文章

Maithil Pachchigar 关于作者
Maithil Pachchigar ,
Applications Engineer within the Precision Converters business unit at Analog Devices, Inc.

Selecting an ADC driver to achieve optimized signal chain performance

Precision high-speed data-acquisition systems used in multichannel applications require state-of-the-art performance. This analog tip covers the specifications that are critical to consider when selecting an ADC driver to optimize signal chain performance. 

The figure shows a high-precision, low-noise, 18-bit data-acquisition signal chain that features ±0.8-LSB integral nonlinearity (INL), ±0.5-LSB differential nonlinearity (DNL), and 99-dB signal-to-noise ratio (SNR). The AD7960 18-bit, 5-MSPS PulSAR differential ADC uses a capacitive digital-to-analog converter (CAPDAC) to provide unprecedented noise and linearity without latency or pipeline delay. It provides the wide bandwidth, high accuracy (100 dB DR), and fast sampling (200 ns) required for multiplexed applications, while significantly reducing power dissipation and cost in multichannel applications.


Precision, fast-settling signal chain using AD7960, ADA4899, AD8031, and ADR4550

ADC Driver
The acquisition time of the ADC determines the settling time requirements for the ADC driver. The table shows some specifications that must be considered when selecting an ADC driver. As always, the signal chain performance should be verified on the bench to ensure that the desired performance is achievable.

AD7960 ADC Driver Selection Benchmark
ADC Driver Specifications General Formula Minimum Requirements
Bandwidth
(f-3db_amp)
Bandwidth formula
40MHz
Slew Rate Slew rate formula
100 V/µs
Settling Time From data sheet
100 ns
SNR
SNR formula
105.5 dB
Notes: N = 18, tacq = 100 ns, Vrms_in2 = 52/2 = 12.5 V2, en_amp = 2 nV/√Hz,  f–3dB_ADC = 28 MHz.

The op amp data sheet usually specifies the settling time as the combined time for linear settling and slewing; the formulas given are first-order approximations assuming 50% for linear settling and 50% for slewing (multiplexed application) using a 5-V single-ended input. 

The ADA4899-1 rail-to-rail amplifier features 600-MHz bandwidth, –117-dBc distortion @ 1 MHz, and 1-nV/√Hz noise. It settles to 0.1% within 50 ns when configured as a unity-gain buffer driving the inputs of the AD7960 with a 5-V differential signal.

  • 关于作者
  • Maithil Pachchigar
    Applications Engineer within the Precision Converters business unit at Analog Devices, Inc.

Maithil Pachchigar 是ADI公司位于美国麻萨诸塞州威明顿市的仪器仪表、航空航天与国防业务部门的应用工程师。他于2010年加入ADI公司,从事仪器仪表、工业、医疗保健和能源行业的精密ADC产品相关工作和客户支持。自2005年以来,Maithil一直在半导体行业工作,并已发表多篇技术文章。他于2006年获得圣何塞州立大学电气工程硕士学位,并于2010年获得硅谷大学MBA学位。