FAQ

ADM2582E - FAQ

デシケータ管理条件

Q:  パッケージ開封後のデシケータ管理の条件について教えてください。管理状況によってベーキングが必要となるかと思います。その条件についても併せて教えてください。

A:  アナログ・デバイセズ製品に関しましては、湿度等の条件はJEDECのSTD–20Dを適用しております。(もともとご質問の製品は)その規定によりMSL(Moisuture Level)1と規定された製品です。MSL1のデバイスに対する取り扱いにつきましては、このJEDE STD–20Dをご参照ください。なおMSL1はもっとも管理が緩い製品レベルです。

使用温度の規定の見方は?

Q:  使用温度の考え方について。 JunctionTemp.とOperatingTemp. パッケージ表面温度はどちらの規定に従えばよいのでしょう? 周囲温度55度、パッケージ表面温度90度の場合、仕様は満たされると考えてよいのでしょうか?

A:  半導体デバイスの温度設計上、最も重要な規格は、ジャンクション温度です。消費電力の多いデバイスでは、その電力とパッケージの温度抵抗よりジャンクション温度を求めその温度が規定の範囲を越えているかどうかで、判断します。しかしながら消費電力の低いデバイスでは、パッケージ温度や周囲温度とジャンクション温度の差が大きくないのでこの様なデバイスの場合、動作保証温度=周囲温度という記述でデータシートに規定されています。たとえば、仮に消費電力が10mWのデバイスの場合、θjaが200℃/Wであったとしても、周囲温度とジャンクションの温度差は、2℃しかありません。このようなデバイスでは動作温度範囲=周囲温度とされています。
AD8253の場合θja=112℃/Wで、自己消費電力が負荷無しのワーストケースで6mA×30V=180mWですから、その温度差は、0.18×112=20.16℃になります。
周囲温度が55℃の場合、ジャンクションはおよそ70℃になるはずです。表面温度が90℃ということは、他に負荷電流等を取っていることが考えられますが、この条件のように実測90℃以上になっているのであれば、間違いなくジャンクションが動作範囲の85℃を越えていますので、性能は保証されません。 動作自身は、ジャンクション温度140℃が絶対最大定格となっていますので、この条件で即破壊することはありませんが、ジャンクション温度は100℃を超えるような動作をしているので、デバイス自身の信頼性に大きなリスクがあります。 
現実にパッケージ表面が90℃以上になるような動作であるならば、ヒートシンクやヒートメタルレイヤー、出力外部バッファ、電源電圧の低減、負荷の軽減などの何らかの処置することを強くお勧めします。

負荷が重い場合の消費電力計算方法に付きましては、日本語データシートの6ページをご参照ください。

注意:上記は「ADIS16XXX」シリーズには該当しません。

iCoupler製品はどの規制基準に準拠していますか?

iCoupler製品は、通常、2.5kVRMS以上のUL定格と400VRMSの動作電圧についてCSAとULの承認を受けています。

各特定製品の承認内容および詳細をまとめた表を、 www.analog.com/iCouplerSafetyでご覧いただけます。

iCoupler製品は鉛フリーですか?

iCoupler製品はすべて鉛フリーです。

終端抵抗の値

Q:   RS485(RS422)の終端抵抗は、いくらぐらいにするべきでしょうか?

A:   RS485などの通信線に挿入する終端抵抗は、その伝送線路の特性インピーダンスに合わせる必要があります。特性インピーダンスは線路の設計や形状により決まります。通信などで使われる同軸線は50Ωや75Ωがよく使われ、ツイストペア線では、100Ωぐらいから数100Ωとメーカーや材質によって異なります。(信号伝送速度も材質や構成により異なります)マイクロストリップラインであれば、線幅の設計や基板材質、その厚さなどにより異なります。使われる伝送線にあわせて終端抵抗を選んでください。詳しくは、AN-960: RS-485 / RS-422回路の実装ガイド をご参照ください。

iCoupler 技術にはどのような利点がありますか?

iCoupler 技術の主な利点は5つあります。

統合化の利点は、同一パッケージ内にiCouplerチャンネルと他の半導体機能を結合したり、複数のiCouplerチャンネルを容易に結合できるため、フォトカプラ実装よりもサイズを小型化し、コストを削減することができます。性能面では、タイミング精度、過渡耐性、データレートがフォトカプラ部品よりも優れています。消費電力については、1/10~1/50小さくなり、関連する放熱量も減少します。

使いやすさの面では、フォトカプラ技術に伴う問題点の多くが解消すること、そしてこれまでにない特長によって新規設計にiCouplerアイソレータを利用できることがあげられます。フォトカプラの問題点としては、変動の大きい電流転送率特性、LEDの損耗現象、それに起因する設計上の制約、LEDを点灯させるために入力を大電流で駆動する必要がある(大部分のフォトカプラの場合)ことなどがありますが、iCouplerにはこのような問題がありません。iCouplerには、その他にも使いやすい特長があります。低い電源電圧で使用できること、入力信号の電圧と異なる電圧の出力信号に変換できること、電圧ベースのデジタル・インターフェースを使用していること、広い温度範囲にわたって使用できることなどです。

最後に、フォトカプラに伴うLEDが必要なくなることで信頼性も向上します。標準CMOSプロセス技術だけを使用するため、iCouplerデバイスは他の標準CMOS製品と同じ寿命特性を実現します。

外形寸法図のBSCとは?

Q:   ± データシーとの外形図に記されている「BSC」とは、どのような意味でしょうか。

A:    BaSiCの略です。公称値という意味です。

Pwr Dissとは?

Q:   ± 仕様欄に表記されている"Pwr Diss(Max) 20mW"(一例)に関して用語の意味を教えてください。

A:   Pwr Diss(Max) 20mW ですが、Power Dissipationの略表示となっており、パラメータとしては消費電力となります。

ICの寿命や製品保証の資料は?

Q:  ± ICの寿命・製品保証に関する資料はありますか。故障率でも結構です。

A:   弊社で供給しております半導体製品の一般的な信頼性データは、弊社Webサイトから検索することが出来ます。また品質保証に関する資料等もこのサイトから検索することが出来ます。品質&信頼性のサイトから信頼性データや信頼性ハンドブック、FITレート、技術資料などをご覧ください。

アナログ・デバイセズには他にiCoupler技術を取り入れている製品がありますか?

iCoupler技術の大きな利点は、多様な製品にアイソレーションを統合できることです。他の製品にもiCouplerによるアイソレーションを統合することで、設計の簡素化、部品表の削減、コストの低減、サイズの縮小、信頼性の向上を実現できます。

ADM2483、ADM2485、ADM2486、ADM2490Eは、iCoupler技術を取り入れているRS-485トランシーバーです。同様に、AD7400とAD7401は絶縁型のΣΔ A/Dコンバータです。今後アナログ・デバイセズでは、iCoupler技術によりアイソレーションを統合した更に多くの製品を発表する予定です。

新しいiCoupler製品の情報はどのようにして入手できますか?

新製品の最新情報については、アナログ・デバイセズのウェブサイトwww.analog.com/icouplerをご覧ください。最寄りのアナログ・デバイセズの営業担当者にお問い合わせいただくこともできます。季刊のニュースレター「Analog Devices' Digital Isolation Update」もご利用になれます。このニュースレターには、新製品のご案内の他、iCoupler技術に関するお知らせ、アプリケーションのヒント、技術情報などが掲載されています。「Analog Devices' Digital Isolation Update」の購読方法については、www.analog.com/Subscriptionsをご覧ください。

iCoupler 製品とインターフェース製品の違いは何ですか?

iCoupler アイソレーション製品は、従来型のインターフェース製品の中の特殊な製品群です。通常、1つのiCoupler製品で幅広いアプリケーションに対応できますが、インターフェース専用の製品は用途が限られています(例えばRS-232やRS-485トランシーバー)。さらに、インターフェース専用の製品に絶縁機能が求められることはあまりありませんが、一般にこの種のインターフェースにはある程度の絶縁も必要です。当社は様々なインターフェース製品を提供していますが、その一部にiCoupler技術を組み込んだ完全統合化ソリューションがあります(以下を参照)。