded control scheme, 
the physical connection is simply eight data lines and a clock.

The PPI also connects to a wide range of image sensors and data 
converters that do not have an embedded control scheme. In 
these cases, the PPI provides up to three frame syncs to manage 
incoming or outgoing data. For a video stream, these frame syncs 
function as physical horizontal sync, vertical sync and field lines 
(HSYNC, VSYNC, and FIELD).

For automotive safety applications, image resolutions typically 
range from VGA (640  480 pixels/image) down to QVGA 
(320  240 pixels/image). Regardless of the actual image size, 
the format of the data transferred remains the same—but lower 
clock speeds can be used when less data is transferred. Moreover, 
in the most basic lane-departure warning systems, only gray-scale 
images are required. The data bandwidth is therefore halved 
(from 16 bits/pixel to 8 bits/pixel) because chroma information 
can be ignored.

Memory and Data Movement
Efficient memory usage is an important consideration for system 
designers because external memories are expensive, and their 
access times can have high latencies. While Blackfin processors 
have an on-chip SDRAM controller to support the cost-effective 
addition of larger, off-chip memories, it is still important to 
be judicious in transferring only the video data needed for the 
application. By intelligently decoding ITU-R 656 preamble codes, 
the PPI can aid this “data-filtering” operation. For example, in 
some applications, only the active video fields are required. In other 
words, horizontal and vertical blanking data can be ignored and 
not transferred into memory, resulting in up to a 25% reduction 
in the amount of data brought into the system. What’s more, this 
lower data rate helps conserve bandwidth on the internal and 
external data buses.

Because video data rates are very demanding, frame buffers 
must be set up in external memory, as shown in Figure 4. In this 
scenario, while the processor operates on one buffer, a second 
buffer is being filled by the PPI via a DMA transfer. A simple 
semaphore can be set up to maintain synchronization between 
the frames. With Blackfin’s flexible DMA controller, an interrupt 
can be generated at virtually any point in the memory fill process, 
but it is typically configured to occur at the end of each video line 
or frame.
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Figure 4. Use of external memory for a frame buffer.

Once a complete frame is in SDRAM, the data is normally transferred 
into internal L1 data memory so that the core can access it with 
single-cycle latency. To do this, the DMA controller can use two-
dimensional transfers to bring in pixel blocks. Figure 5 shows an 
example of how a 16  16 “macroblock,” a construct used in many 
compression algorithms, can be stored linearly in L1 memory via a 
2D DMA engine. 

To efficiently navigate through a source image, four parameters 
need to be controlled: X Count, Y Count, X Modify, and Y Modify. 
X and Y Counts describe the number of elements to read in/out in 
the “horizontal” and “vertical” directions, respectively. Horizontal 
and vertical are abstract terms in this application because the 
image data is actually stored linearly in external memory. X and Y 
Modify values achieve this abstraction by specifying an amount to 
“stride” through the data after the requisite X Count or Y Count 
has been transferred.

From a performance standpoint, up to four unique SDRAM 
internal banks can be active at any time. This means that in the 
video framework, no additional bank-activation latencies are 
observed when the 2D-to-1D DMA is pulling data from one 
bank while the PPI is feeding another.

Projection Correction
The camera used for the lane departure system can be located in 
the center-top location of the front windshield, facing forward, 
in the rear windshield, facing the road already traveled, or as a 
“bird’s-eye” camera, which gives the broadest perspective of the 
upcoming roadway and can thus be used instead of multiple line-
of-sight cameras. In this latter case, the view is warped because of 
the wide-angle lens, so the output image must be remapped into 
a linear view before parsing the picture content. 
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Image Filtering 
Before doing any type of edge detection, it is important to filter the 
image to smooth out any noise picked up during image capture. 
This is essential because noise introduced into an edge detector 
can result in false edges output from the detector.

Obviously, an image filter needs to operate fast enough to keep 
up with the succession of input images. Thus, it is imperative 
that image filter kernels be optimized for execution in the fewest 
possible number of processor cycles. One effective means of 
filtering is accomplished with a basic two-dimensional convolution 
operation. Let’s look at how this computation can be performed 
efficiently on a Blackfin Processor. 

Convolution is one of the fundamental operations in image 
processing. In two-dimensional convolution, the calculation 
performed for a given pixel is a weighted sum of intensity 
values from pixels in the neighborhood of that pixel. Since the 
neighborhood of a mask is centered on a given pixel, the mask 
area usually has odd dimensions. The mask size is typically small 
relative to the image; a 3  3 mask is a common choice because it 
is computationally reasonable on a per-pixel basis but large enough 
to detect edges in an image. 

The basic structure of the 3  3 kernel is shown in Figure 6. As 
an example, the output of the convolution process for a pixel at 
row 20, column 10 in an image would be:

Out(20,10) = A  (19,9) + B  (19,10) + C  (19,11) + D  (20,9) + E 
 (20,10) + F  (20,11) + G  (21,9) + H  (21,10) + I  (21,11)

A B C

D E F

G H I

Figure 6. Basic structure of the 3  3 convolution kernel.

The high-level algorithm can be described with the following steps:

1. Place the center of the mask over an element of the input 
matrix.

2. Multiply each pixel in the mask neighborhood by the 
corresponding filter mask element.

3. Sum each of the multiplies into a single result.

4. Place each sum in a location corresponding to the center of 
the mask in the output matrix

Figure 7 shows an input matrix, F, a 3  3 mask matrix, H, and 
an output matrix, G.
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h(x,y) MASK
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f(x,y) INPUT MATRIX

G11 G12 G13 G1M
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g(x,y) OUTPUT MATRIX

COMPUTATIONS REQUIRED: 9 MULTIPLIES AND 8 ACCUMULATES REQUIRED
FOR EACH OUTPUT POINT.

H11  F11 + H12  F12 + H13  F13 + H21  F21 + H22  F22 +
H23  F23 + H31  F31 + H32  F32 + H33  F33

Figure 7. Input matrix, F; 3  3 mask matrix, H; and 
output matrix, G.

After each output point is computed, the mask is moved to the 
right. On the image edges, the algorithm wraps around to the first 
element in the next row. For example, when the mask is centered 
on element F2M, the H23 element of the mask matrix is multiplied 
by element F31 of the input matrix. As a result, the usable section 
of the output matrix is reduced by one element along each edge 
of the image.
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Figure 5. A 2D to 1D DMA transfer from SDRAM into L1 memory.
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By aligning the input data properly, both of Blackfin’s multiply-
accumulate (MAC) units can be used in a single processor cycle 
to process two output points at a time. During this same cycle, 
multiple data fetches occur in parallel with the MAC operation. 
This method allows efficient computation of 2 output points for 
each loop iteration, or 4.5 cycles per pixel instead of the 9 cycles 
per pixel of Figure 7.

Edge Detection
A wide variety of edge detection techniques are in common use. 
Before considering how an edge can be detected, the algorithm 
must first settle on a suitable definition for what an edge actually is, 
then find ways to enhance the edge features to improve the chances 
of detection. Because image sensors are non-ideal, two issues must 
be dealt with—noise and the effects of quantization errors. 

Noise in the image will almost guarantee that pixels having equal 
gray scale levels in the original image will not have equal levels in 
the noisy image. Noise will be introduced based on many factors 
that can’t be easily controlled, such as ambient temperature, 
vehicular motion, and outside weather conditions. Quantization 
errors in the image will result in edge boundaries extending across 
a number of pixels. These factors work together to complicate 
edge detection. Because of this, any image-processing algorithm 
selected must keep noise immunity as a prime goal.

One popular detection method uses a set of common derivative-
based operators to help locate edges within the image. Each 
of the derivative operators is designed to find places where 
there are changes in intensity. In this scheme, the edges can 
be modeled by a smaller image that contains the properties of 
an ideal edge.

We’ll discuss the Sobel Edge Detector because it is easy to 
understand and illustrates principles that extend into more 
complex schemes. The Sobel Detector uses two convolution 
kernels to compute gradients for both horizontal and vertical 
edges. The first is designed to detect changes in vertical contrast 
(Sx). The second detects changes in horizontal contrast (Sy).
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The output matrix holds an “edge likelihood” magnitude (based 
on horizontal and vertical convolutions) for each pixel in the image. 
This matrix is then thresholded in order to take advantage of the 
fact that large responses in magnitude correspond to edges within 
the image. Therefore, at the input of the Hough Transform stage, 
the image consists only of either “pure white” or “pure black” 
pixels, with no intermediate gradations.

If the true magnitude is not required for an application, this can 
save a costly square root operation. Other common techniques in 
building a threshold matrix include summing the gradients from 
each pixel or simply taking the largest of the two gradients. 

Straight Line Detection—Hough Transform
The Hough transform is a widely used method for finding 
global patterns such as lines, circles, and ellipses in an image by 
localizing them in a parameterized space. It is especially useful 
in lane detection because lines can be easily detected as points 
in Hough transform space, based on the polar representation of 
Equation 1: 

 ρ θ θ= +x ycos sin  (1)

The meaning of this equation can be visualized by extending a 
perpendicular from the given line to the origin, such that  is 
the angle that the perpendicular makes with the abscissa and  
is the length of the perpendicular. Thus, one pair of coordinates 
(, ) can fully describe the line. Lines L1 and L2 in Figure 8a 
demonstrate this concept. Figure 8b shows that L1 is defined by 
1 and the length of the red perpendicular, while L2 is defined by 
2 and the length of the blue perpendicular line.

L1

L2

Figure 8a. The output of an edge detector is a binary 
image like this one, which can be visually inspected by a 
human observer to show lines. A Hough Transform allows 
localization of these two lines.
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X2
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Y

Figure 8b. The two white lines in the image above can be 
described by the lengths and angles of the red and blue 
perpendicular line segments extending from the origin.
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Figure 8c. The Hough transform of the image in Figure 8a. 
The range for  is [0, 2], and the range for  is one-half 
the diagonal of the input image in Figure 8a. The two bright 
regions correspond to local maxima, which can be used to 
reconstruct the two lines in Figure 8a.
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Another way to look at the Hough Transform is to consider a way 
that the algorithm could be implemented intuitively:

1. Visit only white pixels in the binary image.

2. For each pixel and every  value being considered, draw a line 
through the pixel at angle  from the origin. Then calculate 
, which is the length of the perpendicular between the origin 
and the line under consideration.

3. Record this (, ) pair in an accumulation table. 

4. Repeat steps 1–3 for every white pixel in the image.

5. Search the accumulation table for the (, ) pairs encountered 
most often. These pairs describe the most probable “lines” 
in the input image, because in order to register a high 
accumulation value, there had to be many white pixels that 
existed along the line described by the (, ) pair.

The Hough transform is computationally intensive because a 
sinusoidal curve is calculated for each pixel in the input image. 
However, certain techniques can speed up the computation 
considerably. 

First, some of the computation terms can be computed ahead of 
time, so that they can be referenced quickly through a lookup 
table. In Blackfin’s fixed-point architecture it is very useful to 
store the lookup table only for the cosine function. Since the sine 
values are 90 degrees out of phase with the cosines, the same table 
can be used, with an offset. With the lookup tables in use, the 
computation of Equation (1) can be represented as two fixed-point 
multiplications and one addition. 

Another factor that can improve performance is a set of 
assumptions about the nature and location of lane markings 
within the input image. By considering only those input points that 
could potentially be lane markings, a large number of unnecessary 
calculations can be avoided, since only a narrow range of  values 
need be considered for each white pixel.

The output of a Hough Transform is a set of straight lines that 
could potentially be lane markings. Certain parameters of these 
lines can be calculated by simple geometric equations. Among 
the parameters useful for further analysis are the offset from the 
camera’s center axis, the widths of the detected lines, and the angles 
with respect to the position of the camera. Since lane markings 
in many highway systems are standardized, a set of rules can 
eliminate some lines from the list of lane-marking candidates. 
The set of possible lane-marking variables can then be used to 
derive the position of the car.

Lane Tracking
Lane information can be determined from a variety of possible 
sources within an automobile. This information can be combined 
with measurements of vehicle-related parameters (e.g., velocity, 
acceleration, etc.) to assist in lane tracking. Based on the results 
of these measurements, the lane-departure system can make an 
intelligent decision as to whether an unintentional departure is in 
progress. In advanced systems, other factors could be modeled, 
such as the time of day, road conditions, and driver alertness. 

The problem of estimating lane geometry is a challenge 
that often calls for using a Kalman filter to estimate the road 
curvature. Specifically, the Kalman filter can predict future road 
information—which can then be used in the next frame to reduce 
the computational load presented by the Hough transform. 

As described earlier, the Hough transform is used to find lines in 
each image. But these lines also need to be tracked over a series of 
images. In general, a Kalman filter can be described as a recursive 
filter that estimates the future state of an object. In this case, the object 
is a line. The state of the line is based on its location and its motion 
path across several frames. 

Along with the road state itself, the Kalman filter provides a 
variance for each state. The predicted state and the variance can 
be used in conjunction to narrow the search space of the Hough 
transform in future frames, which saves processing cycles.

Decision Making—Current Car Position or Time to Lane-Crossing
From our experience, we know that false positives are always 
undesirable. There is no quicker way to get a consumer to disable 
an optional safety feature than to have it indicate a problem that 
does not exist. 

With a processing framework in place, system designers can add 
their own intellectual property (IP) to the decision phase of each 
of the processing threads. The simplest approach might be to take 
into account other vehicle attributes when making a decision. For 
example, a lane-change warning could be suppressed when a lane 
change is perceived to be intentional—as when a blinker is used 
or when the brake is applied. More complex systems may factor 
in GPS coordinate data, occupant driving profile, time of day, 
weather, and other parameters.

CONCLUSION
In the foregoing discussion, we have only described an example 
framework for how an image-based lane departure system might 
be structured. The point we have sought to establish is that when a 
flexible media processor is available for the design, there is plenty of 
room to consider feature additions and algorithm optimizations.  b


