

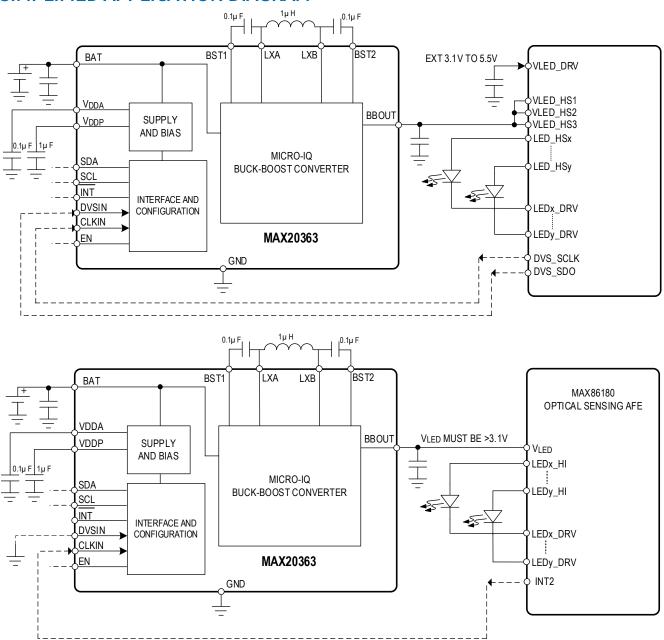
PPG Optimized Buck-Boost Converter with 500mA Output Current and Ultra-Fast DVS Capability

FEATURES

- Extend System Runtime
 - ► Ultra-fast dynamic voltage scaling with direct AFE control
 - Low, 2.5μA (typical) quiescent current
 - ▶ 96% peak efficiency
- ► Low, Continuous Noise Profile
 - ▶ No post-filtering LDO required in PPG systems
 - No discontinuities across operating voltage
- ► Adaptable Load Transient Response
 - ► Fast load transient response minimizes AFE settling time
 - ► FAST mode pre-triggers load response and improves load transient

APPLICATIONS

► Biometric Optical Sensing (example, PPG)


GENERAL DESCRIPTION

The MAX20363 is an ultra-low guiescent current, noninverting buck-boost converter with 500mA output current capability. The MAX20363 is intended for applications that require long run times while also demanding bursts of high current. The device employs a proprietary control algorithm that seamlessly transitions between buck, buck-boost, and boost modes, minimizing discontinuities and subharmonics in the output voltage ripple. The low 1.8V input voltage allows the device to be powered from a variety of sources such as lithium ion rechargeable and lithium primary batteries. The MAX20363 is designed to minimize inductance and capacitance requirements to keep the overall solution size as small as possible.

The MAX20363 is optimized for powering optical photoplethysmogram (PPG) systems. The ultra-fast dynamic voltage scaling (DVS) capability allows the device to transition quickly between output voltages and enable in-frame scaling of LED supply voltage. Additionally, the low output ripple and fast, predictable transient response maximizes the signal-to-noise ratio (SNR) of high-performance optical PPG analog-frontend (AFE).

The MAX20363 is available in an 18-bump, 2.43mm x 1.25mm WLP package, with 0.4mm pitch.

SIMPLIFIED APPLICATION DIAGRAM

analog.com Rev 1 | 2 of 51

SPECIFICATIONS

Table 1. Electrical Characteristics

 $(V_{BAT} = +1.8V \text{ to } +5.5V, C_{BAT_EFF} = 5\mu\text{F}, C_{BBOUT_EFF} = \text{See } \textit{Figure } 34$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}\text{C}$, $V_{BAT} = +3.7V$, $L = 1\mu\text{H}$, limits are 100% tested at $T_A = +25^{\circ}\text{C}$.) (Note 1))

PARAMETER	SYMBOL	CONDITIONS/COMMENTS			TYP	MAX	UNITS
Input Voltage Range	V_{BAT}		1.8		5.5	V	
	IQ	No load, V _{BBOUT} = 5° 2)		2.5			
	I _{Q_ROOM}	No load, $V_{BBOUT} = 5^{\circ}$ 2), $T_A = 25^{\circ}$ C	No load, $V_{BBOUT} = 5V$, $V_{BAT} = 3.7V$ (Note 2), $T_A = 25^{\circ}C$			6	μΑ
Quiescent Supply Current	I _{Q_FAST}	No load, $V_{BBOUT} = 5V$, $V_{BAT} = 3.7V$ (Note 2)	FAST = 1		75		
	$I_{Q_{_FPWM}}$ No load, $V_{BBOUT} = 5V$, $V_{BAT} = 3.7V$	FPWM = 1, L = 1µH (DFE201210U1R0 M)		11		mA	
Shutdown Supply	1	EN = 1, Disabled by		1.2		μA	
Current	I _{SHDN}	EN = 0		0.1		μΛ	
Maximum Output Current	I _{BBOUT_MAX}	$V_{BAT} \ge 2.5V, 1.5V \le V_{BBOUT} \le 5.0V$	BBFetScale = 00, $L = 1\mu H$ (DFE201210U- 1R0M), BBL2P2Sel = 0, C_{BBOUT_EFF} = refer to <i>Figure 34</i> , I_{PSET1} = default, I_{PSET2} = 300mA, Load Reg \geq -7.5%	500			mA
	V _{BBOUT} ≤ 5.0V	BBFetScale = 01 or 10, L = 1μ H (DFE201210U- 1R0M), BBL2P2Sel = 0, C _{BBOUT_EFF} = $1/2$ of that shown in Figure 34, I _{PSET1} = default, I _{PSET2} =	250				

analog.com Rev 1 3 of 51

 $(V_{BAT} = +1.8 \text{V to } +5.5 \text{V}, C_{BAT_EFF} = 5 \mu \text{F}, C_{BBOUT_EFF} = \text{See } \textit{Figure 34}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}\text{C}, V_{BAT} = +3.7 \text{V}, L = 1 \mu \text{H}, \text{ limits are } 100\% \text{ tested at } T_A = +25 ^{\circ}\text{C}.) \text{ (Note 1))}$

PARAMETER	SYMBOL	CONDITIONS	S/COMMENTS	MIN	TYP	MAX	UNITS
			300mA, Load Reg ≥ -7.5%				
			BBFetScale = 11, $L = 1\mu H$ (DFE201210U- 1R0M), BBL2P2Sel = 0 $C_{BBOUT_EFF} = 1/4$ of that shown in Figure 34, $I_{PSET1} =$ default, $I_{PSET2} =$ 300mA, Load Reg \geq -7.5%	125			
		$V_{BAT} \ge 2.0V, 1.5V \le V_{BBOUT} \le 5.0V$	BBFetScale = 00, L = 1μ H (DFE201210U- 1R0M), BBL2P2Sel = 0, C_{BBOUT_EFF} = refer to <i>Figure 34</i> , I_{PSET1} = default, I_{PSET2} = 300mA, Load Reg \geq -7.5%	350			
Output Voltage Set Range	V_{BBOUT}	50mV step resolut	ion		1.5 to 5.5		V
Average Output-Voltage	ACC_OUT	$I_{BBOUT} = 10$ mA, FAS $0, L = 1\mu H$ (DFE201 $= default, I_{PSET2} = 36$ $20\mu F$.210U-1R0M), I _{PSET1}	-1		+2.5	%
Accuracy	, nee_001	I_{BBOUT} = 10mA, FAST = 0, BBL2P2Sel = 0, L = 1 μ H (DFE201210U-1R0M), I_{PSET1} = default, I_{PSET2} = 300mA, C_{BBOUT_EFF} = 20 μ F		-0.5		+3	76
Line Regulation Error	V_{LINE_REG}	$I_{BBOUT} = 50 \text{mA}, C_{BBO}$	_{UT_EFF} = 20μF	-1		+1	%/V
Load Regulation Error	V_{LOAD_REG}	$V_{BAT} = 3.7V, V_{BBOUT} = BBFetScale = 00, C$ Figure 34, $I_{PSET1} = d$			-2.5		%

analog.com Rev 1 | 4 of 51

 $(V_{BAT} = +1.8 \text{V to } +5.5 \text{V}, C_{BAT_EFF} = 5 \mu \text{F}, C_{BBOUT_EFF} = \text{See } \textit{Figure } 34$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$, unless otherwise noted. Typical values are at $T_A = +25 ^{\circ}\text{C}$, $V_{BAT} = +3.7 \text{V}$, $L = 1 \mu \text{H}$, limits are 100 % tested at $T_A = +25 ^{\circ}\text{C}$.) (Note 1))

PARAMETER	SYMBOL	CONDITIONS/COMMENTS	MIN	TYP	MAX	UNITS
		300mA, BBL2P2Sel = 0, L = 1μH (DFE201210U-1R0M)				
		V_{BAT} = 3.7V, V_{BBOUT} = 5V, I_{BBOUT} = 250mA, BBFetScale = 01 or 10, C_{BBOUT} = 1/2 of that shown in <i>Figure 34</i> , I_{PSET1} = default, I_{PSET2} = 300mA, BBL2P2Sel = 0, L = 1 μ H (DFE201210U-1R0M)		-2.0		
		V_{BAT} = 3.7V, V_{BBOUT} = 5V, I_{BBOUT} = 125mA, BBFetScale = 11, C_{BBOUT} = ½ of that shown in <i>Figure 34</i> , I_{PSET1} = default, I_{PSET2} = 300mA, BBL2P2Sel = 0, L = 1 μ H (DFE201210U-1R0M)		-2.0		
Line Transient Response	V_{LINE_TRAN}	V_{BBOUT} = 3.4V, V_{BAT} from 3.4V to 2.9V, 1 μ s fall time, I_{LOAD} = 1 μ mA, C_{BBOUT} = refer to <i>Figure 34</i>		20		mV
Load Transient Response	V_{LOAD_TRAN}	V_{BBOUT} = 5V, V_{BAT} = 3.7V, I_{LOAD} = 10 μ A to 300mA, I_{PSET1} = default, I_{PSET2} = 300mA, BBL2P2Sel = 0, L = 1 μ H (DFE201210U-1R0M), C_{BBOUT} = refer to <i>Figure 34</i>		80		mV
Programmable Inductor Valley Current Limit During Startup	I _{IVLY_STUP}	BBIPwpMaxP 50mA steps		0 to 750		mA
Maximum Output Load Current during Start Up	I _{PWR_MAX_STUP}	V _{BAT} > 2.5V, I _{PSET1} = default, I _{PSET2} = 300mA, I _{VLY_STUP} min setting (BBIPwpMaxP = 0)		40		mA
Startup Time	Time from enable (B goes high) to final va			10		ms
Nominal Valley Inductor		BBFetScale = 00, 50mA steps		0 to 1600		
Current Limit Range	I _{VLY_LIM}	BBFetScale = 01 or 10, 25mA steps	0 to 800			mA
		BBFetScale = 11, 12.5mA steps		0 to 400		

analog.com Rev 1 | 5 of 51

 $(V_{BAT} = +1.8 \text{V to } +5.5 \text{V}, C_{BAT_EFF} = 5 \mu \text{F}, C_{BBOUT_EFF} = \text{See } \textit{Figure } 34$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$, unless otherwise noted. Typical values are at $T_A = +25 ^{\circ}\text{C}$, $V_{BAT} = +3.7 \text{V}$, $L = 1 \mu \text{H}$, limits are 100 % tested at $T_A = +25 ^{\circ}\text{C}$.) (Note 1))

PARAMETER	SYMBOL	CONDITIONS/COMMENTS	MIN	TYP	MAX	UNITS	
Nominal Falling		BBFetScale = 00, 50mA steps		-200 to -1800			
Dynamic Voltage Scaling Valley Inductor Current Limit Range	I_{DVSF}	BBFetScale = 01 or 10, 25mA steps		-200 to -1000		mA	
Limit Kange		BBFetScale = 11, 12.5mA steps		-100 to -500			
Active Discharge Current	I _{ACTD}	Applied on BBOUT for 50ms after shutdown if BBstActDsc = 1		20		mA	
Passive Discharge Resistance	R_{PSVD}	Applied on BBOUT after shutdown, if BBstPsvDsc = 1 or EN is low		1.3		kΩ	
Output UVLO	$V_{\text{OUT_UVLO_F}}$	V _{BBOUT} falling	1	1.1		V	
output oveo	$V_{\text{OUT_UVLO_R}}$	V _{BBOUT} rising		1.13	1.25	V	
VDDA UVLO	$V_{VDDA_UVLO_R}$	V _{VDDA} rising		1.658	1.7	V	
	$V_{VDDA_UVLO_F}$	V _{VDDA} falling	1.6	1.642			
LXA, LXB Leakage	I _{LX_LKG}	EN is low			2.5	μΑ	
BST1, BST2 Leakage	I _{BST_LKG}	EN is low			4.5	μΑ	
BBOUT Leakage	I _{BBOUT_LKG}	EN is high and BBstEna = 0			1	μΑ	
DIGITAL							
SDA, SCL, EN, INT, DVSIN, CLKIN Input Leakage Current	I _{LK_IO}		-1		+1	μΑ	
SDA, SCL, EN, DVSIN, CLKIN Input Logic High	$V_{\text{IO_IH}}$		1.4			V	
SDA, SCL, EN, DVSIN, CLKIN Input Logic Low	$V_{IO_{IL}}$				0.4	V	
INT Output Logic Low	V _{IO_OL_INT}	I _{OL} = 4mA			0.4	V	
SDA Output Logic Low	$V_{IO_OL_SDA}$	I _{OL} = 20mA			0.4	V	
SCL Clock Frequency	f _{SCL}		0		1	MHz	

analog.com Rev 1 6 of 51

 $(V_{BAT} = +1.8V \text{ to } +5.5V, C_{BAT_EFF} = 5\mu\text{F}, C_{BBOUT_EFF} = \text{See } \textit{Figure 34}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C}, V_{BAT} = +3.7V, L = 1\mu\text{H}, \text{ limits are } 100\% \text{ tested at } T_A = +25^{\circ}\text{C}.) \text{ (Note 1))}$

PARAMETER	SYMBOL	CONDITIONS/COMMENTS	MIN	TYP	MAX	UNITS
Bus Free Time Between STOP and START Condition	t _{BUF}		0.5			μs
START Condition (Repeated) Hold Time	t _{HD_STA}		0.26			μs
Low Period of SCL Clock	t _{LOW}		0.5			μs
High Period of SCL Clock	t _{HIGH}		0.26			μs
Setup Time for a Repeated START Condition	t _{su_sta}		0.26			μs
Data Hold Time	t _{HD_DAT}		0			μs
Data Setup Time	t _{SU_DAT}		50			ns
Setup Time for STOP Condition	t _{su_sto}		0.26			μs
Spike Pulse Widths Suppressed by Input Filter	t _{sp}			50		ns
DATA Valid Time	t _{VD_DAT}				450	ns
DATA Valid Ack Time	t _{VD_ACK}				450	ns
SPI			l .			
CLKIN Frequency	f _{CLKIN}				20	MHz
DVSIN Setup Time	$t_{ extsf{DS}}$		10			ns
DVSIN Hold Time	t _{DH}		20			ns
CLKIN Pulse Width Low	t _{LOW_SPI}		20			ns
CLKIN Pulse Width High	t _{HIGH_SPI}		20			ns

All devices are 100% production tested at T_A = +25°C. Limits over the operating temperature range are guaranteed by design.

analog.com Rev 1 7 of 51

² Quiescent current specification is guaranteed only down to 1.9V

ABSOLUTE MAXIMUM RATINGS

Table 2. Absolute Maximum Ratings

PARAMETER	RATING
BAT, BBOUT, SDA, SCL, EN, CLKIN, DVSIN	-0.3V to +6.0V
INT	-0.3V to 12V
LXA	-0.3V to Min (V _{BAT} + 0.3V, +6.0V)
LXB	-0.3V to Min (V _{BBOUT} + 0.3V, +6.0V)
VDDP	-0.3V to 2.2V
VDDA	Max (-0.3V, V_{DDP} = 0.1V) to Min (2.2V, V_{DDP} + 0.1V)
BST1	Max (V _{DDP} = 0.3V, V _{LXA} = 0.3V) to Min (V _{LXA} +2.2V, V _{DDP} +7.5V)
BST2	Max (V _{DDP} = 0.3V,V _{LXB} = 0.3V) to Min (V _{LXB} + 2.2V, V _{DDP} + 7.5V)
Current into BAT, LXA, LXB (10% utilization for 100k hours)	±1.6A
Current into BBOUT (10% utilization for 100k hours)	±600mA
Continuous Current into Any Other Terminal	±100mA
Continuous Power Dissipation (Multilayer Board, T _A = +70°C) (derate 17.63mW/°C above +70°C)	1410.72mW
Junction Temperature	+150°C
Storage Temperature Range	-40°C to +150°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Thermal Resistance

Thermal performance is directly linked to PCB design and operating environment. Close attention to PCB thermal design is required.

Package Type	θ _{JA}	Unit
W181A2+1	56.71	°C/W

analog.com Rev 1 8 of 51

MAX20363

Electrostatic Discharge (ESD)

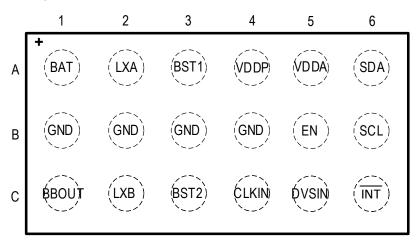
The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only Human body model (HBM) per ANSI/ESDA/JEDEC JS-001 Field induced charged device model (FICDM) and charged device model (CDM) per ANSI/ESDA/JEDEC JS-002. International Electrotechnical Commission (IEC) electromagnetic compatibility: Part 4-2 (IEC) per IEC 61000-4-2. Machine model (MM) per ANSI/ESD STM5.2. MM voltage values are for characterization only.

ESD Ratings

Table 3. MAX20363

ESD Model	Withstand Threshold (V)	Class
НВМ	±2500	2

ESD Caution



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev 1 | 9 of 51

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

TOP VIEW (BUMP SIDE DOWN)

18-bump, 0.4mm WLP (1.25mm x 2.43mm)

Table 4. Pin Descriptions

PIN	NAME	DESCRIPTION
A1	BAT	Input Supply. Bypass to GND with effective capacitance at least the maximum between $5\mu F$ and the value of the derating curve (<i>Figure 34</i>) for a bias voltage V_{BAT} , placed as close to the device as possible.
A2	LXA	Switching Node A. Connect through 1µH or 2.2µH inductor to LXB.
A3	BST1	Boostrap Cap 1. Connect through 100nF capacitor to LXA, placed as close to the device as possible.
A4	V _{DDP}	1.8V regulator output voltage. Bypass with $1\mu F$ capacitor to GND, placed as close to the device as possible. Do not externally load the VDDP pin.
A5	V_{DDA}	1.8V analog output supply. Internally connected to VDDP through 20 ohm resistance. Bypass with 100nF capacitor to GND, placed as close to the device as possible. Do not externally load the VDDA pin.
A6	SDA	I ² C Serial Data Input/Open-Drain Output. Connect to GND when not in use.
B1, B2, B3, B4	GND	Ground
B5	EN	Enable. Active-high.
B6	SCL	I ² C Serial Clock Input. Connect to GND when not in use.
C1	BBOUT	Buck Boost Output. Bypass to ground with effective capacitance shown in <i>Figure 34</i> , place as close to the device as possible. Refer to Input and Output Capacitance section for detail.
C2	LXB	Switching Node B. Connect through 1µH or 2.2µH inductor to LXA.

analog.com Rev 1 | 10 of 51

MAX20363

Data Sheet

C3	BST2	Boostrap Cap 2. Connect through 100nF capacitor to LXB, placed as close to the device as possible.
C4	CLKIN	Dedicated SPI Clock Input. Connect to GND when not in use.
C5	DVSIN	Dedicated SPI DVS Input. Connect to GND when not in use.
C6	ĪNT	Interrupt Open-Drain Output. Active low. Externally connect through pullup resistor to system logic supply.

analog.com Rev 1 | 11 of 51

TYPICAL PERFORMANCE CHARACTERISTICS

 $(V_{BAT} = +3.7V, C_{BAT} = C_{BBOUT} = 22\mu F$, refer to *Figure 34* single capacitor derating, L = 1 μ H, BBstLowEMIB = 1, BBstIpPadPEnb = 0, BBFetScale = 0, $T_A = +25$ °C, unless otherwise noted.)

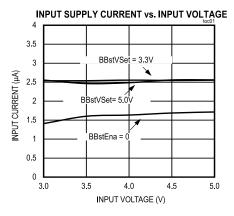


Figure 1. Input Supply Current vs. Input Voltage

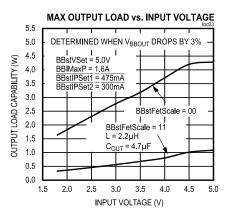


Figure 3. Max Output Load vs. Input Voltage

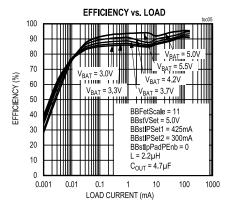


Figure 5. Efficiency vs. Load

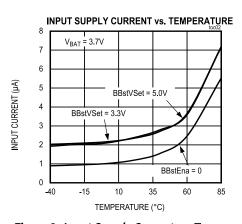


Figure 2. Input Supply Current vs. Temperature

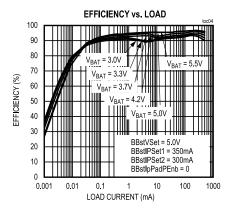


Figure 4. Efficiency vs. Load

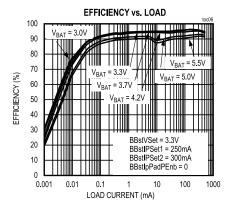


Figure 6. Efficiency vs. Load

analog.com Rev 1 | 12 of 51

 $(V_{BAT} = +3.7V, C_{BAT} = C_{BBOUT} = 22\mu F$, refer to *Figure 34* single capacitor derating, L = 1 μ H, BBstLowEMIB = 1, BBstIpPadPEnb = 0, BBFetScale = 0, $T_A = +25$ °C, unless otherwise noted.)

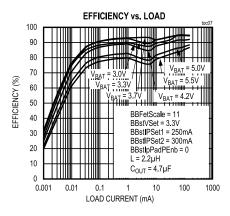


Figure 7. Efficiency vs. Load

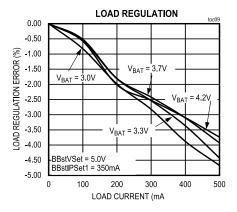


Figure 9. Load Regulation

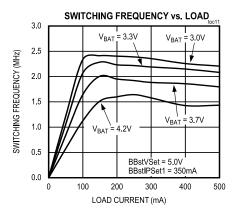


Figure 11. Switching Frequency vs. Load

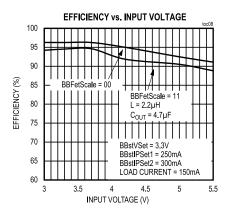


Figure 8. Efficiency vs. Input Voltage

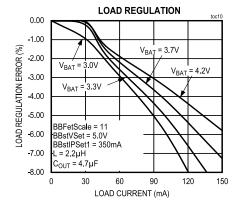


Figure 10. Load Regulation

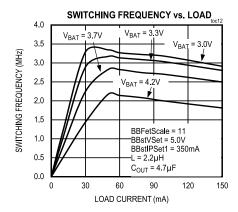


Figure 12. Switching Frequency vs. Load

analog.com Rev 1 | 13 of 51

 $(V_{BAT} = +3.7V, C_{BAT} = C_{BBOUT} = 22\mu F$, refer to *Figure 34* single capacitor derating, L = 1 μ H, BBstLowEMIB = 1, BBstlpPadPEnb = 0, BBFetScale = 0, $T_A = +25$ °C, unless otherwise noted.)

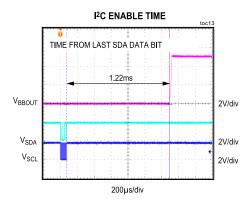


Figure 13. PC Enable Time

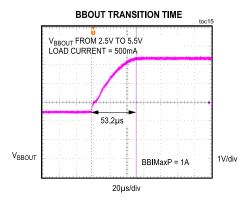


Figure 15. BBOUT Transition Time

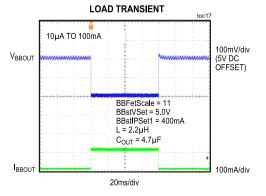


Figure 17. Load Transient

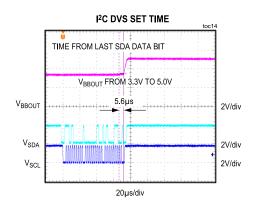


Figure 14. f²C DVS Set Time

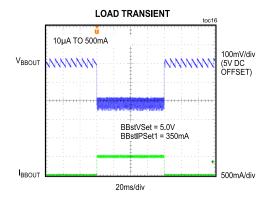


Figure 16. Load Transient

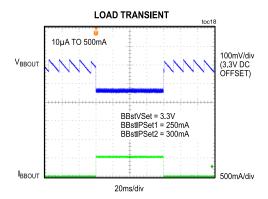


Figure 18. Load Transient

analog.com Rev 1 | 14 of 51

 $(V_{BAT} = +3.7V, C_{BAT} = C_{BBOUT} = 22\mu F$, refer to *Figure 34* single capacitor derating, L = 1 μ H, BBstLowEMIB = 1, BBstIpPadPEnb = 0, BBFetScale = 0, $T_A = +25$ °C, unless otherwise noted.)

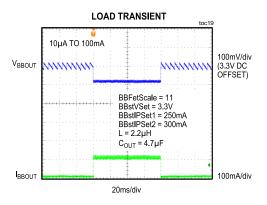


Figure 19. Load Transient

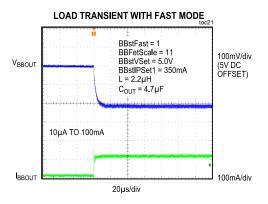


Figure 21. Load Transient with Fast Mode

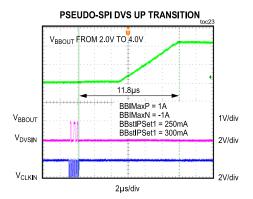


Figure 23. Pseudo-SPI DVS Up Transition

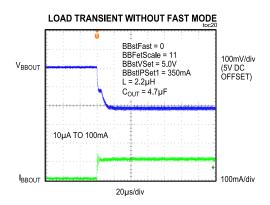


Figure 20. Load Transient without Fast Mode

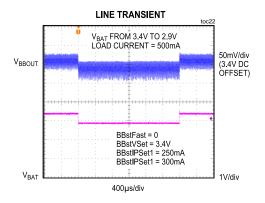


Figure 22. Line Transient

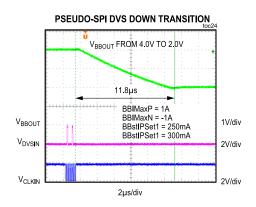


Figure 24. Pseudo-SPI DVS Down Transition

analog.com Rev 1 | 15 of 51

 $(V_{BAT} = +3.7V, C_{BAT} = C_{BBOUT} = 22\mu F$, refer to *Figure 34* single capacitor derating, L = 1 μ H, BBstLowEMIB = 1, BBstIpPadPEnb = 0, BBFetScale = 0, $T_A = +25$ °C, unless otherwise noted.)

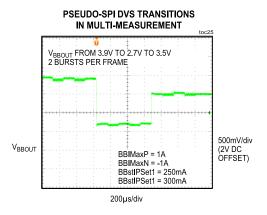


Figure 25. Pseudo-SPI DVS Transitions in Multi-Measurement

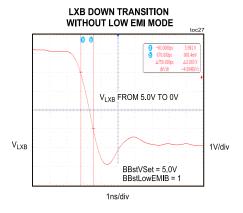


Figure 27. LXB Down Transition without Low EMI Mode

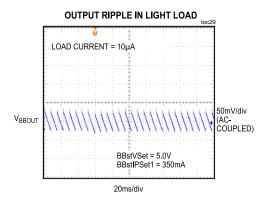


Figure 29. Output Ripple in Light Load

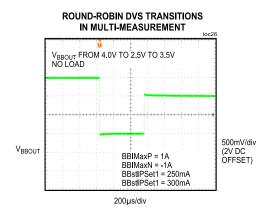


Figure 26. Round-Robin DVS Transitions in Multi-Measurement

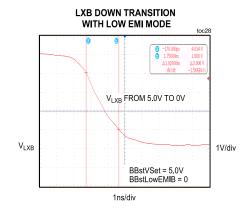


Figure 28. LXB Down Transition with Low EMI Mode

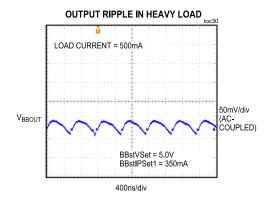


Figure 30. Output Ripple in Heavy Load

analog.com Rev 1 | 16 of 51

THEORY OF OPERATION

The MAX20363 is an ultra-low quiescent current, non-inverting buck-boost converter with 500mA output current capability. The MAX20363 is intended for applications that require long run times while also demanding bursts of high current. The device employs a proprietary control algorithm that seamlessly transitions between buck, buck-boost, and boost modes, minimizing discontinuities and subharmonics in the output voltage ripple. The low 1.8V input voltage allows the device to be powered from a variety of sources such as lithium ion rechargeable and lithium primary batteries. The MAX20363 is designed to minimize inductance and capacitance requirements to keep the overall solution size as small as possible.

The MAX20363 is optimized for powering optical PPG systems. The ultra-fast dynamic voltage scaling (DVS) capability allows the device to transition quickly between output voltages and enable in-frame scaling of LED supply voltage. Additionally, the low output ripple and fast, predictable transient response maximizes the SNR of high-performance optical PPG AFEs.

Architectural Description

Figure 31 illustrates the basic structure of the MAX20363 switching regulator with arrows depicting the inductor current flow in each switching phase.

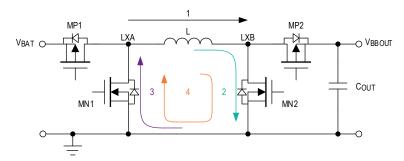


Figure 31. The Buck-Boost Regulator and Switching Phases

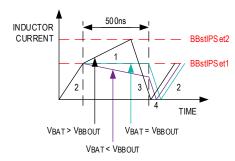


Figure 32. Buck-Boost Inductor Current in Buck-Boost Mode

Switching Phases

Depending on the buck-boost configurations, the topology enters different sequences of phases to generate the desired output voltage. Only two switches are on in each phase.

- Phase 1: MP1 on, MP2 on. Inductor charges.
- ▶ Phase 2: MP1 on, MN2 on. Inductor charges.

analog.com Rev 1 | 17 of 51

- ▶ Phase 3: MN1 on, MP2 on. Inductor discharges.
- ▶ Phase 4: MN1 on, MN2 on. Freewheeling.

Buck-Boost Mode

The regulator operates in buck-boost mode. The inductor charges in Phase 2 up to BBstIPSet1. The buck-boost then transitions to Phase 1. If $V_{BAT} > V_{BBOUT}$, BBstIPSet1 is gradually reduced to 0 and the inductor charges until either the current reaches BBstIPSet2 or after a 500ns delay. If $V_{BAT} \le V_{BBOUT}$, the buck-boost waits for the 500ns timeout to elapse or until the current drops to the valley limit. Next, the regulator enters Phase 3 to discharge the inductor current to the valley limit. When the inductor current reaches the valley-current crossing threshold or falls below 0, the regulator freewheels in Phase 4 until the next charge phase. When operating in continuous conduction mode (CCM), the buck-boost enters Phase 4 for approximately 30ns. *Figure 32* shows the inductor current in buck-boost mode.

Inductor Peak and Valley Current Limits

The buck-boost regulator monitors the maximum and minimum values of the inductor current. If BBstIpPadPEnb = 1, the peak currents are fixed to the values in BBstISet and the valley current is fixed to 0mA. If BBstIpPadPEnb = 0, the peak and valley currents are allowed to change based on load requirements.

Peak currents are set in the BBstlSet register. BBstlPSet1 controls the peak current when $V_{BAT} < V_{BBOUT}$ and begins the timeout period for Phase 1. BBstlPSet2 sets a secondary current limit in buck-boost mode when $V_{BAT} > V_{BBOUT}$. The buck-boost regulator transitions from Phase 1 to Phase 3 if the inductor current reaches BBstlPSet2 or if the 500ns timeout has elapsed. The MAX20363 gradually reduce BBstlPSet1 in such a way that when BBstlPSet2 is reached, the BBstlPSet1 is 0. Minimizing the settings of BBstlPSet1 and BBstlPSet2 reduces the output ripple but decreases efficiency. Care must be taken to optimize the peak current settings to keep a low output ripple while maximizing efficiency. Minimum BBstlPSet2 should never be lower than 200mA to avoid unwanted behavior. *Figure 33* is a graphical guide to selecting combinations of BBstlPSet1 and BBstlPSet2 to balance efficiency for specific BBstVSet values.

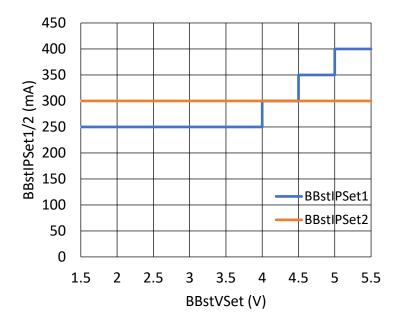


Figure 33. Recommended BBstlPSet1 and BBstlPSet2 Settings

analog.com Rev 1 | 18 of 51

MAX20363

To control inrush current during start-up, the MAX20363 startup valley current is limited through BBIPwpMaxP. The peak current is BBIPwpMaxP + max(BBstIPSet1,BBstIPSet2) settings. Once the output reaches its final voltage, the BBIMaxP setting is restored. See BBIPwpMaxP (*Table 5*) for device-specific values.

The MAX20363 behavior when BBstIPAdptDis = 0 can be further defined with a zero current comparator. The device transitions to Phase 4 when its control loop detects a zero current crossing.

Dynamic Voltage Scaling

The MAX20363 utilizes dynamic voltage scaling (DVS) to rapidly change the output voltage on demand. DVS can significantly reduce the power consumption of PPG systems using LEDs with highly variable forward voltage drops.

DVS voltage transitions can be positive or negative going and the slew-rate of the output voltage is programmable through the positive and negative valley current limits (see I²C register descriptions.) The programmed valley current should account for the current source/sink capability of the input supply.

Dynamic Voltage Scaling (DVS) Modes

The MAX20363 features three different DVS control modes:

- ▶ I²C: In I²C mode, a dedicated register (BBstVset, register 0x02) in the regmap can be written with the voltage value required.
- ▶ Pseudo-SPI: Two dedicated pins (CLKIN, DVSIN) are used to implement a serial digital interface used to pass the DVS voltages and additional information; this mode requires the use of a compatible analog front end (AFE) device that features the DVS capability and pseudo-SPI controller, such as the Analog Devices MAX86181.
- ▶ Round-Robin: Up to 20 FPWM and voltage values are preprogrammed through the I²C interface. These values are cycled through in succession at each rising/falling edge of the CLKIN pin. This control mode can be utilized with Analog Devices AFEs that feature multiple interrupt output pins, such as the MAX86180, and the ability to set the interrupt to trigger on changes in the 'FIFO Data Ready' status bit.

I²C Based DVS Control

If the RREna and DVSSource bits are set to zero, the DVS output voltage is set directly through I^2C using bits 6 to 0 of register 0x02, BBstVset, and can be used to dynamically program the output voltage value. Use bits 6 to 0 of register 0x1E to read back BBstVset value. Bit 7 of register 0x02, BBstFpwm enables the FPWM feature, whereas bit 4 of register 0x01, BBstFast enables the FAST feature. Note that I^2C is the only mode where both these features can be enabled together. Bit FpwmFast of register 0x6E selects the feature for status check (0 = Fast, 1 = FPWM) and bit 7 of register 0x1E, BB_LOWBP reads back the feature status (0 = disabled, 1 = enabled). For example, if FpwmFast = 1 and BBstFpwm = 1, then BB_LOWBP reads back 1 regardless of BBstFast value. On the other hand, if FpwmFast = 1, BBstFpwm = 0 and BBstFast = 1, then BB_LOWBP reads back 0 even the FAST feature is enabled. Note that bit FpwmFast has no effect in setting high performance feature in I^2C mode.

In Round-Robin and in pseudo-SPI, only FPWM or FAST can be enabled. To choose which one, use read-write bit FpwmFast (register 0x06E, bit 0) (0 = Fast, 1 = FPWM). BB_LOWBP reads back 1 if either of the high performance features is enabled. In Round-Robin mode, use each RRLowPBxx bit to disable/enable high performance feature for that cycle. If RRLowPBxx = 0, neither FPWM nor FAST is enabled. If RRLowPBxx = 1, FPWM or FAST is enabled according to FpwmFast bit and BB_LOWPB reads back 1. In pseudo-SPI mode, the serial communication protocol includes a bit (example, bit DVS_MODE_SEL in MAX86181) that has the same function as RRLowPBxx. If

analog.com Rev 1 | 19 of 51

MAX20363

DVS_MODE_SEL in MAX86181 is low, neither FPWM nor FAST is enabled. If DVS_MODE_SEL in MAX86181 is high, FPWM or FAST is enabled according to FpwmFast bit.

The BBstVSet register (0x02) features write protection that can be enabled or disabled by writing 0xAA or 0x55 to register LockUnlock (0x51). For this write operation to take effect, the bit BBLck on register 0x50 must be 0, otherwise the operation on LockUnlock is ignored. The BBstVSet register (0x02) is locked by default.

DVS Target Mode/Pseudo-SPI

When used with a compatible Analog Devices AFE, such as the MAX86181, the MAX20363 output voltage is controlled by a proprietary serial digital interface on the CLKIN and DVSIN pins. To enable this mode, the register bit DVSSource should be set to 1. Once enabled, $300\mu s$ is required until the device is ready to receive a new DVS command from the AFE controller. The default V_{BBOUT} in pseudo-SPI mode is 1.5 V.

In DVS target mode, the MAX20363 acts as a target only. All DVS values are programmed in the corresponding controller AFE. Register 0x13 contains the relevant status bits for DVS target mode, indicating controller requests complete, interface timeout expiration, and parity error.

For additional information on the operation of DVS target mode, reference the data sheet of the relevant DVS controller AFE device, such as MAX86181.

DVS Round-Robin Interface

The DVS round-robin mode provides allows to preprogram multiple DVS output voltages cycled through on the rising/falling edge of the CLKIN signal (see RRClkPolarity). This mode enables fast DVS output capability on Analog Devices AFEs that do not feature the DVS controller function.

To utilize round-robin mode:

First program up to 20 DVS voltage values into registers 0x20 to 0x33.

If fewer than 20 registers are utilized, write register 0x55, RRSize to define which register location is the last one utilized.

Configure RRWrap bit, in register 0x54, RRWrap, to determine if the round-robin pointer either remains on the final voltage register or returns to location zero after reaching the final voltage value.

Configure the RRTimeoutRes bit, register 0x55 to determine the device behavior after a timeout.

Configure the RRClkPolarity bit for high/low-going edge triggering.

Finally, enable the round-robin mode by writing 1 on the bit RREna (register 0x54, bit 1).

APPLICATIONS INFORMATION

Input and Output Capacitance

The MAX20363 is designed to be compatible with small case-size ceramic capacitors. As such, the device has low-input and low-output capacitance requirements to accommodate the steep voltage derating of 0603 and 0402 (imperial) capacitors. *Figure 34* presents the minimum capacitance required at BAT and BBOUT. To ensure stability and low noise, the capacitance value under bias on BAT should be at least the maximum between $5\mu F$ and the value of *Figure 34* at the lowest expected V_{BAT} . The minimum capacitance value under bias on BBOUT should be equal to the value of *Figure 34* at the lowest expected V_{BBOUT} for BBFetScale = 00, 1/2 of that value for BBFetScale = 01 or 10, and 1/4 of that value for BBFetScale = 11.

analog.com Rev 1 | 20 of 51

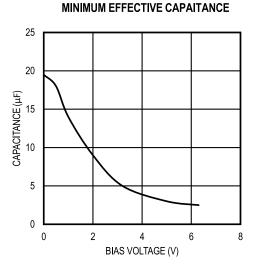


Figure 34. Buck-Boost Required Minimum Input/Output Capacitance

Inductor Selection

Inductor selection for the MAX20363 should be optimized for the intended application. A $1\mu H$ is recommended, and a $2.2~\mu H$ can be used but can result in worse accuracy, load regulation, and load step response. Aside from the inductor value physical size, DC resistance (DCR), maximum average current, and saturation current are the primary factors to consider. The maximum average inductor current is obtained using the following equation:

$$I_{L MAX} = BBIMaxP + (0.5 \times BBstIPSet1)$$

The average inductor current calculated above dictates the required maximum average current for temperature rise on the inductor. To determine the required inductor saturation current, the peak current must be calculated. The peak current for this converter can be calculated as:

$$I_{\text{L.PEAK}} = BBIMaxP + BBstIPSet1$$

where BBstIPSet1 is the peak current setting described in register 0x03. When selecting an inductor, one primary factor in achieving high efficiency is the DCR of the inductor. For maximum efficiency, select an inductor with the lowest DCR possible in the required package size. Another factor to consider is magnetic losses. Generally magnetic losses are lower in inductors with larger physical size and/or higher saturation current ratings. In most cases, ferrite inductors should be avoided as they tend to exhibit poor AC characteristics, especially in discontinuous conduction mode (DCM).

Soft-Start

Current at start-up is programmable through the start-up inductor current limit register (BBstIPwpMaxP). It can be programmed up to 750mA.

I²C Interface

The MAX20363 contains an I²C-compatible interface for data communication with a host controller (SCL and SDA). The MAX20363 can support I²C frequencies up to 1MHz. SCL and SDA require pullup resistors connected to a positive supply.

analog.com Rev 1 | 21 of 51

MAX20363

Peripheral Address

In the MAX20363, the peripheral address is configured at the factory by the i2c_2nd_sid OTP bit to be either 0b1101000 (0x68) plus the Read/Write bit or 0b1101100 (0x6C) plus the Read/Write bit. For versions with the 7-bit peripheral address 0x68, set the Read/Write bit high to configure the MAX20363 to read mode (0xD1) or set the Read/Write bit low to configure the MAX20363 to write mode (0xD0). For versions with the 7-bit peripheral address 0x6C, set the Read/Write bit high to configure the MAX20363 to read mode (0xD8) or set the Read/Write bit low to configure the MAX20363 to write mode (0xD9). See i2c_2nd_sid in *Table 5* for the peripheral address for a given part number. The address is the first byte of information sent to the MAX20363 after the START condition.

Start, Stop, and Repeated Start Conditions

When writing to the MAX20363 using I²C, the controller sends a START condition (S) followed by the MAX20363 I²C write address. After the address, the controller sends the register address of the register to be programmed. The controller then ends communication by issuing a STOP condition (P) to relinquish control of the bus, or a REPEATED START condition (Sr) to communicate to another I²C peripheral. See *Figure 35*.

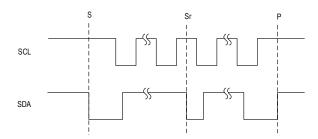


Figure 35. PC START, STOP, and REPEATED START Conditions

Bit Transfer

One data bit is transferred on the rising edge of each SCL clock cycle. The data on SDA must remain stable during the high period of the SCL clock pulse. Changes in SDA while SCL is high and stable are considered control signals (see the *Start, Stop, and Repeated Start Conditions* section). Both SDA and SCL remain high when the bus is not active.

Single-Byte Write

In this operation, the controller sends an address and two data bytes to the peripheral device (*Figure 36*). The following procedure describes the single byte write operation:

- 1. The controller sends a START condition.
- 2. The controller sends the 7-bit peripheral address plus a write bit (low).
- 3. The addressed peripheral asserts an ACK on the data line.
- 4. The controller sends the 8-bit register address.
- 5. The peripheral asserts an ACK on the data line.
- 6. The controller sends 8 data bits.
- 7. The peripheral asserts an ACK on the data line.
- 8. The controller generates a STOP condition.

analog.com Rev 1 | 22 of 51

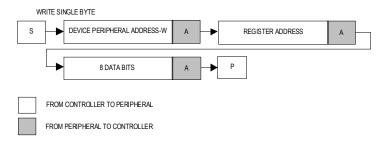


Figure 36. Write Byte Sequence

Burst Write

In this operation, the controller sends an address and multiple data bytes to the peripheral device (*Figure 37*). The peripheral device automatically increments the register address after each data byte is sent, unless the register being accessed reaches 0xFF, in which case the register address remains the same. The following procedure describes the burst write operation:

- 1. The controller sends a START condition.
- 2. The controller sends the 7-bit peripheral address plus a write bit (low).
- 3. The addressed peripheral asserts an ACK on the data line.
- 4. The controller sends the 8-bit register address.
- 5. The peripheral asserts an ACK on the data line.
- 6. The controller sends 8 data bits.
- 7. The peripheral asserts an ACK on the data line.
- 8. Repeat 6 and 7 N-1 times.
- 9. The controller generates a STOP condition.

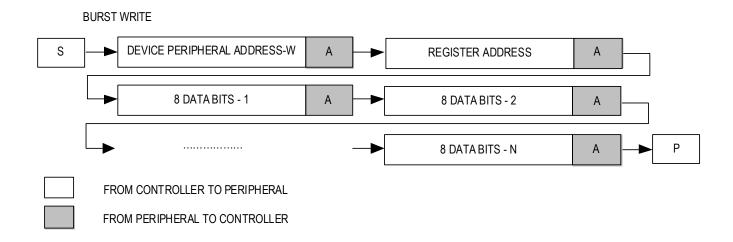


Figure 37. Burst Write Sequence

analog.com Rev 1 | 23 of 51

Single Byte Read

In this operation, the controller sends an address plus two data bytes and receives one data byte from the peripheral device (*Figure 38*). The following procedure describes the single byte read operation:

- 1. The controller sends a START condition.
- 2. The controller sends the 7-bit peripheral address plus a write bit (low).
- 3. The addressed peripheral asserts an ACK on the data line.
- 4. The controller sends the 8-bit register address.
- 5. The peripheral asserts an ACK on the data line.
- 6. The controller sends a REPEATED START condition.
- 7. The controller sends the 7-bit peripheral address plus a read bit (high).
- 8. The addressed peripheral asserts an ACK on the data line.
- 9. The peripheral sends 8 data bits.
- 10. The controller asserts a NACK on the data line.
- 11. The controller generates a STOP condition.

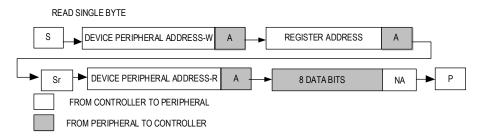


Figure 38. Read Byte Sequence

Burst Read

In this operation, the controller sends an address plus two data bytes and receives multiple data bytes from the peripheral device (*Figure 39*). The following procedure describes the burst byte read operation:

- 1. The controller sends a START condition.
- 2. The controller sends the 7-bit peripheral address plus a write bit (low).
- 3. The addressed peripheral asserts an ACK on the data line.
- 4. The controller sends the 8-bit register address.
- The peripheral asserts an ACK on the data line.
- 6. The controller sends a REPEATED START condition.
- 7. The controller sends the 7-bit peripheral address plus a read bit (high).
- 8. The peripheral asserts an ACK on the data line.

analog.com Rev 1 | 24 of 51

- 9. The peripheral sends 8 data bits.
- 10. The controller asserts an ACK on the data line.
- 11. Repeat 9 and 10 N-2 times.
- 12. The peripheral sends the last 8 data bits.
- 13. The controller asserts a NACK on the data line.
- 14. The controller generates a STOP condition.

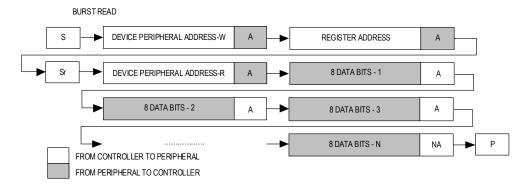


Figure 39. Burst Read Sequence

Acknowledge Bits

Data transfers are acknowledged with an acknowledge bit (ACK) or a not-acknowledge bit (NACK). Both the controller and the MAX20363 generate ACK bits. To generate an ACK, pull SDA low before the rising edge of the ninth clock pulse and hold it low during the high period of the ninth clock pulse (*Figure 40*). To generate a NACK, leave SDA high before the rising edge of the ninth clock pulse and leave it high for the duration of the ninth clock pulse. Monitoring for NACK bits allows detection of unsuccessful data transfers.

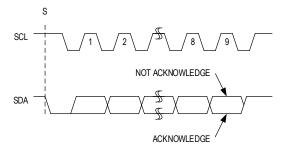


Figure 40. Acknowledge Bits

analog.com Rev 1 25 of 51

REGISTER MAP

MAX20363

ADDRE SS	NAME	MSB							LSB
USER									
0x00	ChipID[7:0]				Chi	pID[7:0]			
0x01	BBstCfg0[7:0]	BBstLow	EMIB[1:0]	BBstEna	BBstFast	_	BBFHighSh	BBstActDsc	BBstPsvDsc
0x02	BBstVSet[7:0]	BBstFpw m				BBstVSet[6:0]		
0x03	BBstlSet[7:0]		BBstl	PSet2[3:0]			BBstIPS	et1[3:0]	
0x04	BBstIMaxN[7:0]	ı	ı			BBIMa	xN[5:0]		
0x05	BBstIMaxP[7:0]	-	-			BBIMa	xP[5:0]		
0x06	BBstlPwpMaxP [7:0]	-	-			BBIPwpl	MaxP[5:0]		
0x08	BBstCfg1[7:0]	_	-	_	-	BBL2P2Sel	BBstlpPadPE nb	BBFetS	cale[1:0]
0x10	Status[7:0]	-	-	BBstOnSts	BBstOffSts	VddUvloSts	BBOutUvloSts	BstSts	ThmFltSts
0x11	Int[7:0]	-	-	BBstOnInt	BBstOffInt	VddUvloInt	BBOutUvloInt	BstFltInt	ThmFltInt
0x12	Mask[7:0]	-	-	BBstOnMsk	BBstOffMsk	VddUvloMsk	BBoutUvloMsk	BstFltMsk	ThmFltMsk
0x13	CommInt[7:0]	-	-	ChgModDone	RRTimeout	RRInc	SPIDone	SPITimeout	SPIParErr
0x14	CommMsk[7:0]	-	_	ChgModDone Msk	RRTimeout Msk	RRIncMsk	SPIDoneMsk	SPITimeout Msk	SPIParErrM sk
0x15	BBFsmState[7: 0]	_	-			BBCtrlS	state[5:0]		
0x1E	BBVset[7:0]	BB_LOW PB				BB_VSET[6:0]		
0x1F	RRpoint[7:0]	-	-	-			RRPointer[4:0]		
0x20	RRVset00[7:0]	RRLowPB 00				RRVset00[6:0)]		
0x21	RRVset01[7:0]	RRLowPB 01		RRVset01[6:0]					
0x22	RRVset02[7:0]	RRLowPB 02		RRVset02[6:0]					
0x23	RRVset03[7:0]	RRLowPB 03		RRVset03[6:0]					
0x24	RRVset04[7:0]	RRLowPB 04				RRVset04[6:0]		

analog.com Rev 1 | 26 of 51

ADDRE SS	NAME	MSB							LSB
0x25	RRVset05[7:0]	RRLowPB 05		RRVset05[6:0]					
0x26	RRVset06[7:0]	RRLowPB 06				RRVset06[6:0]		
0x27	RRVset07[7:0]	RRLowPB 07				RRVset07[6:0	1]		
0x28	RRVset08[7:0]	RRLowPB 08				RRVset08[6:0]		
0x29	RRVset09[7:0]	RRLowPB 09				RRVset09[6:0)]		
0x2A	RRVset0A[7:0]	RRLowPB 0A				RRVset0A[6:0)]		
0x2B	RRVset0B[7:0]	RRLowPB 0B				RRVset0B[6:0)]		
0x2C	RRVset0C[7:0]	RRLowPB 0C				RRVset0C[6:0)]		
0x2D	RRVset0D[7:0]	RRLowPB 0D		RRVset0D[6:0]					
0x2E	RRVset0E[7:0]	RRLowPB 0E				RRVset0E[6:0)]		
0x2F	RRVset0F[7:0]	RRLowPB 0F				RRVset0F[6:0)]		
0x30	RRVset10[7:0]	RRLowPB 10				RRVset10[6:0]		
0x31	RRVset11[7:0]	RRLowPB 11				RRVset11[6:0]		
0x32	RRVset12[7:0]	RRLowPB 12				RRVset12[6:0]		
0x33	RRVset13[7:0]	RRLowPB 13				RRVset13[6:0]		
0x50	LockMsk[7:0]	-	_	-	-	-	-	_	BBLck
0x51	LockUnlock[7:0]				PAS	SWD[7:0]			
0x54	DVSCfg[7:0]	-	-	-	_	I2CLkptDis	RRWrap	RREna	DVSSource
0x55	RRCfg1[7:0]	_	RRClkPola rity	RRTimeoutRe s	RRSIZEI4'UI				
0x56	RRCfg2[7:0]	_	-	-	_	-	RRT	imeoutLength[2	::0]
0x57	SPICfg[7:0]	-	-	-	-	-	-	_	SPITimeout Ena

analog.com Rev 1 | 27 of 51

ADDRE SS	NAME	MSB							LSB
0x6E	ConfOtp[7:0]	-	-	-	-	-	-	-	FpwmFast
0x6F	FuncDef[7:0]	-	-	-	-	LtchOffVdd Uvlo	LtchOffBBOut Uvlo	LtchOffBst	LtchOffThm

Register Details

ChipID (0x0)

ВІТ	7	6	5	4	3	2	1	0	
Field		ChipID[7:0]							
Reset		0x00							
Access Type		Read Only							

BITFIELD	BITS	DESCRIPTION
ChipID	7:0	ChipID[7:0] indicates the version of the device in use.

BBstCfg0 (0x1)

BIT	7	6	5	4	3	2	1	0
Field	BBstLowEMIB[1:0]		BBstEna	BBstFast	-	BBFHighSh	BBstActDsc	BBstPsvDsc
Reset					-			
Access Type	Write,	Read	Write, Read	Write, Read	ı	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
BBstLowEMIB	7:6	Buck-Boost Low EMI Mode Disable Increases the rise/fall time of LXA/LXB to reduce EMI, at the cost of efficiency. It can be changed only when BBstEna = 0. 10,11 = Reserved not to be used	0x0: Increase rise/fall time on LXA/LXB by 4x 0x1: Nominal Slopes
BBstEna	5	Buck-Boost Enable	0x0: Buck-boost disabled 0x1: Buck-boost enabled
BBstFast	4	Buck-Boost Fast Feature Enable Increases the quiescent current of the buck-boost to improve output regulation during load transients. If 1, I _{Q_FAST} increased to 75µA (typical).	0x0: Fast response disabled 0x1: Fast response enabled
BBFHighSh	2	Buck-Boost f_{HIGH} Thresholds Selects the switching frequency threshold f_{HIGH} . If the buck-boost switching frequency exceeds the f_{HIGH} rising threshold, all the blocks are kept ON (Iq	0x0: 50kHz rising / 25kHz falling 0x1: 100kHz rising / 50kHz falling

analog.com Rev 1 | 28 of 51

BITFIELD	BITS	DESCRIPTION	DECODE
		is higher) until the frequency reaches the f _{HIGH} falling threshold. A small glitch on V _{OUT} can be present at the f _{HIGH} crossover. It can be changed only when BBstEna = 0.	
BBstActDsc	1	Buck-Boost Active Discharge Control	0x0: Buck-boost not actively discharged 0x1: Buck-boost actively discharged when disabled
BBstPsvDsc	0	Buck-Boost Passive Discharge Control	0x0: Buck-boost not passively discharged 0x1: Buck-boost passively discharged when disabled

BBstVSet (0x2)

BIT	7	6	5	4	3	2	1	0
Field	BBstFpwm		BBstVSet[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
BBstFpwm	7	Buck-Boost Fpwm Feature Enable With FPWM best load regulation/ripple but high quiescent and poor efficiency at light loads. Use it only for ≥70mA loads	0x0: FPWM is disabled 0x1: FPWM is enabled
BBstVSet	6:0	Buck-Boost Output Voltage Setting 1.5V to 5.5V, linear scale, 50mV increments	0x0: 1.50V 0x1: 1.55V ≥0x50: 5.50V

BBstlSet (0x3)

BIT	7	6	5	4	3	2	1	0	
Field		BBstIPS	Set2[3:0]		BBstlPSet1[3:0]				
Reset									
Access Type		Write, Read				Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
BBstlPSet2	7:4	Buck-Boost Nominal Maximum Peak Current Setting 2. Sets the extra peak current on top of IPSET1 when VBAT>VBBOUT. See buck-boost operation section for a description of the peak current settings. From 0 to 375mA, 25mA step. Suggested value 300mA Note1: The values are increased by about 30% when BBL2P2Sel = 0 is set.	0x0: 0mA 0x1: 25mA 0xF: 375mA

analog.com Rev 1 | 29 of 51

BITFIELD	вітѕ	DESCRIPTION	DECODE
		Note2 : Actual peak current in the inductor is larger because of the delay of peak comparator and power stage.	
BBstlPSet1	3:0	Buck-boost Nominal Maximum Peak Current Setting 1 Nominal peak current when charging inductor between V _{BAT} and GND. See buck-boost operation section for a description of the peak current settings. From 100mA to 475mA, 25mA step. Optimal values are set according to look-up table which is set by OTP register settings of bits IPm50, IPm60M50, IPm70M60 and IPM70. Suggested values to get optimal efficiency: BBstVSet≤4V: IPSET1 = 250mA 4V <bbstvset≤4.5v: 4.5v<bbstvset≤5v:="" bbstvset="" ipset1="350mA">5V: IPSET1 = 400mA Note1: The values are increased by about 30% when BBL2P2Sel = 0 is set. Note 2: Real IPSET1 is gradually reduced to 0 when V_{BAT}>V_{BBOUT}.</bbstvset≤4.5v:>	0x0: 100mA 0x1: 125mA 0xF: 475mA

BBstlMaxN (0x4)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	BBIMaxN[5:0]						
Reset	-	_							
Access Type	-	_	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE		
BBIMaxN	5:0	Maximum Inductor Negative Valley Current Limit when FPWM is Enabled It can be changed only when BBstEna = 0. From -200mA to -1.8A, 50mA step	0x0: -200mA 0x1: -250mA 0x20: -1.8A		

BBstIMaxP (0x5)

ВІТ	7	6	5	4	3	2	1	0
Field	-	-	BBIMaxP[5:0]					
Reset	_	-						
Access Type	-	-			Write,	Read		

analog.com Rev 1 | 30 of 51

BITFIELD	BITS	DESCRIPTION	DECODE
BBIMaxP	5:0	Maximum inductor positive valley current limit setting. It can be changed only when BBstEna = 0. From 0 to 1.6A, 50mA step	0x0: 0mA 0x1: 50mA ≥0x20: 1.6A

BBstlPwpMaxP (0x6)

BIT	7	6	5	4	3	2	1	0
Field	-	_	BBIPwpMaxP[5:0]					
Reset	-	-						
Access Type	ı	-			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
BBIPwpMaxP	5:0	Start-up Positive Inductor Valley Current Limit It can be changed only when BBstEna = 0. Programmable from 0 to 750mA (50mA step). Below BBOut UVLO at least 150 mA are internally enforced.	0x0: 0mA 0x1: 50mA ≥0xF: 750mA

BBstCfg1 (0x8)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	-	BBL2P2Sel	BBstlpPadPEnb	BBFetScale[1:0]	
Reset	-	-	-	-				
Access Type	-	-	-	-	Write, Read	Write, Read	Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
BBL2P2Sel	3	Inductor Select Bit It can be changed only when BBstEna = 0. If 1, worst load regulation in ccm mode.	0x0: For 1μH inductor 0x1: For 2.2μH inductor
BBstlpPadPEnb	2	Adaptive Peak/Valley Current Adjustment Disable If 1, peak current is fixed to the values set by BBstlPSet1 and BBstlPSet2. Valley current is fixed to 0mA. This setting is equivalent to forcing discontinuous conduction mode and greatly diminishes the output power capability of the device. Generally this is not a recommended setting.	0x0: Enabled 0x1: Disabled
BBFetScale	1:0	FET Scaling Bits Reduce the loop bandwidth to relax output compensation capacitor requirement if lower output	0x0: Full power FETS, Full Bandwidth 0x1: 50% FET size, 1/2 Bandwidth 0x2: 50% FET size, 1/2 Bandwidth 0x3: 25% FET size, 1/4 Bandwidth

analog.com Rev 1 | 31 of 51

BITFIELD	BITS	DESCRIPTION	DECODE
		current is needed. It can be changed only when BBstEna = 0.	

Status (0x10)

BIT	7	6	5	4	3	2	1	0
Field	-	-	BBstOnSts	BBstOffSts	VddUvloSts	BBOutUvloSts	BstSts	ThmFltSts
Reset	_	-						
Access Type	-	-	Read Only	Read Only	Read Only	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
BBstOnSts	5	Status of Buck-Boost ON This bit goes to 1 when the buck-boost turns on, so that DVS operations are possible, and goes back to 0 when the buck-boost is disabled or when a fault occurs.	0x0: Buck-boost Off 0x1: Buck-boost On
BBstOffSts	4	Status of Buck-Boost OFF This bit goes to 1 when the buck-boost turns off after having been disabled and having gone through safe freewheeling and output discharge, and goes back to 0 when the buck-boost is enabled again.	0x0: Buck-boost On 0x1: Buck-boost Off
VddUvloSts	3	Status of Vdd or Bat UVLO Fault This bit goes to 1 when Vdd or Bat UVLO fault occurs, and goes back to 0 when either BBstEna is set to 0 or the autoretry time elapses (if OTP bit LtchOffVddUvlo = 0).	0x0: Normal Vdd and Bat voltage 0x1: Vdd or Bat UVLO
BBOutUvioSts	2	Status of BBOut UVLO Fault This bit goes to 1 when BBOut UVLO fault occurs, and goes back to 0 when either BBstEna is set to 0 or the autoretry time elapses (if OTP bit LtchOffBBOutUvlo = 0).	0x0: Normal BBOut voltage 0x1: BBOut UVLO
BstSts	1	Status of Bootstrap Fault This bit goes to 1 when bootstrap fault occurs, and goes back to 0 when either BBstEna is set to 0 or the autoretry time elapses (if OTP bit LtchOffBst = 0).	0x0: Bootstrap operating normally 0x1: Bootstrap under fault condition
ThmFltSts	0	Status of Thermal Fault This bit goes to 1 when thermal fault occurs, and goes back to 0 when either BBstEna is set to 0 or the autoretry time elapses (if OTP bit LtchOffThm = 0).	0x0: Buck-boost operating normally 0x1: Buck-boost in thermal shutdown

Int (0x11)

ВІТ	7	6	5	4	3	2	1	0
-----	---	---	---	---	---	---	---	---

analog.com Rev 1 | 32 of 51

Field	-	-	BBstOnInt	BBstOffInt	VddUvloInt	BBOutUvloInt	BstFltInt	ThmFltInt
Reset	-	-						
Access Type	-	-	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
BBstOnInt	5	Change in BBstOnSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
BBstOffInt	4	Change in BBstOffSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
VddUvloInt	3	Change in VddUvloSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
BBOutUvloInt	2	Change in BBOutUvloSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
BstFltInt	1	Change in BstSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
ThmFltInt	0	Change in ThmFltSts caused an interrupt. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		

Mask (0x12)

BIT	7	6	5	4	3	2	1	0
Field	-	-	BBstOnMsk	BBstOffMsk	VddUvloMsk	BBoutUvloMsk	BstFltMsk	ThmFltMsk
Reset	-	-		0x1				
Access Type	-	-	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
BBstOnMsk	5	BBstOnMsk masks the BBstOnInt interrupt.	0x0: Not masked 0x1: Masked
BBstOffMsk	4	BBstOffMsk masks the BBstOffInt interrupt.	0x0: Not masked 0x1: Masked
VddUvloMsk	3	VddUvloMsk masks the VddUvloInt interrupt.	0x0: Not masked 0x1: Masked
BBoutUvloMsk	2	BBOutUvloMsk masks the BBOutUvloInt interrupt.	0x0: Not masked 0x1: Masked
BstFltMsk	1	BstFltMsk masks the BstFltInt interrupt.	0x0: Not masked 0x1: Masked
ThmFltMsk	0	ThmFltMsk masks the ThmFltInt interrupt.	0x0: Not masked 0x1: Masked

analog.com Rev 1 | 33 of 51

Commint (0x13)

BIT	7	6	5	4	3	2	1	0
Field	-	-	ChgModDone	RRTimeout	RRInc	SPIDone	SPITimeout	SPIParErr
Reset	-	-				0b0	0b0	0b0
Access Type	-	-	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
ChgModDone	5	Change DVS Mode Done Interrupt Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
RRTimeout	4	Round-Robin Timeout Interrupt Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
RRInc	3	Round-Robin Pointer Increase Interrupt The interrupt is raised when a pulse that moves the Round-Robin to next step is detected. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
SPIDone	2	Pseudo-SPI Operation Done Interrupt If 1, the pseudo-SPI operation is completed. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
SPITimeout	1	Pseudo-SPI Timeout Interrupt If 1, the pseudo-SPI operation was ended because of timeout fault. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		
SPIParErr	0	Pseudo-SPI Parity Error Interrupt If 1, a parity error was found, and the DVS operation was not executed. Read to clear.	0x0: Not triggered since last read 0x1: Triggered		

CommMsk (0x14)

ВІТ	7	6	5	4	3	2	1	0
Field	ı	ı	ChgModDoneMsk	RRTimeoutMsk	RRIncMsk	SPIDoneMsk	SPITimeoutMsk	SPIParErrMsk
Reset	-	-				0b0	0b0	0b0
Access Type	_	_	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ChgModDoneMsk	5	ChgModDoneMsk masks the ChgModDone interrupt.	0x0: Not masked 0x1: Masked
RRTimeoutMsk	4	RRTimeoutMsk masks the RRTimeout interrupt.	0x0: Not masked 0x1: Masked
RRIncMsk	3	RRIncMsk masks the RRInc interrupt.	0x0: Not masked 0x1: Masked
SPIDoneMsk	2	SPIDoneMsk masks the SPIDone interrupt.	0x0: Not masked 0x1: Masked

analog.com Rev 1 | 34 of 51

BITFIELD	BITS	DESCRIPTION	DECODE
SPITimeoutMsk	1	SPITimeoutMsk masks the SPITimeout interrupt.	0x0: Not masked 0x1: Masked
SPIParErrMsk	0	SPIParErrMsk masks the SPIParErr interrupt.	0x0: Not masked 0x1: Masked

BBFsmState (0x15)

BIT	7	6	5	4	3	2	1	0	
Field	-	-	BBCtrlState[5:0]						
Reset	-	-							
Access Type	-	-			Read	l Only			

BITFIELD	вітѕ	DESCRIPTION
BBCtrlState	5:0	Current state of Buck-Boost control FSM: 000001 = Off 000010 = Power-up 000100 = Functional DVS 001000 = Safe Freewheeling 010000 = Active Output Discharge 100000 = Timeout

BBVset (0x1E)

BIT	7	6	5	4	3	2	1	0
Field	BB_LOWPB		BB_VSET[6:0]					
Reset			0x00					
Access Type	Read Only				Read Only			

BITFIELD	BITS	DESCRIPTION	DECODE
BB_LOWPB	7	High Performance Feature Read Back In Round-Robin mode, this bit indicates if high performance feature is enabled. It reads 1 if RRLowPBxx (register 0x20-0x33 bit 7) is set to 1. In Pseudo-SPI mode, this bit indicates if high performance feature is enabled. It reads 1 if the 4th serial communication protocol bit is set to 1. In I²C mode, this bit reads 1 in any of the following three conditions. 1) FPWM = 1, FAST = 0, FpwmFast = 1 2) FPWM = 0, FAST = 1, FpwmFast = 0 3) FPWM = 1, FAST = 1, FpwmFast = 0 or 1	
BB_VSET	6:0	BBstVset Read Back This is the actual value set to the analog circuitry.	0x0: 1.50V 0x1: 1.55V 0x50: 5.50V

analog.com Rev 1 | 35 of 51

RRpoint (0x1F)

BIT	7	6	5	4	3	2	1	0
Field	-	-	-	RRPointer[4:0]				
Reset	-	-	-					
Access Type	-	-	-	Read Only				

BITFIELD	BITS	DESCRIPTION	DECODE		
RRPointer	4:0	Round-Robin Step Pointer This bitfield displays the number of the step the Round-Robin has reached so far.	0x0: Step 0 (initial voltage) 0x1: Step 1 0x13: Step 19		

RRVset00 (0x20)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB00	RRVset00[6:0]						
Reset	set							
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB00	7	DVS Round-Robin High Performance Feature Step 0x00	0x0: High performance feature disabled 0x1: High performance feature enabled
RRVset00	6:0	DVS Round-Robin Voltage Value Step 0x00	Refer to register 0x02 BBstVSet bit

RRVset01 (0x21)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB01	RRVset01[6:0]						
Reset	Reset							
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB01	7	DVS Round-Robin High Performance Feature Step 0x01	Refer to register 0x20 RRLowPB00 bit
RRVset01	6:0	DVS Round-Robin Voltage Value Step 0x01	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 36 of 51

RRVset02 (0x22)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB02		RRVset02[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB02	7	DVS Round-Robin High Performance Feature Step 0x02	Refer to register 0x20 RRLowPB00 bit	
RRVset02	6:0	DVS Round-Robin Voltage Value Step 0x02	Refer to register 0x02 BBstVSet bit	

RRVset03 (0x23)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB03		RRVset03[6:0]					
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB03	7	DVS Round-Robin High Performance Feature Step 0x03	Refer to register 0x20 RRLowPB00 bit	
RRVset03	6:0	DVS Round-Robin Voltage Value Step 0x03	Refer to register 0x02 BBstVSet bit	

RRVset04 (0x24)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB04		RRVset04[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB04	7	DVS Round-Robin High Performance Feature Step 0x04	Refer to register 0x20 RRLowPB00 bit
RRVset04	6:0	DVS Round-Robin Voltage Value Step 0x04	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 37 of 51

RRVset05 (0x25)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB05		RRVset05[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB05	7	DVS Round-Robin High Performance Feature Step 0x05	Refer to register 0x20 RRLowPB00 bit	
RRVset05	6:0	DVS Round-Robin Voltage Value Step 0x05	Refer to register 0x02 BBstVSet bit	

RRVset06 (0x26)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB06	RRVset06[6:0]						
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB06	7	DVS Round-Robin High Performance Feature Step 0x06	Refer to register 0x20 RRLowPB00 bit	
RRVset06	6:0	DVS Round-Robin Voltage Value Step 0x06	Refer to register 0x02 BBstVSet bit	

RRVset07 (0x27)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB07		RRVset07[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB07	7	DVS Round-Robin High Performance Feature Step 0x07	Refer to register 0x20 RRLowPB00 bit
RRVset07	6:0	DVS Round-Robin Voltage Value Step 0x07	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 38 of 51

RRVset08 (0x28)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB08		RRVset08[6:0]					
Reset								
Access Type	Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB08	7	DVS Round-Robin High Performance Feature Step 0x08	Refer to register 0x20 RRLowPB00 bit
RRVset08	6:0	DVS Round-Robin Voltage Value Step 0x08	Refer to register 0x02 BBstVSet bit

RRVset09 (0x29)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB09	RRVset09[6:0]						
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB09	7	DVS Round-Robin High Performance Feature Step 0x09	Refer to register 0x20 RRLowPB00 bit
RRVset09	6:0	DVS Round-Robin Voltage Value Step 0x09	Refer to register 0x02 BBstVSet bit

RRVset0A (0x2A)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB0A	RRVset0A[6:0]						
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB0A	7	DVS Round-Robin High Performance Feature Step 0x0A	Refer to register 0x20 RRLowPB00 bit
RRVset0A	6:0	DVS Round-Robin Voltage Value Step 0x0A	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 39 of 51

RRVset0B (0x2B)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB0B	RRVset0B[6:0]						
Reset								
Access Type	Write, Read				Write, Read			

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB0B	7	DVS Round-Robin High Performance Feature Step 0x0B	Refer to register 0x20 RRLowPB00 bit
RRVset0B	6:0	DVS Round-Robin Voltage Value Step 0x0B	Refer to register 0x02 BBstVSet bit

RRVset0C (0x2C)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB0C		RRVset0C[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB0C	7	DVS Round-Robin High Performance Feature Step 0x0C	Refer to register 0x20 RRLowPB00 bit
RRVset0C	6:0	DVS Round-Robin Voltage Value Step 0x0C	Refer to register 0x02 BBstVSet bit

RRVset0D (0x2D)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB0D		RRVset0D[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB0D	7	DVS Round-Robin High Performance Feature Step 0x0D	Refer to register 0x20 RRLowPB00 bit
RRVset0D	6:0	DVS Round-Robin Voltage Value Step 0x0D	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 40 of 51

RRVset0E (0x2E)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB0E	RRVset0E[6:0]						
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB0E	7	DVS Round-Robin High Performance Feature Step 0x0E	Refer to register 0x20 RRLowPB00 bit
RRVset0E	6:0	DVS Round-Robin Voltage Value Step 0x0E	Refer to register 0x02 BBstVSet bit

RRVset0F (0x2F)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB0F		RRVset0F[6:0]					
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB0F	7	DVS Round-Robin High Performance Feature Step 0x0F	Refer to register 0x20 RRLowPB00 bit	
RRVset0F	6:0	DVS Round-Robin Voltage Value Step 0x0F	Refer to register 0x02 BBstVSet bit	

RRVset10 (0x30)

BIT	7	6	5	4	3	2	1	0
Field	RRLowPB10		RRVset10[6:0]					
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB10	7	DVS Round-Robin High Performance Feature Step 0x10	Refer to register 0x20 RRLowPB00 bit
RRVset10	6:0	DVS Round-Robin Voltage Value Step 0x10	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 41 of 51

RRVset11 (0x31)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB11		RRVset11[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
RRLowPB11	7	DVS Round-Robin High Performance Feature Step 0x11	Refer to register 0x20 RRLowPB00 bit		
RRVset11	6:0	DVS Round-Robin Voltage Value Step 0x11	Refer to register 0x02 BBstVSet bit		

RRVset12 (0x32)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB12		RRVset12[6:0]					
Reset								
Access Type	Write, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE	
RRLowPB12	7	DVS Round-Robin High Performance Feature Step 0x12	Refer to register 0x20 RRLowPB00 bit	
RRVset12	6:0	DVS Round-Robin Voltage Value Step 0x12	Refer to register 0x02 BBstVSet bit	

RRVset13 (0x33)

ВІТ	7	6	5	4	3	2	1	0
Field	RRLowPB13		RRVset13[6:0]					
Reset								
Access Type	Write, Read		Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RRLowPB13	7	DVS Round-Robin High Performance Feature Step 0x13	Refer to register 0x20 RRLowPB00 bit
RRVset13	6:0	DVS Round-Robin Voltage Value Step 0x13	Refer to register 0x02 BBstVSet bit

analog.com Rev 1 | 42 of 51

LockMsk (0x50)

BIT	7	6	5	4	3	2	1	0
Field	-	_	-	-	_	-	-	BBLck
Reset	-	-	-	-	-	-	-	0b1
Access Type	-	-	-	-	-	-	-	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
BBLck	0	LLOCK MASK for Buck-Boost Registers	0x0: Not masked from locking/unlocking 0x1: Masked from locking/unlocking

LockUnlock (0x51)

BIT	7	6	5	4	3	2	1	0
Field		PASSWD[7:0]						
Reset		0xFF						
Access Type		Write, Read						

BITFIELD	BITS	DESCRIPTION
PASSWD	7:0	Lock/Unlock Password Write 0xAA with BBLck unmasked to lock the BBstVSet register (0x02) Write 0x55 with BBLck unmasked to unlock the BBstVSet register (0x02) All Other Codes: no effect

DVSCfg (0x54)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	-	I2CLkptDis	RRWrap	RREna	DVSSource
Reset	_	-	_	-				
Access Type	-	-	-	-	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
I2CLkptDis	3	Look-up Table Disable Look-up table is used to set optimal BBstIPSet1 in various BBOut ranges according to OTP register settings of bits IPm50, IPm60M50, IPm70M60 and IPM70. Look-up table can be disabled only in I2C mode. When disabled, peak current is determined by bitfield BBstIPSet1 setting.	0x0: Look-up table enabled for I ² C 0x1: Look-up table disabled for I ² C

analog.com Rev 1 43 of 51

BITFIELD	BITS	DESCRIPTION	DECODE
RRWrap	2	Round-Robin Wrap Defines if the Round-Robin DVS modes stops at the last value (if set to 0) or wraps back to the first one (if set to 1).	0x0: Round-Robin does not wrap around 0x1: Round-Robin does wrap around
RREna	1	DVS Round-Robin Enable After changing this value, wait at least 300µs before trying to send another DVS command, regardless of the DVS mode. DVSSource setting is ignored if this bit is set to 1.	0x0: Round-Robin disabled 0x1: Round-Robin enabled
DVSSource	0	DVS Source Choose interface for DVS. After changing this value, wait at least 300µs before trying to send another DVS command, regardless of the DVS mode.	0x0: I ² C enabled to set DVS 0x1: Dedicated pins enabled to set DVS

RRCfg1 (0x55)

BIT	7	6	5	4	3	2	1	0
Field	-	RRClkPolarity	RRTimeoutRes			RRSize[4:0]		
Reset	-							
Access Type	-	Write, Read	Write, Read			Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
RRClkPolarity	Round-Robin Clock Polarity If 0 the clock is active low (voltage is updated on its falling edge), if 1 the clock is active high (voltage is updated on its rising edge). This bit should not be changed when Round-Robin is enabled.		0x0: Falling edge active 0x1: Rising edge active
RRTimeoutRes	5	Round Robin Timeout Reset This bit determines if Round-Robin pointer is reset after timeout. This bit should not be changed when Round-Robin is enabled.	0x0: Timeout does not reset Round Robin pointer 0x1: Timeout resets Round Robin pointer
RRSize	4:0	Number of Steps in Round-Robin Mode This bit should not be changed when Round-Robin is enabled.	0x0: 0 Step (initial voltage) 0x1: 1 Step 0x13: 19 Steps

RRCfg2 (0x56)

BIT	7	6	5	4	3	2	1	0
Field	1	-	-	-	-	RR	TimeoutLength[2	2:0]
Reset	-	-	-	-	-			

analog.com Rev 1 | 44 of 51

Access Type	-	-	-	-	-	Write, Read
-------------	---	---	---	---	---	-------------

BITFIELD	BITS	DESCRIPTION	DECODE
RRTimeoutLength	2:0	Round Robin Timeout Duration This bit should not be changed when Round-Robin is enabled.	0x0: Timeout disabled 0x1: 500µs 0x2: 1ms 0x3: 2ms 0x4: 4ms 0x5: 8ms 0x6: 16ms 0x7: Reserved

SPICfg (0x57)

BIT	7	6	5	4	3	2	1	0
Field	ı	ı	ı	-	-	ı	_	SPITimeoutEna
Reset	-	-	-	-	-	-	-	
Access Type	-	-	-	-	-	-	-	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
SPITimeoutEna	0	Pseudo-SPI Timeout Enable	0x0: Pseudo-SPI timeout disabled 0x1: Pseudo-SPI timeout enabled

ConfOtp (0x6E)

BIT	7	6	5	4	3	2	1	0
Field	_	-	_	_	_	-	-	FpwmFast
Reset	_	-	-	-	_	-	-	
Access Type	-	-	-	-	-	ı	ı	Write, Read

BITFIELD	BITS	DESCRIPTION
FpwmFast	0	In Round-Robin and pseudo-SPI modes, this bit sets high performance feature (0 = Fast and 1 = FPWM). In I ² C mode, this bit selects the high performance feature for status check. BB_LOWPB reads 1 in any of the following three conditions. 1) FPWM = 1, FAST = 0, FpwmFast = 1 2) FPWM = 0, FAST = 1, FpwmFast = 0 3) FPWM = 1, FAST = 1, FpwmFast = 0 or 1

FuncDef (0x6F)

BIT	7	6	5	4	3	2	1	0
Field	Ι	ı	_	_	LtchOffVddUvlo	LtchOffBBOutUvlo	LtchOffBst	LtchOffThm

analog.com Rev 1 45 of 51

Reset	-	-	-	-				
Access Type	-	-	-	-	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
LtchOffVddUvlo	3	Latch Off Bit for Vdd or Bat UVLO Fault	0x0: Fault is cleared at the end of the 1s autoretry time 0x1: Operation is resumed only after cycling (writing 0 and then 1) bit BBstEna
LtchOffBBOutUvlo	2	Latch Off Bit for BBOut UVLO Fault	0x0: Fault is cleared at the end of the 1s autoretry time 0x1: Operation is resumed only after cycling (writing 0 and then 1) bit BBstEna
LtchOffBst	1	Latch Off Bit for Bootstrap Fault	0x0: Fault is cleared at the end of the 1s autoretry time 0x1: Operation is resumed only after cycling (writing 0 and then 1) bit BBstEna
LtchOffThm	0	Latch Off Bit for Thermal Fault	0x0: Fault is cleared at the end of the 1s autoretry time 0x1: Operation is resumed only after cycling (writing 0 and then 1) bit BBstEna

Register Values

The following tables provide the device and register bit default values for the various available parts.

Table 5. Register Bit Default Values

REGISTER BITS	MAX20363A
BBstLowEMIB	Nominal
	Slope
BBstEna	Enabled
BBstFast	Disabled
BBFHighSh	Enabled
BBstActDsc	Enabled
BBstPsvDsc	Enabled
BBstFpwm	Disabled
BBstVSet	5V
BBstIPSet2	300mA
BBstIPSet1	400mA
BBIMaxN	-1000mA
BBIMaxP	1000mA
BBIPwpMaxP	750mA
ChgModDoneMsk	Not Masked
BBstOnMsk	Not Masked
BBL2P2Sel	1μH
	Inductor
BBstIpPadPEnb	Enabled
BBFetScale	Full Power
	FETS

analog.com Rev 1 46 of 51

LtchOffVddUvlo	Autoretry
	enabled
LtchOffBBOutUvlo	Autoretry
	enabled
LtchOffBst	Autoretry
	enabled
LtchOffThm	Autoretry
	enabled
FpwmFast	Fast
SPITimeoutEna	Enabled
DVSSource	I ² C
i2c_2nd_sid	0x68
IPm60M50	300mA
IPm50	250mA
IPM70	400mA
IPm70M60	350mA
IPPwp2	200mA
IPPwp1	200mA

Table 6. Register Default Values

REGISTER	NAME	MAX20363A
0x00	ChipID	0x02
0x01	BBstCfg0	0x6F
0x02	BBstVSet	0x46
0x03	BBstlSet	0xCC
0x04	BBstIMaxN	0x10
0x05	BBstIMaxP	0x14
0x06	BBstIPwpMaxP	0x0F
0x08	BBstCfg1	0x00
0x10	Status	-
0x11	Int	0x00
0x12	Mask	0x10
0x13	CommInt	0x00
0x14	CommMsk	0x00
0x15	BBFsmState	-
0x1E	BBVset	0x46
0x1F	RRpoint	0x00
0x20	RRVset00	0x00
0x21	RRVset01	0x00
0x22	RRVset02	0x00
0x23	RRVset03	0x00
0x24	RRVset04	0x00
0x25	RRVset05	0x00
0x26	RRVset06	0x00
0x27	RRVset07	0x00

analog.com Rev 1 | 47 of 51

0x28	RRVset08	0x00
0x29	RRVset09	0x00
0x2A	RRVset0A	0x00
0x2B	RRVset0B	0x00
0x2C	RRVset0C	0x00
0x2D	RRVset0D	0x00
0x2E	RRVset0E	0x00
0x2F	RRVset0F	0x00
0x30	RRVset10	0x00
0x31	RRVset11	0x00
0x32	RRVset12	0x00
0x33	RRVset13	0x00
0x50	LockMsk	0x01
0x51	LockUnlock	ı
0x54	DVSCfg	0x00
0x55	RRCfg1	0x00
0x56	RRCfg2	0x00
0x57	SPICfg	0x01
0x6E	ConfOtp	0x08
0x6F	FuncDef	0x00

analog.com Rev 1 | 48 of 51

MAX20363

OUTLINE DIMENSIONS

21-100680

ORDERING GUIDE

Table 7. Ordering Guide

MODEL	TEMPERATURE RANGE	PACKAGE DESCRIPTION	PACKAGE OPTION
MAX20363AEWN+	-40°C to +85°C	18 WLP (2.43mm x 1.25mm)	W181A2+1
MAX20363AEWN+T	-40°C to +85°C	18 WLP (2.43mm x 1.25mm)	W181A2+1

analog.com Rev 1 49 of 51

MAX20363

REVISION HISTORY

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	6/24	Initial release	_
1	6/25	Updated Table 6	47

analog.com Rev 1 | 50 of 51

ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENCE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS, IN WHICH ADI PRODUCTS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. ALL ANALOG DEVICES PRODUCTS CONTAINED HEREIN ARE SUBJECT TO RELEASE AND AVAILABILITY.

analog.com Rev 1 | 51 of 51