FAQ

AD6645 - FAQ

ADコンバ-タの差動入力とは何?

Q:   差動入力を持つADコンバータのデータシート内にある「Common-Mode Input Range」とは、どういったものなのでしょうか? 入力IN+、IN-には、VRef/2までの電圧しか入れられないという事なのでしょうか?

A:   ADコンバータの差動入力(Differential Input)とは、ふたつの入力(IN+とIN-)の電圧の差を、入力信号とするというものです。 例えばIN+=+1.5V、IN-=+0.5Vであれば、これは入力が+1Vと認識されます。逆にIN+=+0.5V、IN-=+1.5Vであれば、これは-1Vと認識されます。たとえばAD7687というADコンバータの入力レンジは、±Vref電圧までですから、Vref=+5で使用すると、入力は±5Vになります。極論するとIN+が+100VでIN-が+95Vでも、差動入力は+5VでOKののはずですが、そこにはやはり入力の耐圧の制限があります。この制限が、データシートのスペックに記されている、Absolute Input VoltageとCommon-mode Input Voltageのふたつです。Abs inputは、このふたつの入力ピンにかけることができる最大の電圧値を、グランドからの電圧値で示したものです。これを見るとAD7687の場合は、-0.1V~Vref+0.1Vとなっているので、Vref=+5Vの時は、IN+、IN-にそれぞれ加えることができる電圧は、-0.1V~+5.1Vということになります。次にふたつの入力信号の動作の中点である同相電圧にも制限があります。同相電圧とは簡単にいうと、ふたつの信号電圧の平均値(中点)電圧です。データシート1頁目の図に書いてある入力信号の絵で、その動作の中心になっている電圧です。これが0V~Vref/2+0.1Vということですから、Vref=5Vの時は、0V~+2.6Vということになります。仮にこの電圧を越えても(例えばIN+=IN-=5Vになると同相電圧は+5Vになる)デバイスが破壊することはありませんが、スペックシートに記載された性能は保証されません。同相電圧はふたつの入力の平均値で、通常の差動信号では中点にあって動かないもの、すなわちIN+とIN-は同相電圧中心に逆方向に同じ振幅の信号と想定されています。これらの二つの規定は、デバイスごとにデータシートに示されているので、設計する際に十分確認してください。

高速ADコンバータの最低変換速度の意味と、それをはずれた時の影響

Q:   高速ADコンバータのデータシート上の最小サンプルレートが仮に(max)1Mspsとなっていた場合、これは1Msps以上で使用可能しなければならないということでしょうか。1Msps以下で使用した場合は、どの様なことの発生が考えられるのでしょうか。

A:   高速のパイプライン型のAD変換器は、各ステージ毎にサンプル&ホールド回路でアナログ信号を保持しています。変換時間が遅くなるとリーク電流等の影響により精度を保つ事が出来なくなるため、最小変換速度以下の変換動作時には変換精度が低下します。

未使用ロジック入力は?

Q:   /CONVSTやALERT、/BUSY信号を使用しない場合の処理を教えてください。

A:   未使用ロジック入力はノイズの影響でエッジが発生することを避けるためPull upなどでLOGIC high固定してください。

完全差動型のADCをシングルエンドのアナログ入力信号で駆動したい

Q:  完全差動型のADCでは、データシートによると、シングルエンドのアナログ入力信号の場合は、差動変換ドライバの使用が推奨されています。シングルエンド信号を直接A/Dコンバータ入力端子(IN+)に接続した場合、ADCコードはどのようになりますか?(2の補数で出力されないのでしょうか?)

A:   完全差動型の入力構成で設計されているADC、たとえばAD7690では、本来はシングルエンド入力信号に対しての使用を推奨する製品ではありません。AD7690のデータシートにもありますようにコモンモード入力レンジはVref/2までしかなく、仮に"-入力"をGNDに接続して+側にシングルで入力した場合、5Vリファレンス使用時に、入力信号電圧2.5Vまでしか精度が保証されません。基本的にADC内部で信号がシングルか差動かを判別するロジカルな機能はなく、出力データフォーマットは一定です。

変換とデータ出力が同時の場合、出力されるデータは?

Q:  たとえばAD7898をMODE-1で使用した場合、外部クロックで変換とデータ出力が同時に行われますが、このとき出力するデータは今変換しているデータか、それとも前回変換したデータなのでしょうか。

A:   Mode1では確かに変換とデ-タの読み出しを同時に行えますが、ADCの基本としては、変換が完全に終了するまでは、正しいデ-タが、内部のレジスタには収まりません。 よってAD7898のMode0のような、変換、終了、デ-タ読み出しといった一連の動作には変わりありません。
さて、Mode1では、変換とデ-ダの読み出しを同時に行うことで、より高速に動作されることができます。 しかしながら、基本動作はMode0の考え方と同じですから、変換したデ-タは変換終了後ADC内部の出力レジスタに格納されます。 その次のCSが立下り(次の変換動作)になったとき、内部に格納された変換デ-タが出力されます。

外形寸法図のBSCとは?

Q:   ± データシーとの外形図に記されている「BSC」とは、どのような意味でしょうか。

A:    BaSiCの略です。公称値という意味です。

ICの寿命や製品保証の資料は?

Q:  ± ICの寿命・製品保証に関する資料はありますか。故障率でも結構です。

A:   弊社で供給しております半導体製品の一般的な信頼性データは、弊社Webサイトから検索することが出来ます。また品質保証に関する資料等もこのサイトから検索することが出来ます。品質&信頼性のサイトから信頼性データや信頼性ハンドブック、FITレート、技術資料などをご覧ください。

Pwr Dissとは?

Q:   ± 仕様欄に表記されている"Pwr Diss(Max) 20mW"(一例)に関して用語の意味を教えてください。

A:   Pwr Diss(Max) 20mW ですが、Power Dissipationの略表示となっており、パラメータとしては消費電力となります。

コンバータのアナログ部とデジタル部の分離

Q:  回路のアナログ部とデジタル部分離したいと考えています。 アナログ用とデジタル用で全く別の電源を用意し、コンバータのREF+、REF–、 AINはアナログ電源に、VDD/GND/通信インターフェースはデジタル電源に、というような配線をしても問題ないでしょうか。

A:  VDDはアナログ電源とすることをお勧めいたします。またREF+/REF–/AINにはGND – 0.3V ≤ (REF+, REF–, AIN) ≤ VDD+0.3Vの制限がありますので、別電源とした場合、この制限を越える状態が発生しないように注意してください。

デシケータ管理条件

Q:  パッケージ開封後のデシケータ管理の条件について教えてください。管理状況によってベーキングが必要となるかと思います。その条件についても併せて教えてください。

A:  アナログ・デバイセズ製品に関しましては、湿度等の条件はJEDECのSTD–20Dを適用しております。(もともとご質問の製品は)その規定によりMSL(Moisuture Level)1と規定された製品です。MSL1のデバイスに対する取り扱いにつきましては、このJEDE STD–20Dをご参照ください。なおMSL1はもっとも管理が緩い製品レベルです。

使用温度の規定の見方は?

Q:  使用温度の考え方について。 JunctionTemp.とOperatingTemp. パッケージ表面温度はどちらの規定に従えばよいのでしょう? 周囲温度55度、パッケージ表面温度90度の場合、仕様は満たされると考えてよいのでしょうか?

A:  半導体デバイスの温度設計上、最も重要な規格は、ジャンクション温度です。消費電力の多いデバイスでは、その電力とパッケージの温度抵抗よりジャンクション温度を求めその温度が規定の範囲を越えているかどうかで、判断します。しかしながら消費電力の低いデバイスでは、パッケージ温度や周囲温度とジャンクション温度の差が大きくないのでこの様なデバイスの場合、動作保証温度=周囲温度という記述でデータシートに規定されています。たとえば、仮に消費電力が10mWのデバイスの場合、θjaが200℃/Wであったとしても、周囲温度とジャンクションの温度差は、2℃しかありません。このようなデバイスでは動作温度範囲=周囲温度とされています。
AD8253の場合θja=112℃/Wで、自己消費電力が負荷無しのワーストケースで6mA×30V=180mWですから、その温度差は、0.18×112=20.16℃になります。
周囲温度が55℃の場合、ジャンクションはおよそ70℃になるはずです。表面温度が90℃ということは、他に負荷電流等を取っていることが考えられますが、この条件のように実測90℃以上になっているのであれば、間違いなくジャンクションが動作範囲の85℃を越えていますので、性能は保証されません。 動作自身は、ジャンクション温度140℃が絶対最大定格となっていますので、この条件で即破壊することはありませんが、ジャンクション温度は100℃を超えるような動作をしているので、デバイス自身の信頼性に大きなリスクがあります。 
現実にパッケージ表面が90℃以上になるような動作であるならば、ヒートシンクやヒートメタルレイヤー、出力外部バッファ、電源電圧の低減、負荷の軽減などの何らかの処置することを強くお勧めします。

負荷が重い場合の消費電力計算方法に付きましては、日本語データシートの6ページをご参照ください。

注意:上記は「ADIS16XXX」シリーズには該当しません。