

9 kHz to 20 GHz, Nonreflective, Silicon SPDT Switch

FEATURES

- ▶ Wideband frequency range, 9 kHz to 20 GHz
- ▶ Nonreflective $50\ \Omega$ design
- ▶ Low insertion loss
 - ▶ 0.6 dB typical between 9 kHz to 6 GHz
 - ▶ 0.8 dB typical between 6 GHz to 12 GHz
 - ▶ 1.05 dB typical between 12 GHz to 20 GHz
- ▶ High isolation
 - ▶ 55 dB typical between 9 kHz to 6 GHz
 - ▶ 50 dB typical between 6 GHz to 12 GHz
 - ▶ 45 dB typical between 12 GHz to 20 GHz
- ▶ High input linearity
 - ▶ P0.1dB: 35 dBm typical
 - ▶ IP3: 62 dBm typical
- ▶ High RF power handling
 - ▶ Through path: 35 dBm peak and 33 dBm average
 - ▶ Terminated path: 32 dBm peak and 30 dBm average
 - ▶ Hot switching (RFC): 35 dBm peak and 33 dBm average
 - ▶ Hot switching (RFx): 32 dBm peak and 30 dBm average
- ▶ CMOS/LVTTL compatible
- ▶ No low-frequency spur; no negative voltage generator
- ▶ RF on and off time: 5.0 μ s
- ▶ RF settling time (0.1 dB): 5.3 μ s
- ▶ Single-supply operation ($V_{DD} = 3.3\text{ V}$, $V_{SS} = 0\text{ V}$)
- ▶ **20-terminal, 3 mm \times 3 mm, LGA package**
- ▶ Pin compatible with [ADRF5023](#) and [ADRF5027](#)

APPLICATIONS

- ▶ Test instrumentation
- ▶ Military radios, radars, electronic counter measures (ECMs)
- ▶ Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM

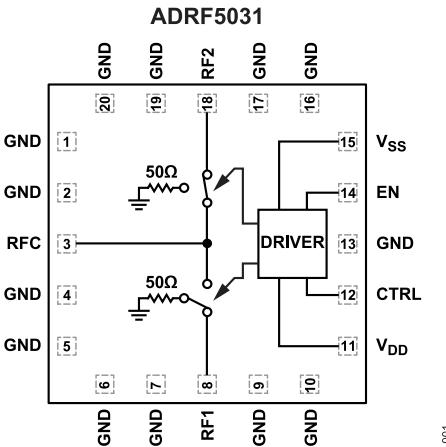


Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5031 is a nonreflective, SPDT switch manufactured using the silicon on insulator (SOI) process. The ADRF5031 operates from 9 kHz to 20 GHz with an insertion loss of lower than 1.05 dB and isolation of higher than 45 dB. The device has an RF input power handling capability of 33 dBm average and 35 dBm peak for forward and reverse through paths, hot switching through the RFC port, and 30 dBm average and 32 dBm peak for terminated paths and hot switching through RFx ports. The ADRF5031 operates with dual-supply voltages of $\pm 3.3\text{ V}$. The ADRF5031 employs complementary metal-oxide semiconductor (CMOS) and low-voltage transistor to transistor logic (LVTTL)-compatible control.

The ADRF5031 can also operate with a single positive supply voltage (V_{DD}) applied while the negative supply voltage (V_{SS}) is tied to ground. In this operating condition, the small signal performance is maintained while the switching characteristics, linearity, and power handling performance are derated. See [Table 2](#) for more details.

The ADRF5031 is pin compatible with the ADRF5023 and ADRF5027 and also pin compatible with [ADRF5030](#), a fast switching version, which operates between 100 MHz to 20 GHz.

The ADRF5031 is packaged in a **20-terminal, 3 mm \times 3 mm, RoHS-compliant, land grid array (LGA)** and operates from -40°C to $+105^\circ\text{C}$.

TABLE OF CONTENTS

Features.....	1	Typical Performance Characteristics.....	8
Applications	1	Insertion Loss, Return Loss, and Isolation.....	8
Functional Block Diagram.....	1	Input Power Compression and Third-Order	
General Description.....	1	Intercept	9
Specifications.....	3	Theory of Operation.....	10
Single-Supply Operation.....	4	RF Input and Output.....	10
Absolute Maximum Ratings.....	5	Power Supply.....	10
Thermal Resistance.....	5	Applications Information.....	11
Power Derating Curve.....	5	Recommendations for PCB Design.....	11
Electrostatic Discharge (ESD) Ratings.....	6	Outline Dimensions.....	12
ESD Caution.....	6	Ordering Guide.....	12
Pin Configuration and Function Descriptions.....	7	Evaluation Boards.....	12
Interface Schematics.....	7		

REVISION HISTORY**11/2024—Rev. 0 to Rev. A**

Changes to Ordering Guide.....	12
--------------------------------	----

9/2024—Revision 0: Initial Version

SPECIFICATIONS

$V_{DD} = 3.3$ V, $V_{SS} = -3.3$ V, CTRL voltage (V_{CTRL}) = 0 V or V_{DD} , and $T_{CASE} = 25^\circ\text{C}$ for a $50\ \Omega$ system, unless otherwise noted. RFx refers to RF1 or RF2.

Table 1. Electrical Characteristics

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.009	20000		MHz
INSERTION LOSS						
Between RFC and RFx (On)		9 kHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		0.6 0.8 1.05		dB
RETURN LOSS		9 kHz to 20 GHz		22 20 17		dB
RFC						
RFx (On)						dB
RFx (Off)						dB
ISOLATION						
Between RFC to RFx and RFx to RFx		9 kHz to 6 GHz 6 GHz to 12 GHz 12 GHz to 20 GHz		55 50 45		dB
SWITCHING						
Rise and Fall Time	t_{RISE}, t_{FALL}	10% to 90% of RF output		3.0		μs
On and Off Time	t_{ON}, t_{OFF}	50% V_{CTRL} to 90% of RF output		5.0		μs
Settling Time (0.1 dB)		50% V_{CTRL} to 0.1 dB of final RF output		5.3		μs
INPUT LINEARITY ¹		$f = 1$ MHz to 20 GHz				
Input Compression	$P_{0.1\text{dB}}$			35		dBm
Third-Order Intercept	IP3	Two-tone input power = 14 dBm each tone, $f = 1$ MHz to 20 GHz, $\Delta f = 1$ MHz		62		dBm
Second-Order Intercept	IP2	Two-tone input power = 14 dBm each tone, $f = 8$ GHz, $\Delta f = 1$ MHz		116		dBm
VIDEO FEEDTHROUGH				4.5		mV p-p
SUPPLY CURRENT		V_{DD} and V_{SS} pins				
Positive Supply Current	I_{DD}			150		μA
Negative Supply Current	I_{SS}			520		μA
DIGITAL CONTROL INPUTS		CTRL and EN pins				
Voltage						
Low	V_{INL}		0	0.8		V
High	V_{INH}		1.2	3.3		V
Current						
Low	I_{INL}			<1		μA
High	I_{INH}			33		μA
RECOMMENDED OPERATING CONDITIONS						
Supply Voltage						
Positive	V_{DD}		3.15	3.45		V
Negative	V_{SS}		-3.45	-3.15		V
Digital Control Inputs Voltage	V_{CTRL}		0	V_{DD}		V
RF Input Power ^{2,3}	P_{IN}	$f = 1$ MHz to 20 GHz, $T_{CASE} = 85^\circ\text{C}$ RF signal is applied to RFC or through connected RFx (RF1 or RF2)				
Through Path				33		dBm
Average				35		dBm
Peak, Pulse ^{4,5}						
Terminated Path		RF signal is applied to unselected RFx (terminated within internal resistor)		30		dBm
Average				32		dBm
Peak, Pulse						

SPECIFICATIONS

Table 1. Electrical Characteristics (Continued)

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
Hot Switching (RFC)		RF signal is applied to RFC while switching in between RF1 or RF2				
Average				33		dBm
Peak, Pulse				35		dBm
Hot Switching (RFx)		RF signal is applied to RFx while switching in between RF1 or RF2				
Average				30		dBm
Peak, Pulse				32		dBm
Case Temperature	T _{CASE}		-40		+105	°C

¹ For input linearity performance over frequency, see Figure 12 to Figure 15.

² For power derating over frequency, see the Power Derating Curve section.

³ For 105°C operation, the power handling degrades from the T_{CASE} = 85°C specification by 3 dB.

⁴ Peak: (≤100 ns pulse duration, 5% duty cycle).

⁵ Pulse: (>100 ns pulse duration, 15% duty cycle).

SINGLE-SUPPLY OPERATION

V_{DD} = 3.3 V, V_{SS} = 0 V, V_{CTRL} = 0 V or V_{DD}, and T_{CASE} = 25°C for a 50 Ω system, unless otherwise noted.

Table 2. Single-Supply Operational Specifications

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE	f		0.009		20.000	MHz
SWITCHING CHARACTERISTICS						
Rise and Fall Time	t _{RISE} , t _{FALL}	10% to 90% of RF output		9.2		μs
On and Off Time	t _{ON} , t _{OFF}	50% V _{CTRL} to 90% of RF output		14		μs
0.1 dB RF Settling Time		50% V _{CTRL} to 0.1 dB of final RF output		16		μs
INPUT LINEARITY						
Power Compression	P _{0.1dB}	f = 1 MHz to 20 GHz		24		dBm
Third-Order Intercept	IP ₃	Two-tone input power = 0 dBm each tone, Δf = 1 MHz		48		dBm
RECOMMENDED OPERATING CONDITIONS						
RF Input Power	P _{IN}	f = 1 MHz to 20 GHz, T _{CASE} = 85°C				
Through Path		RF signal is applied to the RFC or through connected RFx		24		dBm
Terminated Path		RF signal is applied to unselected RFx (terminated within internal resistor)		24		dBm
Hot Switching		RF signal is applied to the RFC while switching between RFx		24		dBm

ABSOLUTE MAXIMUM RATINGS

For the recommended operating conditions, see [Table 1](#).

Table 3. Absolute Maximum Ratings

Parameter	Rating
Positive Supply Voltage	-0.3 V to +3.6 V
Negative Supply Voltage	-3.6 V to +0.3 V
Digital Control Input ¹	
Voltage	-0.3 V to $V_{DD} + 0.3$ V
Current	3 mA
RF Input Power, Dual Supply ² ($V_{DD} = 3.3$ V, $V_{SS} = -3.3$ V, $f = 1$ MHz to 20 GHz, $T_{CASE} = 85^\circ\text{C}$)	
Through Path	
Average	34 dBm
Peak	36 dBm
Terminated Path	
Average	30.5 dBm
Peak	32.5 dBm
Hot Switching (RFC)	
Average	33.5 dBm
Peak	35.5 dBm
Hot Switching (RFx)	
Average	30.5 dBm
Peak	32.5 dBm
RF Input Power, Single Supply ($V_{DD} = 3.3$ V, $V_{SS} = 0$ V, $f = 1$ MHz to 20 GHz, $T_{CASE} = 85^\circ\text{C}$)	
Through Path	25 dBm
Terminated Path	25 dBm
Hot Switching (RFC)	25 dBm
RF Input Power, Unbiased ($V_{DD}, V_{SS} = 0$ V)	
Average	31 dBm
Peak ⁴	36 dBm
Temperature	
Junction, T_J	135°C
Storage Range	-65°C to +150°C
Reflow	260°C

¹ Overvoltages at the digital control input are clamped by internal diodes.

Current must be limited to the maximum rating given.

² For power derating over frequency, see [Figure 2](#).

³ For 105°C operation, the power handling degrades from the $T_{CASE} = 85^\circ\text{C}$ specification by 3 dB for dual supply.

⁴ Peak: (≤ 100 ns pulse duration, 5% duty cycle).

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

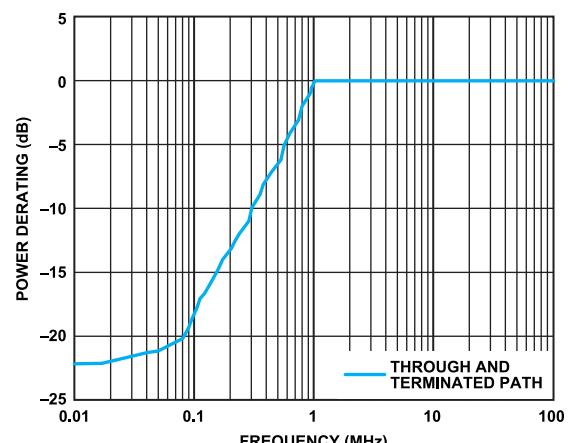

θ_{JC} is the junction-to-case bottom (channel-to-package bottom) thermal resistance.

Table 4. Thermal Resistance

Package Type	θ_{JC} ¹	Unit
CC-20-21		
Through Path	110	°C/W
Terminated Path	50	°C/W

¹ θ_{JC} was determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of 85°C.

POWER DERATING CURVE

Figure 2. Power Derating vs. Frequency, Low-Frequency Detail, $T_{CASE} = 85^\circ\text{C}$

ABSOLUTE MAXIMUM RATINGS

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD-protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) ratings are per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for the ADRF5031

Table 5. ADRF5031, 20-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
HBM	4 kV for the RFx and RFC pins	3A
	4 kV for the supply and digital control pins	3A
CDM	500 V for all pins	C2A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

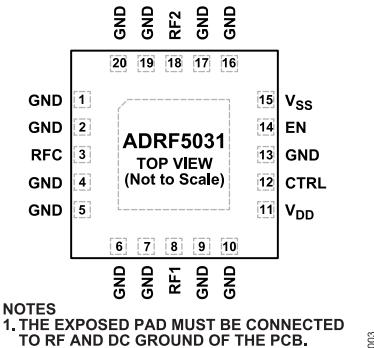


Figure 3. Pin Configuration (Top View)

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 2, 4, 5, 6, 7, 9, 10, 13, 16, 17, 19, 20	GND	Ground. The GND pins must be connected to the RF and /DC ground of the PCB.
3	RFC	RF Common Port. The RFC pin is DC-coupled to 0 V. No DC-blocking capacitor is necessary when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.
8	RF1	RF Port 1. The RF1 pin is DC-coupled to 0 V. No DC-blocking capacitor is necessary when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic.
11	V _{DD}	Positive Supply Voltage. See Figure 6 for the interface schematic.
12	CTRL	Control Input Voltage. See Figure 5 for the interface schematic.
14	EN	Enable Input Voltage. See Table 7 for the truth table. See Figure 5 for the interface schematic.
15	V _{SS}	Negative Supply Voltage. See Figure 7 for the interface schematic.
18	RF2	RF Port 2. The RF2 pin is DC-coupled to 0 V. No DC-blocking capacitor is necessary when the RF line potential is equal to 0 V DC. See Figure 4 for the interface schematic
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.

INTERFACE SCHEMATICS

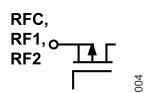


Figure 4. RFC, RF1, and RF2 Interface Schematic

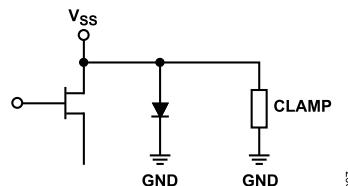
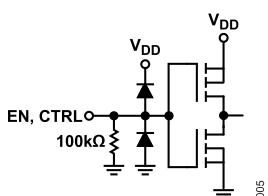
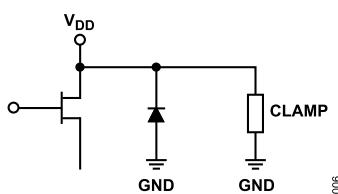



Figure 7. V_{SS} Interface Schematic

Figure 5. EN and CTRL Interface Schematic

Figure 6. V_{DD} Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, AND ISOLATION

$V_{DD} = 3.3$ V, $V_{SS} = -3.3$ V, $V_{CTRL} = 0$ V or V_{DD} , and $T_{CASE} = 25^\circ\text{C}$ for a $50\ \Omega$ system, unless otherwise noted. RFx refers to RF1 to RF2.

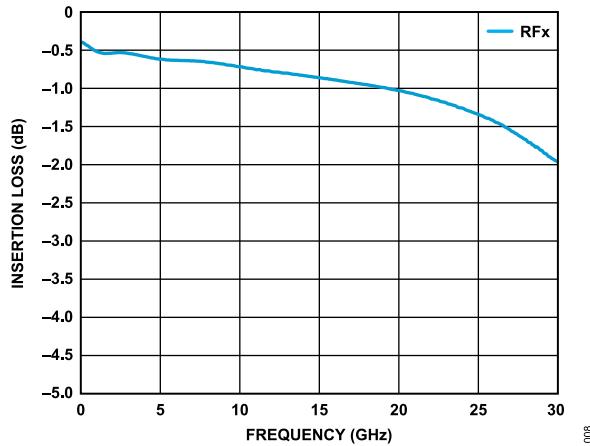


Figure 8. Insertion Loss vs. Frequency for the RFx Pins

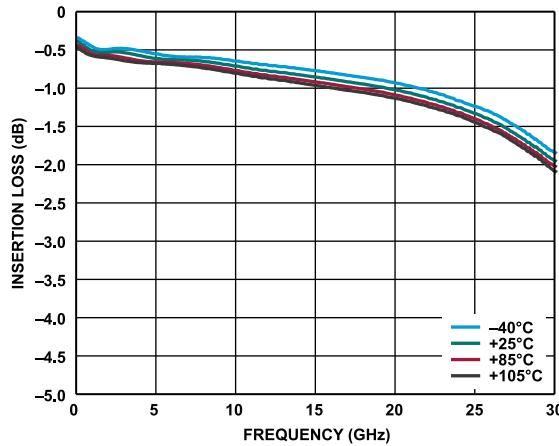


Figure 10. Insertion Loss vs. Frequency over Various Temperatures

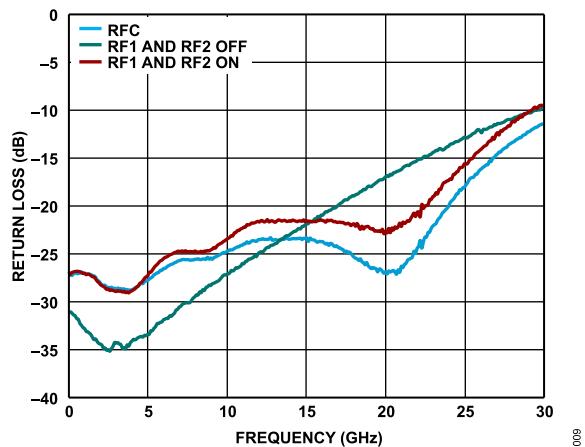


Figure 9. Return Loss vs. Frequency for RFC and RFx (On and Off)

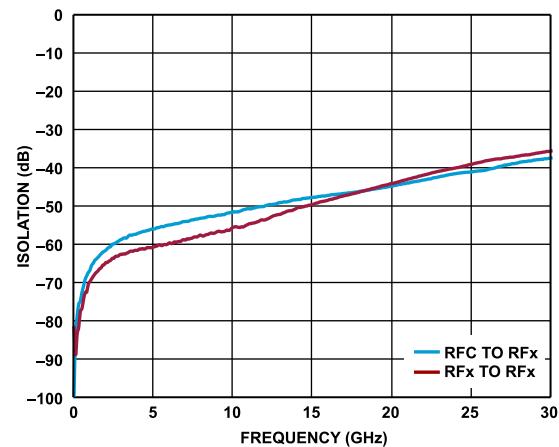


Figure 11. Isolation vs. Frequency for RFC to RFx and RFx to RFx

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

$V_{DD} = 3.3$ V, $V_{SS} = -3.3$ V, $V_{CTRL} = 0$ V or V_{DD} , and $T_{CASE} = 25^\circ\text{C}$ for a $50\ \Omega$ system, unless otherwise noted.

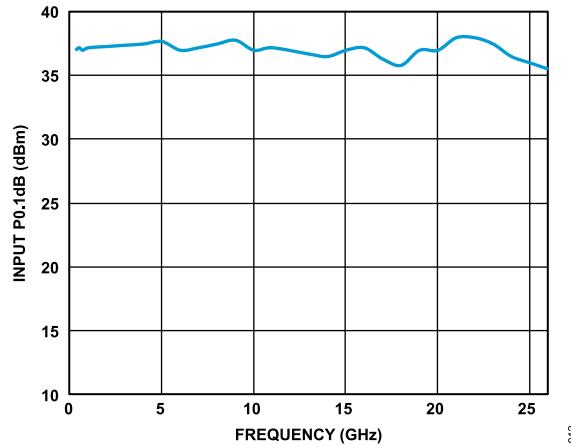


Figure 12. Input P0.1dB vs. Frequency

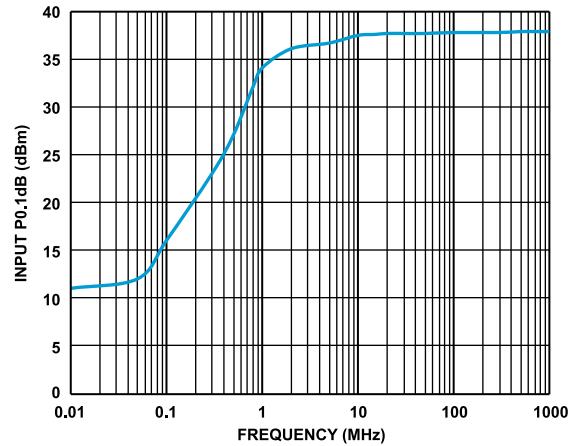


Figure 14. Input P0.1dB vs. Frequency (Low-Frequency Detail)

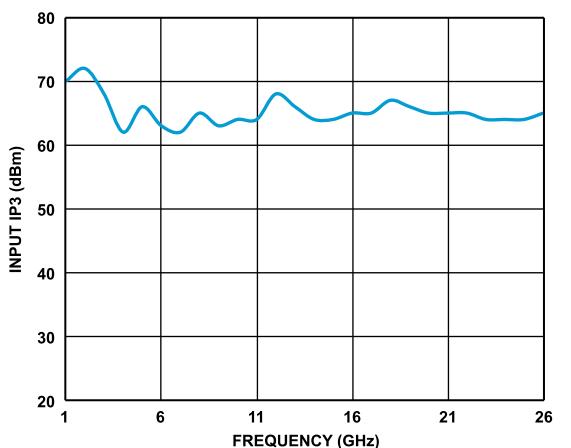


Figure 13. Input IP3 vs. Frequency

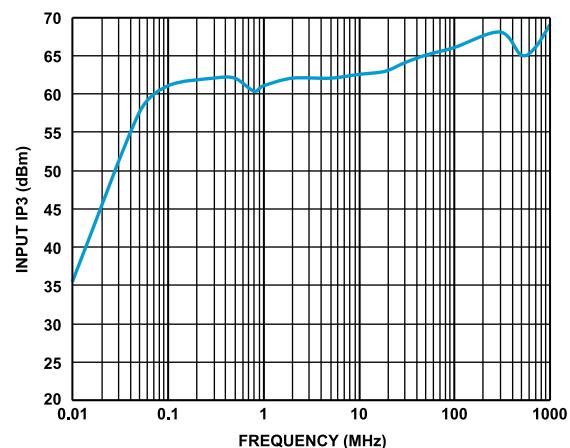


Figure 15. Input IP3 vs. Frequency (Low-Frequency Detail)

THEORY OF OPERATION

The ADRF5031 integrates a driver to perform logic functions internally and to provide the user with the advantage of a simplified CMOS-/LVTTL-compatible control interface. There are two digital control input pins (EN and CTRL) that determine which RF port is in the insertion loss state and in the isolation state. See [Table 7](#) for the control voltage truth table.

When the EN pin is logic high, all RF paths are in isolation state regardless of the logic state of other pin. The RFx ports are terminated to internal $50\ \Omega$ resistors, and RFC becomes reflective.

RF INPUT AND OUTPUT

The RF ports (RFC, RF1, and RF2) are DC-coupled to 0 V, and no DC blocking is required at the RF ports when the RF line potential is equal to 0 V. The RF ports are internally matched to $50\ \Omega$.

The ADRF5031 is bidirectional with equal power handling capabilities. The RF input signal can be applied to the RFC port or the selected RFx throw port.

The insertion loss path conducts the RF signal between the selected RFx throw port and the RFC (common) port. The isolation paths provide high loss between the insertion loss path and the unselected RFx throw port. The unselected RFx port of the ADRF5031 is nonreflective.

Table 7. Control Voltage Truth Table

Digital Control Input		RFx Paths	
EN	CTRL	RF1 to RFC	RF2 to RFC
Low	Low	Isolation (off)	Insertion loss (on)
Low	High	Insertion loss (on)	Isolation (off)
High	Low or high	Isolation (off)	Isolation (off)

The power handling of the ADRF5031 derates with frequencies less than 1 MHz. See [Figure 2](#) for derating of the RF power towards lower frequencies.

POWER SUPPLY

The ADRF5031 requires that a positive supply voltage is applied to the V_{DD} pin and a negative supply voltage to the V_{SS} pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.

The ideal power-up sequence is as follows:

1. Connect GND.
2. Power up V_{DD} and V_{SS} . Power up V_{SS} after V_{DD} to avoid current transients on V_{DD} during ramp up.
3. Apply digital control inputs. The relative order of the control inputs is not important. However, powering the digital control inputs before the V_{DD} supply can inadvertently forward bias and damage the internal ESD protection structures. To avoid this damage, use a series $1\ k\Omega$ resistor to limit the current flowing into the control pin. Use pull-up or pull-down resistors if the controller is in a high impedance state after V_{DD} is powered up, and the control pins are not driven to a valid logic state.
4. Apply RF input signal.

APPLICATIONS INFORMATION

The ADRF5031 has two power supply pins (V_{DD} and V_{SS}) and two control pins (EN and CTRL). Figure 16 shows the external components and connections for the supply pins. The V_{DD} and V_{SS} pins are decoupled with a 100 pF capacitor. The pinout of the ADRF5031 allows the placement of the decoupling capacitors close to the device. No other external components are needed for bias and operation, except for DC-blocking capacitors on the RFx and RFC pins when the RF lines are biased at a voltage other than 0 V. See Table 6 for further details.

Figure 16. Recommended Schematic

RECOMMENDATIONS FOR PCB DESIGN

The RF ports are matched to 50 Ω internally, and the pinout is designed to mate a coplanar waveguide (CPWG) with a 50 Ω characteristic impedance on the PCB. Figure 17 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003C dielectric material. A RF trace with a 14 mil width and 7 mil clearance is recommended for 1.5 mil finished copper thickness.

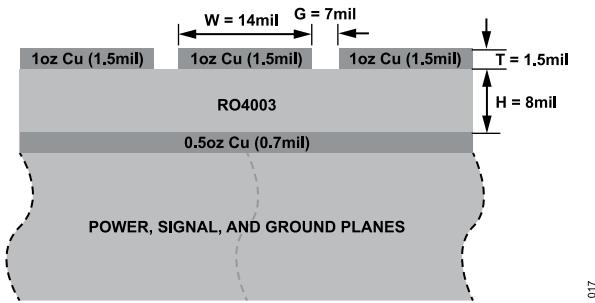


Figure 17. Example PCB Stack-Up

Figure 18 shows the routing of the RF traces, supply, and control signals from the ADRF5031. The ground planes are connected with densely filled through vias for optimal RF and thermal performance. The primary thermal path for the ADRF5031 is the bottom side.

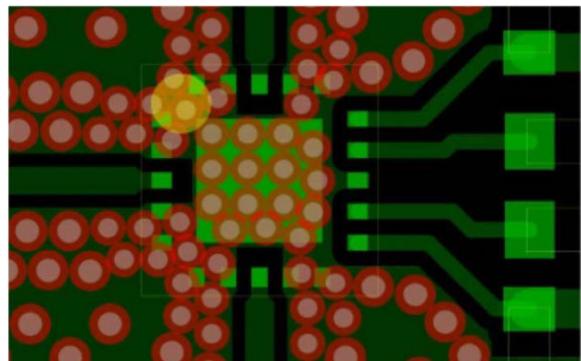


Figure 18. PCB Layout

Figure 19 shows the recommended layout from the RF pins of the ADRF5031 to the 50 Ω CPWG on the referenced stack-up. PCB pads are drawn 1:1 to the pads of the ADRF5031. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width to the package edge and tapered to RF trace. The paste mask is designed to match the pads of the ADRF5031 without any aperture reduction. The paste mask is divided into multiple openings for the paddle.

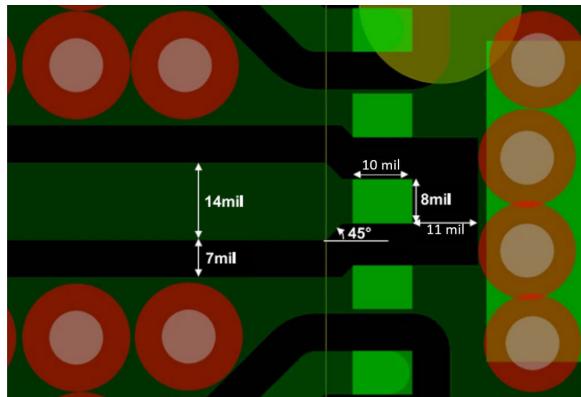
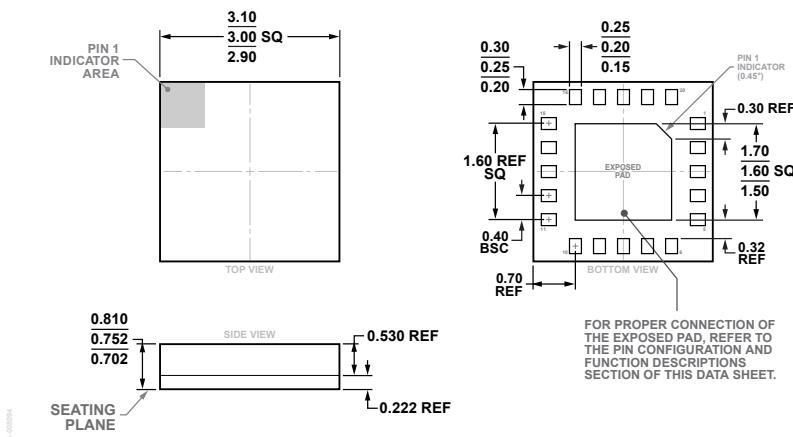



Figure 19. Recommended RF Pin Transition

For alternate PCB stack-ups with different dielectric thickness and RF trace design, contact Analog Devices Technical Support for further recommendations.

OUTLINE DIMENSIONS

06-27-2023A

**Figure 20. 20-Terminal Land Grid Array [LGA]
(CC-20-21)**
Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Quantity	Package Option
ADRF5031BCCZN	-40°C to +105°C	20-Terminal Land Grid Array [LGA]	Reel, 500	CC-20-21
ADRF5031BCCZN-R7	-40°C to +105°C	20-Terminal Land Grid Array [LGA]	Reel, 500	CC-20-21

¹ Z = RoHS-Compliant Part.

EVALUATION BOARDS

Table 8. Evaluation Boards

Model ¹	Description
ADRF5031-EVALZ	Evaluation Board

¹ Z = RoHS-Compliant Part.