

## 1.0 SCOPE

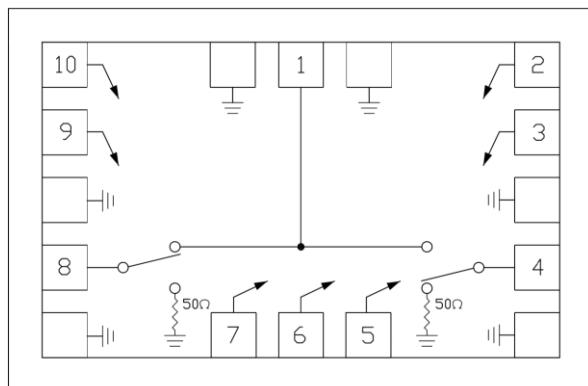
This specification documents the detail requirements for space qualified die per MIL-PRF-38534 class K except as modified herein.

The manufacturing flow described in the SPACE DIE BROCHURE is to be considered a part of this specification.

This datasheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at <https://www.analog.com/hmc347>.

## 2.0 Part Number:

The complete part number(s) of this specification follows:

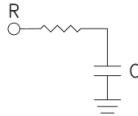

| <u>Specific Part Number</u> | <u>Description</u>                                |
|-----------------------------|---------------------------------------------------|
| ADH347-000C                 | DC to 20 GHz GaAs MMIC SPDT Non-Reflective Switch |

## 3.0 Die Information

### 3.1. Die Dimensions

| Die Size              | Die Thickness | Bond Pad and Backside Metallization |
|-----------------------|---------------|-------------------------------------|
| 51.2 mils x 33.5 mils | 4 mils        | Au                                  |

### 3.2. Die Picture




1. RFC
2. A
3. B
4. RF2
5. A
6. B
7. A
8. RF1
9. A
10. B

Die bottom is GND

# ADH347S

## 3.3. Pad Descriptions

| Pad Number | Function      | Description                                                                                                                        | Interface Schematic                                                                 |
|------------|---------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1, 4, 8    | RFC, RF2, RF1 | These pads are DC coupled and matched to $50\ \Omega$ . Blocking capacitors are required if RF line potential is not equal to 0 V. |                                                                                     |
| 2, 5, 7, 9 | A             | See Truth Table (Table IV) and Control Voltages Table (Table V).                                                                   |  |
| 3, 6, 10   | B             | See Truth Table (Table IV) and Control Voltages Table (Table V).                                                                   |  |
| Die Bottom | GND           | Die bottom must be connected to RF/DC ground.                                                                                      |  |

## 4.0 Specifications

### 4.1. Absolute Maximum Ratings 1/

|                                                                                                      |                                               |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| RF Input Power (Apply up to $T_A = +75\ ^\circ\text{C}$ ) .....                                      | +27 dBm 2/                                    |
| RF Input Power (Apply between $T_A > +75\ ^\circ\text{C}$ to $T_A = +85\ ^\circ\text{C}$ only) ..... | +26.4 dBm 2/                                  |
| Control Voltage Range (A & B) .....                                                                  | +0.5 V to -7.5 V                              |
| Hot Switch Power Level .....                                                                         | +23 dBm 2/                                    |
| Channel Temperature .....                                                                            | 150 $^\circ\text{C}$                          |
| Thermal Resistance (Channel to die bottom Insertion Loss Path) .....                                 | 338.7 $^\circ\text{C}/\text{W}$               |
| Thermal Resistance (Channel to die bottom Terminated Path) .....                                     | 433.6 $^\circ\text{C}/\text{W}$               |
| Storage Temperature Range .....                                                                      | -65 $^\circ\text{C}$ to +150 $^\circ\text{C}$ |
| Operating Temperature Range (Performance) .....                                                      | -40 $^\circ\text{C}$ to +85 $^\circ\text{C}$  |
| Operating Temperature Range .....                                                                    | -55 $^\circ\text{C}$ to +85 $^\circ\text{C}$  |
| ESD Sensitivity (HBM) .....                                                                          | Class 1A, passed 250 V                        |

### 4.2 Nominal Operating Performance Characteristics 3/

|                                                             |           |
|-------------------------------------------------------------|-----------|
| Insertion Loss (100 MHz).....                               | 1.4 dB    |
| Isolation (100 MHz) .....                                   | 64 dB     |
| Return Loss RF1, RF2 & RFC "On State" (100 MHz) .....       | 17 dB     |
| Return Loss RF1 & RF2 "Off State" (100 MHz).....            | 11 dB     |
| Input Power for 1 dB Compression (0.5 GHz to 20 GHz).....   | 23 dBm    |
| Input Third Order Intercept Point (0.5 GHz to 20 GHz) ..... | 43 dBm 4/ |

1/ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

2/ A & B Control Voltage = 0/-5 V.

3/ All specifications apply with  $T_A = 25\ ^\circ\text{C}$  unless otherwise noted.

4/ Two-Tone Input Power = +7 dBm per tone with 1 MHz spacing.

## 5.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Pre-screen test post assembly required prior to die qualification, to remove all assembly related rejects.
- (b) Mechanical Shock or Constant Acceleration not performed.
- (c) Interim and post burn-in electrical tests will include tests screened at +25 °C only.

## 6.0 Dice Electrical Characteristics

| TABLE I – DIE ELECTRICAL CHARACTERISTICS |        |                                                    |        |     |      |
|------------------------------------------|--------|----------------------------------------------------|--------|-----|------|
| Parameter                                | Symbol | Conditions 1/2/3/<br>Unless otherwise<br>specified | Limits |     | Unit |
|                                          |        |                                                    | Min    | Max |      |
| Insertion Loss                           | IL     |                                                    |        | 2.2 | dB   |
| Isolation                                | ISO    |                                                    | 40     |     | dB   |
| Return Loss RF1, RF2 & RFC “ON State”    | RLON   |                                                    | 10     |     | dB   |
| Return Loss RF1, RF2 “OFF State”         | RLOFF  |                                                    | 8      |     | dB   |

TABLE I Notes:

1/ Limits apply at TA = +25 °C only.

2/ Parameters measured at 1 GHz, 10 GHz & 20 GHz with input power = -15 dBm unless otherwise specified.

3/ A & B Control Voltage Low = 0 V, High = -5 V.

| TABLE II – ELECTRICAL CHARACTERISTICS FOR QUALIFICATION SAMPLES |        |                                                    |                     |        |     |      |
|-----------------------------------------------------------------|--------|----------------------------------------------------|---------------------|--------|-----|------|
| Parameter                                                       | Symbol | Conditions 1/2/3/<br>Unless otherwise<br>specified | Sub-<br>Group<br>4/ | Limits |     | Unit |
|                                                                 |        |                                                    |                     | Min    | Max |      |
| Insertion Loss                                                  | IL     | 1 GHz & 10 GHz                                     | 4, 5, 6             |        | 2.2 | dB   |
|                                                                 |        | 20 GHz                                             | 4, 6                |        | 2.2 |      |
|                                                                 |        |                                                    | 5                   |        | 2.4 |      |
| Isolation                                                       | ISO    |                                                    | 4, 5, 6             | 40     |     | dB   |
| Return Loss RF1, RF2 & RFC “ON State”                           | RLON   |                                                    | 4, 5, 6             | 10     |     | dB   |
| Return Loss RF1 & RF2 “OFF State”                               | RLOFF  |                                                    | 4, 5, 6             | 8      |     | dB   |

TABLE II Notes:

1/ TA Nom = +25 °C, TA Max = +85 °C, TA Min = -40 °C.

2/ Parameters measured at 1 GHz, 10 GHz & 20 GHz with input power = -15 dBm unless otherwise specified.

3/ A & B Control Voltage Low = 0 V, High = -5 V.

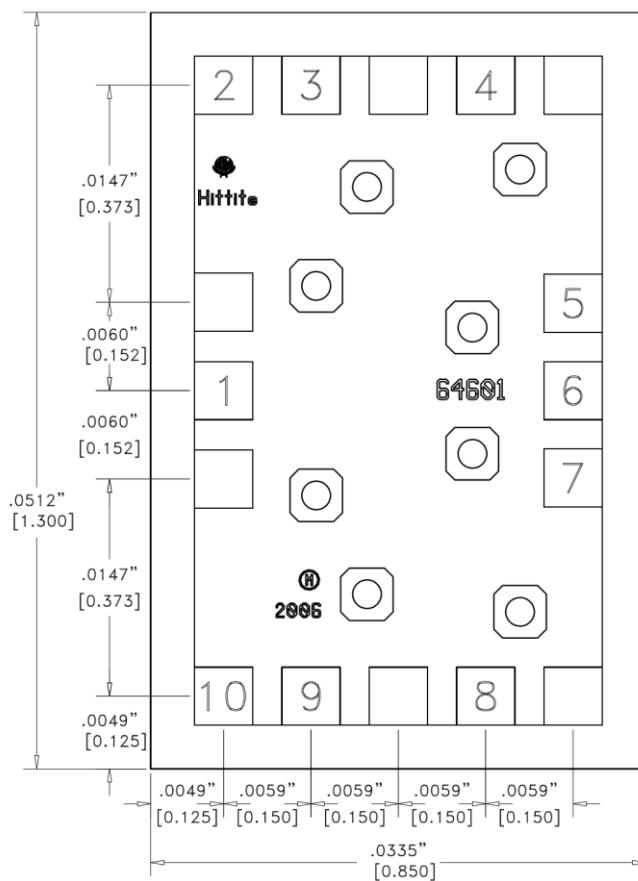
4/ See ML-PRF-38534 Table C-Xa for Sub-Group parameter definitions.

| TABLE III – BURN-IN/LIFE TEST DELTA LIMITS 1/ 2/ 3/ 4/ |        |       |       |
|--------------------------------------------------------|--------|-------|-------|
| Parameter                                              | Symbol | Delta | Units |
| Insertion Loss                                         | IL     | ± 1   | dB    |

TABLE III Notes:

1/ 240 hour burn-in and 1000 hour life test end point electrical parameters.

2/ Deltas are performed at TA = +25 °C only.


3/ Product is tested in accordance with conditions in Table II.

4/ Table II limits shall not be exceeded.

| <b>TABLE IV – TRUTH TABLE</b> |          |                          |                   |
|-------------------------------|----------|--------------------------|-------------------|
| <b>Control Input</b>          |          | <b>Signal Path State</b> |                   |
| <b>A</b>                      | <b>B</b> | <b>RFC to RF1</b>        | <b>RFC to RF2</b> |
| High                          | Low      | ON                       | OFF               |
| Low                           | High     | OFF                      | ON                |

| <b>TABLE V – CONTROL VOLTAGES</b> |                                                  |
|-----------------------------------|--------------------------------------------------|
| <b>State</b>                      | <b>Bias Condition</b>                            |
| Low                               | 0 V to -0.2 V @ 10 $\mu$ A Max.                  |
| High                              | -5 V @ 10 $\mu$ A Typ. to -7 V @ 40 $\mu$ A Max. |

## 7.0 Die Outline



| PAD | DESCRIPTION | PAD SIZE                  |
|-----|-------------|---------------------------|
| 1   | RFC         | .0040[.102] X .0040[.102] |
| 2   | A           | .0040[.102] X .0040[.102] |
| 3   | B           | .0040[.102] X .0040[.102] |
| 4   | RF2         | .0040[.102] X .0040[.102] |
| 5   | A           | .0040[.102] X .0040[.102] |
| 6   | B           | .0040[.102] X .0040[.102] |
| 7   | A           | .0040[.102] X .0040[.102] |
| 8   | RF1         | .0040[.102] X .0040[.102] |
| 9   | A           | .0040[.102] X .0040[.102] |
| 10  | B           | .0040[.102] X .0040[.102] |

## NOTES:

1. ALL DIMENSIONS ARE IN INCHES [MM]
2. DIE THICKNESS IS .004"
3. OVERALL DIE SIZE  $\pm .002"$
4. BACKSIDE METALIZATION: GOLD
5. BACKSIDE METAL IS GROUND
6. BOND PAD METALIZATION: GOLD
7. NO CONNECTION REQUIRED FOR UNLABLED BOND PADS.

## 8.0 Application Notes

Figure 1 shows the assembly diagram. The die should be attached directly to the ground plane using an eutectic mixture or with conductive epoxy. The  $50\ \Omega$  microstrip transmission lines on 0.127 mm (5 mil) thick alumina thin film substrates are recommended for bringing RF to and from the chip (Figure 2). If 0.254 mm (10 mil) thick alumina thin film substrates must be used, the die should be raised 0.15 mm (6 mil) so that the surface of the die is coplanar with the surface of the substrate. This can be accomplished by attaching the 0.102 mm (4 mil) thick die to a 0.150 mm (6 mil) thick molybdenum heat spreader (moly-tab) which is then attached to the ground plane (Figure 3). Microstrip substrates should be brought as close to the die as possible in order to minimize wire bond length. Typical die-to-substrate spacing is 0.076 mm to 0.152 mm (3 to 6 mils).

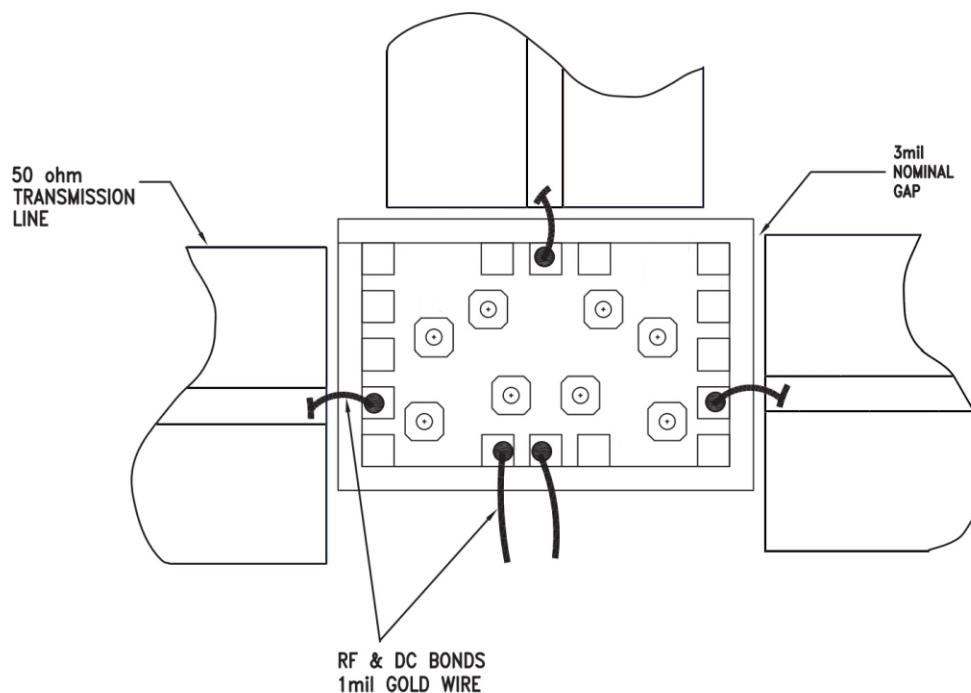



Figure 1. Assembly Diagram

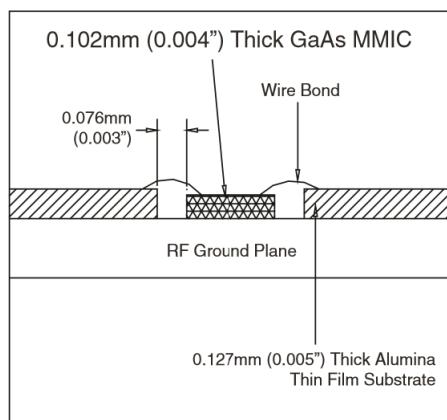



Figure 2. Die without Moly Tab

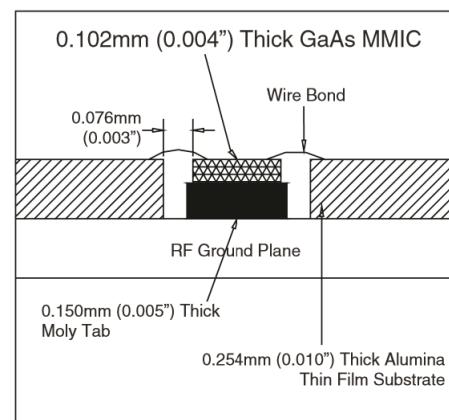



Figure 3. Die with Moly Tab

**Die Packaging Information**

| Standard        | Alternate |
|-----------------|-----------|
| GP-5 (Gel Pack) | <u>1/</u> |

Note:

1/ For alternate packaging information, contact Analog Devices Inc.

| Revision History |                            |           |
|------------------|----------------------------|-----------|
| Rev              | Description of Change      | Date      |
| A                | Initial Production Release | 6/28/2022 |
|                  |                            |           |
|                  |                            |           |
|                  |                            |           |
|                  |                            |           |