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Quantization Noise: An Expanded 
Derivation of the Equation,  
SNR = 6.02 N + 1.76 dB 
by Ching Man,  
Analog Devices, Inc. 
 

IN THIS MINI TUTORIAL 
The steps are shown for how the equation, signal-to-noise-

ratio (SNR) = 6.02 N + 1.76 dB is derived. The mathematical 

derivation steps are highlighted. 

INTRODUCTION  
This tutorial describes three distinct stages for the derivation 
process.  

1. The ideal analog-to-digital converter (ADC) transfer 
function equation and manipulation.  

2. The root mean square (rms) derivation from integration.  

3. The SNR equation derivation for obtaining the  
SNR = 6.02 N + 1.76 dB value. 

This mathematical tutorial expands and enhances the 
derivation version presented in MT-001. 

IDEAL ADC TRANSFER FUNCTION EQUATION AND 
MANIPULATION 
The ideal ADC transfer function is shown in Figure 1(A). The 
digital (binary) output values are represented by the y-axis,  
and the analog inputs are represented by the x-axis. The 
diagonal staircase represents the quantized value of the analog 
input signal. The dashed line through the staircase represents 
their mid-points. 

Figure 1(B) represents the quantization noise of an ideal N-bit 
ADC for a ramp input signal. The quantization error of 1 LSB 
peak-to-peak can be approximated by an uncorrelated saw 
tooth waveform having a maximum peak-to-peak swing of q, 
from q/2 to –q/2. Note that t1 and t2 are points in time and  
are used at a later stage in the derivation. This signal is the 
difference between the quantized output signal (solid) and the 
analog input signal (dashed) shown in Figure 1(A).  

 
Figure 1. Ideal ADC Transfer Function (A) and Ideal N-Bit ADC Quantized Noise (B) 
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The equation of a line is given by 

y = mx + c 

where: 
y represents the value on the y-axis. 
m is the slope. 
x is the value on the x-axis. 
c is the intersection point where the line passes through the  
y-axis at x = 0.  

Therefore, when the equation of a line is applied in Figure 2, 
when c is at x = 0, y = 0 (that is, at the origin). The error 
equation for e(t) is 

e(t) = st + 0 or simply e(t) = st (1) 

where: 
e(t) is the quantized error. 
s is the slope. 
t is the time.  

This is simply the equation of a straight line 

y = mx + c  

where: 
y = e(t). 
m = s. 
x = t. 
c = 0. 

The error, e(t), swings between –q/2 and +q/2 for t1 < t < t2. 

At Time t1 and t2 in Figure 1, the error e(t) is given by  

𝑣(𝑡1) =
−𝑞
2

= 𝑛𝑡1 

 𝑡1 =  
−𝑞
2𝑛

                                                                            (2) 

𝑣(𝑡2) =
𝑞
2

= 𝑛𝑡2 

𝑡2 =  
𝑞

2𝑛
                                                                              (3) 

Equation 2 and Equation 3 can now relabel the graph 
for e(t) as shown in Figure 2. 

 
Figure 2. Substitution of Values for t1 and t2 

RMS DERIVATION 
The root mean square (rms) derivation can now be evaluated by 
integration and substitution. Figure 3(A) shows the period, T, 
over which the integration is performed. The mean square of 
e(t) is shown in Figure 3(B). 

 

 
Figure 3. Defining the Period T (A) and Squaring the Error e(t) Function (B) 
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The mean square error e(t), is computed, over the period T, 
where the Time t is defined by Equation 2 and Equation 3, 

𝑡1 =
−𝑞
2𝑛

, 𝑡2 =
+𝑞
2𝑛

 , 

Equating and defining the base for the period T in Figure 3 as, 

𝑇 =  𝑡2 − 𝑡1 

𝑇 =  
𝑞

2𝑛
+
𝑞

2𝑛
 

∴  𝑇 =
𝑞

  𝑛   
                                                                               (4) 

mean square error, 

 e� 
2

(𝑡) = �
(𝑛𝑡)2

𝑇

𝑡2

𝑡1
𝑑𝑡  =

𝑞2

12
                                                (5) 

is derived as follows by evaluating the mean square error from 
integration: 

e� 
2

(𝑡) = �  
    (𝑠𝑡)2

   1    
   𝑞𝑠

 dt  = �  
(𝑠𝑡)2

1
 ×
𝑛
𝑞

dt   

𝑡2

𝑡1

              

𝑡2

𝑡1

 

e� 
2

(𝑡) =  
𝑛
𝑞
� (𝑛𝑡)2
𝑡2

𝑡1
𝑑𝑡                                                          (6)  

=  
𝑛
𝑞
�  𝑛2𝑡2
𝑡2

𝑡1
𝑑𝑡  =  

𝑛3

𝑞
�  𝑡2
𝑡2

𝑡1
𝑑𝑡    

=   
𝑛3

𝑞
�
𝑡3

3
�
𝑡1

𝑡2

    

=   
𝑛3

𝑞
�  
𝑡3

3
 �
𝑡2

−   
𝑡3

3
 �
𝑡1

 � 

Substituting for upper and lower limits for 𝑡2 and 𝑡1, 

 =  
𝑛3

𝑞
�
� 𝑞2𝑛�

3

3
+   

� 𝑞2𝑛�
3

3
�    =      

𝑛3

𝑞
�2
� 𝑞2𝑛�

3

3
�    

=  
𝑛3

𝑞
× 2 �

𝑞3
8𝑛3

3
1
�  =  

𝑛3

𝑞
× 2 �

𝑞3

8𝑛3
×

1
3
� 

=
  𝑛3

𝑞
× 2 ×

𝑞3

8𝑛3
×

1
3

   

=  
  𝑛3

𝑞
× 2 ×

𝑞3

84 𝑛3
×

1
3

  

=  
 𝑞2 

4
×

1
3 

     

Therefore, the derived mean square error, 

 e� 
2

(𝑡) =
𝑞2 
12

                                                                        QED  

Evaluating the root mean square error e(t), can be found from 

��e� 
2

(t)�  = �
q2

12
= 

q
√12

=
q

√(4 × 3)
 =

q
2√3

     

Therefore, the rms quantized error e(t), 

��e� 
2

(𝑡)�  = 
𝑞

2√3
                                                                      (7) 

The theoretical signal-to-noise ratio can be calculated, 
assuming an average full-scale (FS) sinewave,   𝑉(𝑡), as the input 
signal where 

𝑉(𝑡) =  
𝑞2𝑁

2
sin(2𝜋𝑜𝑡)                                                           (8) 

For a sinewave to be converted to an rms value, simply multiply 
by  1

√2
  or by 0.707. Hence, 𝑉(𝑡) x  1

√2
 . Therefore, the root mean 

square of the input sinewave is given as 

  �V� 
2

(𝑡) =  
𝑞2𝑁

2√2
sin(2𝜋𝑜𝑡)                                                  (9) 

SNR DERIVATION 
The SNR equations in dB, where the 6.02 N + 1.76 dB, can now 
be derived from this point.  

From Equation 9, the maximum amplitude occurs when sine 
(90°) = 1. The rms (FS) sinewave input V(t) signal can now be 
written as 

  �V� 
2

(𝑡) =  
𝑞2𝑁

2√2
                                                                    (10) 

The rms signal-to-noise ratio, for an ideal N-bit converter 
(Equation 10, for example) with respect to the rms value  
of quantization noise (for example, Equation 7), hence 
(Equation 10)/(Equation 7), can now be computed in dB as 

𝑆𝑆𝑆 =  20 𝑙𝑙𝑙10  
𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝐹𝐹 𝑖𝑖𝑖𝑖𝑖

𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑛𝑛𝑛𝑛𝑛
     (11) 

𝑆𝑆𝑆 =  20 𝑙𝑙𝑙10 

⎣
⎢
⎢
⎡ �V� 

2
(𝑡)

��e� 
2

(𝑡)�
 

⎦
⎥
⎥
⎤
  

=  20 𝑙𝑙𝑙10 

⎣
⎢
⎢
⎡
 
 𝑞2𝑁

 2√2 
𝑞

2√3
 
⎦
⎥
⎥
⎤
    

=  20 𝑙𝑙𝑙10 � 
𝑞2𝑁

 2√2 
 ×  

 2√3
𝑞

�       

=  20 𝑙𝑙𝑙10 � 
𝑞2𝑁

 2√2 
 ×  

 2√3
𝑞

�    

=  20 𝑙𝑙𝑙10 � 
2𝑁

1 
 ×  

 √3
√2 

� 

=  20 𝑙𝑙𝑙10 � 2𝑁  × �3
2

  �           

=  20 𝑙𝑙𝑙10 [2]𝑁 +  20 𝑙𝑙𝑙10 �
3
2
�
1
2
 

=  𝑁 ×  20 𝑙𝑙𝑙10 (2)  +   
1
2

× 20 𝑙𝑙𝑙10 �
3
2
�  
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=  𝑆 ×  20 × 0.301  +  10 × 0.176   

∴  𝑆𝑆𝑆 =  6.02 𝑆 +  1.76 𝑑𝐵  QED 

where N is the bit resolution of an ADC.  

The derivation shows that the 6.02 factor in the equation is 
derived from 20log10 (2) and the 1.76 dB term is derived from 

10log10 �
3
2
� .  

SUMMARY 
This equation is an approximation, which assumes that the 
quantization error is not correlated to the input signal. This 
assumption is true in most cases where N > 6 and the input 
signal is not an exact submultiple of the sampling frequency. 
This case is discussed in more detail in MT-001. 

The noise term calculated to determine SNR in the equation is 
the noise measured over the Nyquist bandwidth, dc to one-half 
the sampling frequency. If the bandwidth of interest is less than 
one-half the sampling frequency, then a correction factor must 
be applied as discussed in MT-001.  
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