

 0.62Ω R_{ON}, ±20V, +36V, 4:1 Multiplexer

FEATURES

- ► Low R_{ON} 0.62Ω
- ▶ High continuous current of up to 847mA
- Flat R_{ON} across signal range, 0.003Ω
- ▶ THD of -100dB at 1kHz
- ▶ 1.8V, 3.3V, and 5V Logic compatibility
- ▶ 16-lead, 4 mm × 4 mm LFCSP
 - ▶ Pin to pin compatible with the ADG5404 and ADG5404F
- ▶ Fully specified at ±20V and +36V
- Operational with asymmetric power supplies
- ▶ V_{SS} to V_{DD} 2V analog signal range

APPLICATIONS

- Automatic test equipment
- Data acquisition
- ▶ Instrumentation
- Avionics
- Audio and video switching
- Communication systems
- Relay replacement

GENERAL DESCRIPTION

The ADG6404 is an analog 4:1 multiplexer. The ADG6404 switches one of four inputs to a common output, D, as determined by the 3-bit binary address line, A0, A1, and EN. For use in multiplexer applications, switches exhibit break-before-make switching action.

Each channel conducts equally well in both directions when on, and each switch has an input signal range that extends from V_{SS} to V_{DD} – 2 V. When switches are disabled, signal levels up to the supplies are blocked.

The digital inputs are compatible with 5 V, 3.3 V, and 1.8 V logic inputs without the requirement for a separate digital logic supply pin.

The on-resistance profile is exceptionally flat over the full-analog input range, which ensures good linearity and low distortion when switching audio signals.

FUNCTIONAL BLOCK DIAGRAM

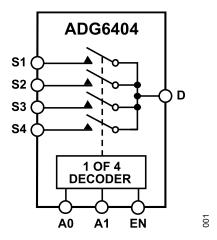


Figure 1. Functional Block Diagram

PRODUCT HIGHLIGHTS

- 1. Low R_{ON} of 0.62Ω .
- 2. High continuous current carrying capability, see Table 4.
- Dual-supply operation. For applications where the analog signal is bipolar, the ADG6404 can be operated from dual supplies up to ±22V.
- 4. Single-supply operation. For applications where the analog signal is unipolar, the ADG6404 can be operated from a single rail power supply up to 40V.
- **5.** 1.8V logic-compatible digital inputs: $V_{INH} = 1.3V$, $V_{INI} = 0.8V$.
- **6.** No V₁ logic power supply required.

TABLE OF CONTENTS

Features 1	Typical Performance Characteristics	10
Applications1	Test Circuits	14
General Description1	Theory of Operations	16
Functional Block Diagram1	Switch Architecture	
Product Highlights1	1.8 V Logic Compatibility	16
Specifications3	Terminology	17
Operating Supply Voltages3	Applications Information	18
±20V Dual Supply3	On Resistance Matching Across Channels	18
36V Single Supply4	Large Voltage, High Frequency Signal	
Continuous Current Per Channel, Sx or Dx 7	Tracking	18
Absolute Maximum Ratings8	Power Supply Recommendations	18
Thermal Resistance8	Digital Audio Channel to Ultra-Low THD	18
Electrostatic Discharge (ESD) Ratings8	Outline Dimensions	19
ESD Caution8	Ordering Guide	19
Pin Configurations and Function Descriptions9	Evaluation Boards	19
REVISION HISTORY		
6/2025—Rev. 0 to Rev. A Added On Resistance Matching Across Channels Sec	tion and Figure 39; Renumbered Sequentially	18
4/2025—Revision 0: Initial Version		

analog.com Rev. A | 2 of 19

SPECIFICATIONS

OPERATING SUPPLY VOLTAGES

Table 1. Operating Supply Voltages

Supply Voltage	Min	Max	Unit
Dual Supply	±4.5	±22	V
Single Supply	+5	+40	V

±20V DUAL SUPPLY

 V_{DD} = +20V \pm 10%, V_{SS} = -20V \pm 10%, GND = 0V, unless otherwise noted.

Table 2, ±20 V Dual-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					V _{DD} = +18V, V _{SS} = -18V
Analog Signal Range			V_{DD} – 2 V to V_{SS}	V	
On Resistance, R _{ON}	0.62			Ω typ	Source voltage (V_S) = -18V to +14.5V, source current (I_S) = -100mA, see Figure 28
	0.7	0.87	1.02	Ω max	
	0.65			Ω typ	$V_S = -18V \text{ to } +15.5V, I_S = -100\text{mA}$
	0.75	0.92	1.07	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.12			Ω typ	$V_S = -18V \text{ to } +15.5V, I_S = -100\text{mA}$
	0.26	0.29	0.31	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	0.003			Ω typ	$V_S = -18V \text{ to } +14.5V, I_S = -100\text{mA}$
(* /	0.035	0.035	0.035	Ω max	
	0.04			Ω typ	$V_S = -18V \text{ to } +15.5V, I_S = -100\text{mA}$
	0.08	0.1	0.1	Ω max	
LEAKAGE CURRENTS					V _{DD} = +22V, V _{SS} = -22V
Source Off Leakage, I _S (Off)	±5			nA typ	V_S = +15V/-15V, drain current (V_D) = -15V/+15V, see Figure 31
	±12.5	+90/-14	+430/-14	nA max	
Drain Off Leakage, I _D (Off)	±20			nA typ	$V_S = +15V/-15V$, $V_D = -15V/+15V$, see Figure 31
	±50	+360/-28	+1720/-28	nA max	
Channel On Leakage, I _D (On), I _S (On)	±15			nA typ	$V_S = V_D = \pm 15V$, see Figure 27
	±38.8	+275/-17	+1340/-17	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.3	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.01			μA typ	Input voltage (V _{IN}) = GND voltage (V _{GND}) or 5V
			±0.15	μA max	
Digital Input Capacitance, C _{IN}	4.6			pF typ	
DYNAMIC CHARACTERISTICS					
Transition Time, t _{TRANSITION}	349			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	413	455	498	ns max	V _S = 10V, see Figure 37
On Time, t _{ON}	340			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	398	440	484	ns max	V _S = 10V, see Figure 36
Off Time, t _{OFF}	220			ns typ	$R_L = 300\Omega, C_L = 35pF$
	260	262	262	ns max	V _S = 10V, see Figure 36

analog.com Rev. A | 3 of 19

SPECIFICATIONS

Table 2. ±20 V Dual-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Break-Before-Make Time Delay, t _D	247			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	198	234	270	ns min	V _S = 10V, see Figure 35
Charge Injection, Q _{INJ}	-2.15			nC typ	V_S = 0V, R_S = 0 Ω , C_L = 1nF, see Figure 38
Off Isolation	-78			dB typ	$R_L = 50\Omega$, $C_L = 5pF$, frequency = 100kHz, see Figure 30
Channel-to-Channel Crosstalk	-84			dB typ	$R_L = 50\Omega$, $C_L = 5pF$, frequency = 100kHz, see Figure 29
Total Harmonic Distortion + Noise, THD + N	0.02			% typ	$R_L = 1k\Omega$, 20V p-p, frequency = 20Hz to 20kHz, see Figure 33
Total Harmonic Distortion, THD	-100			dB typ	R_L = 1kΩ, 20V p-p, frequency = 1kHz
	-74			dB typ	R_L = 1kΩ, 20V p-p, frequency = 20kHz
	-60			dB typ	R_L = 1kΩ, 20V p-p, frequency = 100kHz
−3dB Bandwidth	38			MHz typ	$R_L = 50\Omega$, $C_L = 5pF$, signal = 0dBm, see Figure 34
Insertion Loss	-0.11			dB typ	$R_L = 50\Omega$, $C_L = 5pF$, frequency = 1MHz see Figure 34
Source Off Capacitance, C _S (Off)	69			pF typ	V _S = 0V, frequency = 1MHz
Drain Off Capacitance, C _D (Off)	278			pF typ	V _S = 0V, frequency = 1MHz
Drain On Capacitance, C_D (On), Source On Capacitance, C_S (On)	235			pF typ	V _S = 0V, frequency = 1MHz
Match On Capacitance, C _{MATCH} (On)	0.62			pF typ	V _S = 0V, frequency = 1MHz
POWER REQUIREMENTS					V _{DD} = +22V, V _{SS} = -22V
Power Supply Current, I _{DD}	170			μA typ	Digital inputs = 0V or 5V
	260		260	µA max	
	225			μA typ	Digital inputs = 1.3V
	330		330	µA max	
Negative Supply Current, I _{SS}	85			μA typ	Digital inputs = 0V or 5V
	140		140	μA max	

36V SINGLE SUPPLY

 V_{DD} = 36V ± 10%, V_{SS} = 0V, GND = 0V, unless otherwise noted.

Table 3. 36V Single-Supply Specifications

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					$V_{DD} = 32.4V, V_{SS} = 0V$
Analog Signal Range			0 V to V _{DD} – 2 V	V	
On Resistance, R _{ON}	0.62			Ω typ	Source voltage $(V_S) = 0V$ to 28.9V, source current $(I_S) = -100$ mA, see Figure 28
	0.7	0.87	1.02	Ω max	
	0.65			Ω typ	$V_S = 0V \text{ to } 29.9V, I_S = -100\text{mA}$
	0.75	0.92	1.07	Ω max	
On-Resistance Match Between Channels, ΔR_{ON}	0.12			Ω typ	$V_S = 0V \text{ to } 29.9V, I_S = -100\text{mA}$
	0.26	0.29	0.31	Ω max	
On-Resistance Flatness, R _{FLAT(ON)}	0.003			Ω typ	$V_S = 0V \text{ to } 28.9V, I_S = -100\text{mA}$
, ,	0.035	0.035	0.035	Ω max	
	0.04			Ω typ	$V_S = 0V \text{ to } 29.9V, I_S = -100\text{mA}$

analog.com Rev. A | 4 of 19

SPECIFICATIONS

Table 3. 36V Single-Supply Specifications (Continued)

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
	0.08	0.1	0.1	Ω max	
LEAKAGE CURRENTS					V _{DD} = 39.6V, V _{SS} = 0V
Source Off Leakage, I _S (Off)	±5			nA typ	V_S = 1V/30V, drain voltage (V_D) = 30V/1V, see Figure 31
	±12.5	+90/-14	+430/-14	nA max	
Drain Off Leakage, I _D (Off)	±20			nA typ	$V_S = 1V/30V$, $V_D = 30V/1V$, see Figure 31
	±50	+360/-28	+1720/-28	nA max	
Channel On Leakage, I _D (On), I _S (On)	±15			nA typ	$V_S = V_D = 1V/30V$, see Figure 27
0 1 2 (±38.8	+275/-17	+1340/-17	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			1.3	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.01			μA typ	Input voltage (V _{IN}) = GND voltage (V _{GND}) or 5V
			±0.15	μA max	(GND)
Digital Input Capacitance, C _{IN}	4.6		-	pF typ	
DYNAMIC CHARACTERISTICS				F. 3F	
Transition Time, t _{TRANSITION}	392			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	463	482	490	ns max	$V_S = 18V$, see Figure 37
On Time, t _{ON}	215			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	251	283	308	ns max	V _S = 18V, see Figure 36
Off Time, t _{OFF}	410			ns typ	$R_L = 300\Omega, C_L = 35pF$
, 011	481	481	481	ns max	V _S = 18V, see Figure 36
Break-Before-Make Time Delay, $t_{\rm D}$	108			ns typ	Load resistance (R_L) = 300 Ω , load capacitance (C_L) = 35pF
	87	109	130	ns min	V _S = 18V, see Figure 35
Charge Injection, Q _{INJ}	-1.98			nC typ	V_S = 18V, R_S = 0 Ω , C_L = 1nF, see Figure 38
Off Isolation	-64			dB typ	$R_L = 50\Omega$, $C_L = 5pF$, frequency = 100kHz, see Figure 30
Channel-to-Channel Crosstalk	-70			dB typ	$R_L = 50\Omega$, $C_L = 5pF$, frequency = 100kHz, see Figure 29
Total Harmonic Distortion + Noise, THD + N	0.018			% typ	R_L = 1kΩ, 18V p-p, frequency = 20Hz to 20kHz, see Figure 33
Total Harmonic Distortion, THD	-101			dB typ	R_L = 1kΩ, 18V p-p, frequency = 1kHz
	-75			dB typ	R _L = 1kΩ, 18V p-p, frequency = 20kHz
	-61			dB typ	R_L = 1kΩ, 18V p-p, frequency = 100kHz
-3dB Bandwidth	36			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, signal = 0dBm, see Figure 34
Insertion Loss	-0.12			dB typ	R _L = 50 Ω, C _L = 5 pF, frequency = 1MHz, see Figure 34
Source Off Capacitance, C _S (Off)	72			pF typ	V _S = 18V, frequency = 1MHz
Drain Off Capacitance, C _D (Off)	287			pF typ	V _S = 18V, frequency = 1MHz
Drain On Capacitance, C_D (On), Source On Capacitance, C_S (On)	243			pF typ	V _S = 18V, frequency = 1MHz

analog.com Rev. A | 5 of 19

SPECIFICATIONS

Table 3. 36V Single-Supply Specifications (Continued)

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Match On Capacitance, C _{MATCH} (On)	0.62			pF typ	V _S = 18V, frequency = 1MHz
POWER REQUIREMENTS					V _{DD} = 39.6V
Power Supply Current, I _{DD}	170			μA typ	Digital inputs = 0V or 5V
	260		260	μA max	
	225			μA typ	Digital inputs = 1.3V
	330		330	μA max	
Negative Supply Current, I _{SS}	85			μA typ	Digital inputs = 0V or 5V
	140		140	μA max	

analog.com Rev. A | 6 of 19

SPECIFICATIONS

CONTINUOUS CURRENT PER CHANNEL, SX OR DX

Table 4. One Channel On, Per Channel Specifications

Parameter	25°C	85°C	125°C	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, Sx OR Dx					
$V_{DD} = +20V, V_{SS} = -20V$					
LFCSP ($\theta_{JA} = 44^{\circ}C/W$)	847	325	123	mA maximum	$V_S = V_{SS}$ to $V_{DD} - 3.5V$
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$					
LFCSP ($\theta_{JA} = 44^{\circ}C/W$)	847	325	123	mA maximum	$V_S = V_{SS}$ to $V_{DD} - 3.5V$

analog.com Rev. A | 7 of 19

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 5. Absolute Maximum Ratings

Parameter	Rating		
V_{DD} to V_{SS}	46V		
V _{DD} to GND	-0.3V to +46V		
V _{SS} to GND	+0.3V to -46V		
Analog Inputs ¹	V_{SS} = 0.3V to V_{DD} + 0.3V or 30mA, whichever occurs first		
Digital Inputs ¹	GND - 0.3V to +6V or 30mA, whichever occurs first		
Peak Current, Sx or Dx Pins ²	2.6A (pulsed at 1ms, 10% duty cycle maximum)		
Continuous Current, Sx or Dx ²	Data ³ + 15%		
Temperature			
Operating Range	-40°C to +125°C		
Storage Range	-65°C to +150°C		
Junction	150°C		
Reflow Soldering Peak, Pb-Free	As per JEDEC J-STD-020		

Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction-to-ambient thermal resistance measured in a one cubic foot sealed enclosure, and θ_{JCB} is the junction to the bottom of the case value.

Table 6. Thermal Resistance

Package Type	θ_{JA}	θ_{JCB}	Unit
CP-16-17 ¹	44	17.4	°C/W

Thermal impedance simulated values are based on JEDEC 2S2P thermal test board without thermal vias. See JEDEC JESD-51.

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

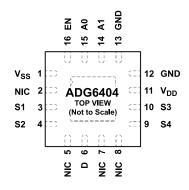
Field induced charged-device model (FICDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for the ADG6404

Table 7. ADG6404. 16-Lead LFCSP

ESD Model	Withstand Threshold (V)	Class
HBM	±4000	3A
FICDM	±1250	C3

ESD CAUTION


ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. A | 8 of 19

² Sx refers to the S1 to S4 pins, and Dx refers to the D1 to D4 pins.

³ See Table 4.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

- 1. NIC = NOT INTERNALLY CONNECTED.
- 2. EXPOSED PAD. THE EXPOSED PAD IS CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOLDERED TO THE SUBSTRATE, $V_{\rm SS}$.

Figure 2. Pin Configuration

002

Table 8. Pin Function Descriptions

Pin Number	Mnemonic	Description
1	V _{SS}	Most Negative Power-Supply Potential. Decouple the V _{SS} pin using a 0.1µF capacitor to GND.
2, 5, 7, 8	NIC	Not Internally Connected.
3	S1	Source Terminal 1. This pin can be an input or output.
4	S2	Source Terminal 2. This pin can be an input or output.
6	D	Drain Terminal. This pin can be an input or output.
9	S4	Source Terminal 4. This pin can be an input or output.
10	S3	Source Terminal 3. This pin can be an input or output.
11	V_{DD}	Most Positive Power-Supply Potential. Decouple the V _{DD} pin using a 0.1µF capacitor to GND.
12, 13	GND	Ground (0V) Reference Supply.
14	A1	Logic Control Input A1.
15	A0	Logic Control Input A0.
16	EN	Active High Digital Input. When this pin is low, the device is disabled, and all switches are off. When this pin is high, the Ax logic inputs determine the on switches.
EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V _{SS} .

Table 9. ADG6404 Truth Table

EN	A1	A0	S1	S2	S3	S4
0	X ¹	X ¹	Off	Off	Off	Off
1	0	0	On	Off	Off	Off
1	0	1	Off	On	Off	Off
1	1	0	Off	Off	On	Off
1	1	1	Off	Off	Off	On

¹ X = Don't care.

analog.com Rev. A | 9 of 19

TYPICAL PERFORMANCE CHARACTERISTICS

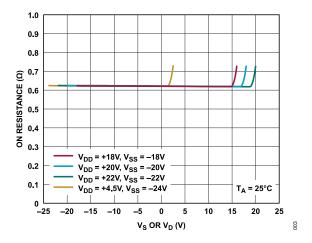


Figure 3. R_{ON} as a Function of V_S , V_D (Dual Supply)

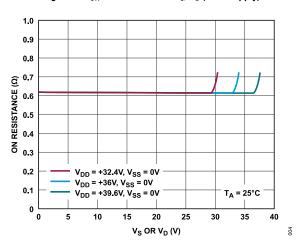


Figure 4. R_{ON} as a Function of V_S, V_D (Single Supply)

Figure 5. R_{ON} as a Function of V_S (V_D) for Different Temperatures, $\pm 20V$ Dual Supply

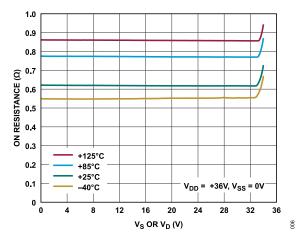


Figure 6. R_{ON} as a Function of V_S (V_D) for Different Temperatures, 36V Single Supply

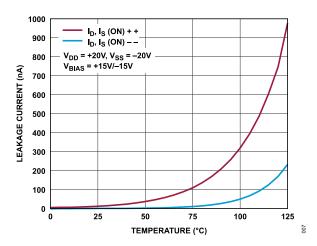


Figure 7. On Leakage Currents vs. Temperature, ±20V Dual Supply

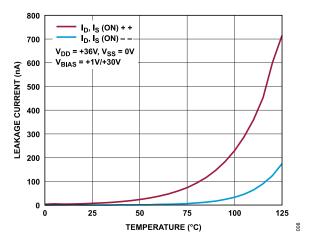


Figure 8. On Leakage Currents vs. Temperature, +36V Single Supply

analog.com Rev. A | 10 of 19

TYPICAL PERFORMANCE CHARACTERISTICS

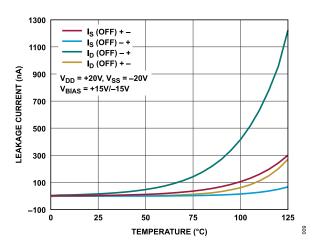


Figure 9. Off Leakage Currents vs. Temperature, ±20V Dual Supply

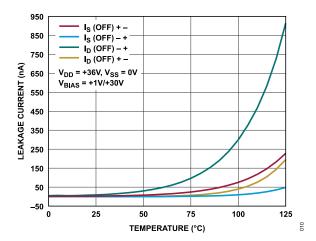


Figure 10. Off Leakage Currents vs. Temperature, +36V Single Supply

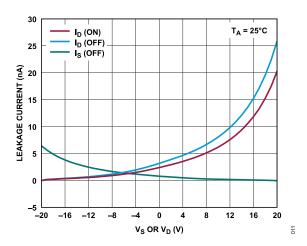


Figure 11. Leakage Currents as a Function of V_S (V_D), 25 °C, 20V Dual Supply

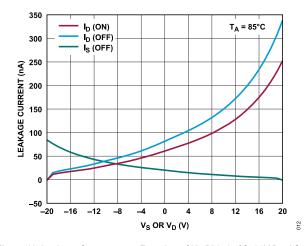


Figure 12. Leakage Currents as a Function of V_S (V_D), 85 °C, 20V Dual Supply

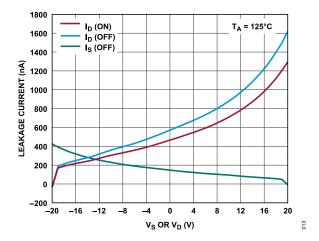


Figure 13. Leakage Currents as a Function of V_S (V_D), 125 °C, 20V Dual Supply

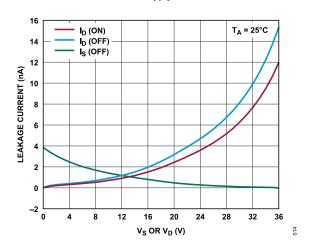


Figure 14. Leakage Currents as a Function of V_S (V_D), 25 °C, 36V Single Supply

analog.com Rev. A | 11 of 19

TYPICAL PERFORMANCE CHARACTERISTICS

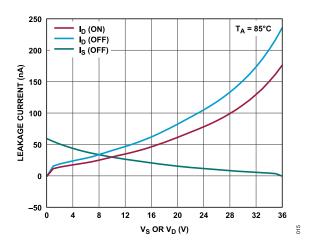


Figure 15. Leakage Currents as a Function of V_S (V_D), 85 °C, 36V Single Supply

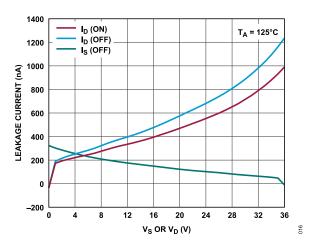


Figure 16. Leakage Currents as a Function of V_S (V_D) , 125 °C, 36V Single Supply

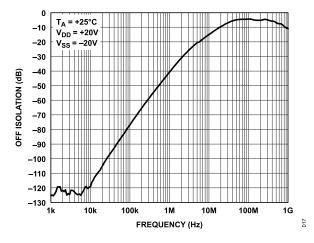


Figure 17. Off Isolation vs. Frequency, ±20V Dual Supply

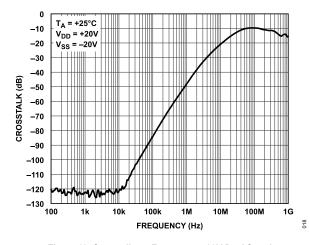


Figure 18. Crosstalk vs. Frequency, ±20V Dual Supply

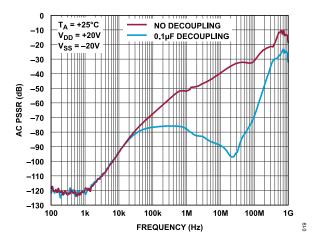


Figure 19. AC PSRR vs. Frequency, ±20V Dual Supply

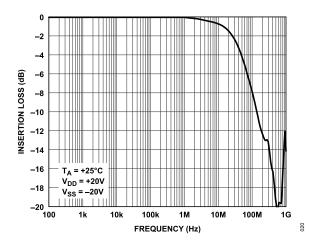


Figure 20. Insertion Loss vs. Frequency

analog.com Rev. A | 12 of 19

TYPICAL PERFORMANCE CHARACTERISTICS

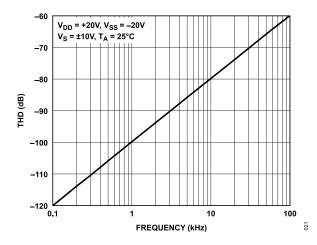


Figure 21. THD vs. Frequency, ±20V Dual Supply

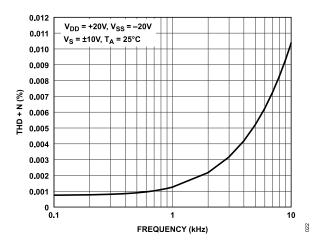


Figure 22. THD + N vs. Frequency, ±20V Dual Supply

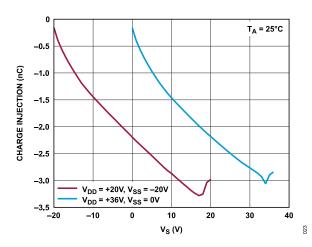


Figure 23. Charge Injection vs. V_S

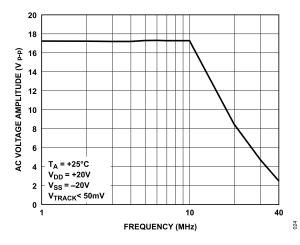


Figure 24. Large AC Signal Voltage vs. Frequency

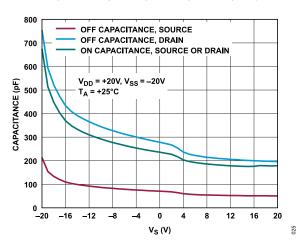


Figure 25. Capacitance vs. V_S, ±20V Dual Supply

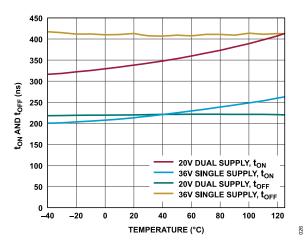


Figure 26. t_{ON} , t_{OFF} Times vs. Temperature

analog.com Rev. A | 13 of 19

TEST CIRCUITS

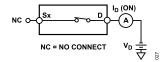


Figure 27. On Leakage

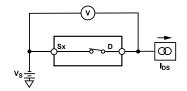


Figure 28. On Resistance

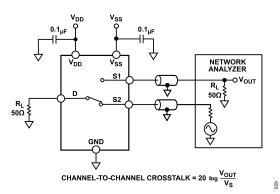


Figure 29. Channel-to-Channel Crosstalk

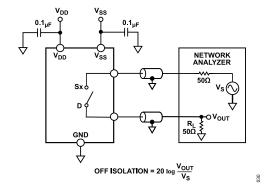


Figure 30. Off Isolation

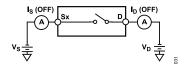
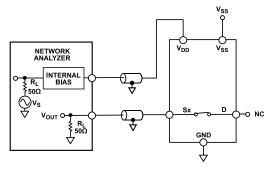



Figure 31. Off Leakage

AC PSRR = 20 $\log \frac{V_{OUT}}{V_e}$

- NOTES:

 1. BOARD AND COMPONENT EFFECTS ARE NOT DE-EMBEDDED FROM THE AC PSRR MEASUREMENT.

 2. NC = NO CONNECT.

Figure 32. AC PSRR

032

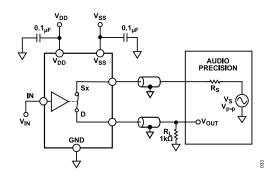


Figure 33. THD + Noise

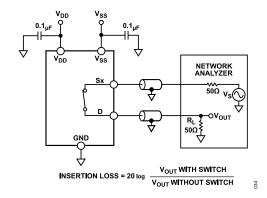


Figure 34. Bandwidth

Rev. A | 14 of 19 analog.com

TEST CIRCUITS

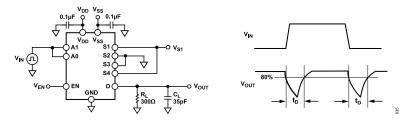


Figure 35. Break-Before-Make Time Delay (t_D)

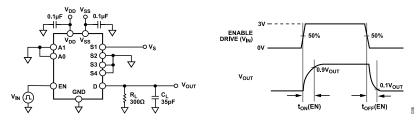


Figure 36. Enable Delay, $t_{ON}(EN)$, $t_{OFF}(EN)$

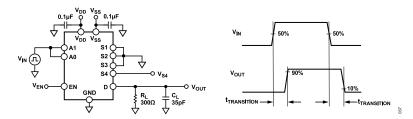


Figure 37. Switching Times

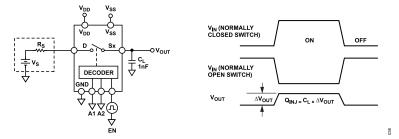


Figure 38. Charge Injection

analog.com Rev. A | 15 of 19

THEORY OF OPERATIONS

SWITCH ARCHITECTURE

The ADG6404 is an N-channel diffused metal-oxide semiconductor (NDMOS) 4:1 multiplexer that allows for excellent R_{ON} performance. Using an NDMOS-only architecture results in a reduction of signal headroom, meaning signals are limited to V_{DD} – 2V. To achieve the lowest on resistance, on-resistance flatness, and total harmonic distortion, it is recommended the signal stays below V_{DD} – 3.5V.

To guarantee correct operation of the ADG6404, a minimum of 0.1 μ F decoupling capacitors are required on both the V_{DD} and V_{SS} supply pins.

The ADG6404 is compatible with single-supply systems that have a V_{DD} of up to 40V, dual-supply systems of up to \pm 22V, as well as asymmetric power supplies.

1.8 V LOGIC COMPATIBILITY

For ease of use, the ADG6404 does not have a V_L logic reference voltage. The digital inputs are compatible with 1.8 V logic levels over the full-operating supply range. The limits for 1.8 V logic are: V_{INH} = 1.3 V, V_{INL} = 0.8 V. 1.8 V logic-level inputs enable the ADG6404 to be compatible with processors that have lower supply rails, eliminating the need for an external voltage translator.

If full 1.8 V and 1.2 V JEDEC compliance is required, refer to the Analog Devices, Inc., L range part numbers, such as the ADG1412L.

analog.com Rev. A | 16 of 19

TERMINOLOGY

I_{DD}

The positive supply current.

ISS

The negative supply current.

V_D and V_S

The analog voltage on Terminal D and Terminal S, respectively.

VTRACK

The difference between V_S and V_D.

RON

The ohmic resistance between Terminal D and Terminal S.

ΔR_{ON}

The difference between the R_{ON} of any two channels.

R_{FLAT(ON)}

The difference between the maximum and minimum value of on resistance measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

I_D (On) and I_S (On)

The channel leakage current with the switch on.

V_{INL}

The maximum input voltage for Logic 0.

V_{INH}

The minimum input voltage for Logic 1.

I_{INL} and I_{INH}

The input current of the digital input when high or when low.

C_S (Off) and C_D (Off)

The off switch source and drain capacitance for the off condition, which is measured with reference to ground.

C_D (On) and C_S (On)

The on switch drain and source capacitance for the on condition, which is measured with reference to ground.

CIN

The digital input capacitance.

t_{Transition}

The delay time between the 50% and 90% points of the digital input and switch on condition when switching from one address to another.

t_{ON}

The delay between applying the digital control input and the output switching on.

tOFF

The delay between applying the digital control input and the output switching off.

t_D

The off-time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Channel-to-Channel Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

Total Harmonic Distortion + Noise (THD + N)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (AC PSRR)

The ratio of the amplitude of signal on the output to the amplitude of the modulation. This is a measure of the ability of the part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The DC voltage on the device is modulated by a sine wave of 0.62 V p-p.

analog.com Rev. A | 17 of 19

APPLICATIONS INFORMATION

ON RESISTANCE MATCHING ACROSS CHANNELS

Figure 39 illustrates the typical R_{ON} of each individual channel of the ADG6404. Channel S2 typically exhibits lower R_{ON} compared to Channel S1, Channel S3, and Channel S4. As a result, the typical and max ΔR_{ON} values between S1 and S3 are expected to be smaller than the ΔR_{ON} between S2 and S1, or S2 and S3, across temperatures from -40°C to +125°C.

This parameter must be considered in applications involving load balancing, gain measurement, or precision analog signal processing.

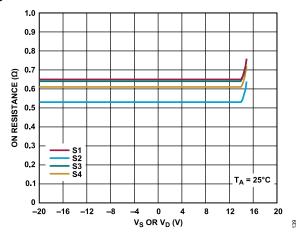


Figure 39. R_{ON} Across Channels as a Function of V_S, V_D, ±20V Dual Supply

LARGE VOLTAGE, HIGH FREQUENCY SIGNAL TRACKING

Figure 24 shows the voltage range and corresponding frequencies that the ADG6404 can reliably convey. The tracking voltage (V_{TRACK}) in the figure shows the source voltage and the drain voltage difference, which is less than 50mV for a given amplitude and frequency. For large voltage, high frequency signals, the frequency must be kept below 10MHz. If the required frequency is greater than 10MHz, decrease the signal range appropriately to ensure signal integrity.

POWER SUPPLY RECOMMENDATIONS

Analog Devices has a wide range of power management products to meet the requirements of high performance signal chains.

An example of a bipolar power solution is shown in Figure 40. The LT3463 (a dual switching regulator) generates a positive and

negative supply rail for the ADG6404, an amplifier, and/or a precision converter in a typical signal chain. Also, two optional low-dropout regulators (LDOs), the ADP7142 and ADP7182 (positive and negative LDOs, respectively) are shown in Figure 40, which can reduce the output ripple of the LT3463 in ultra-low noise sensitive applications.

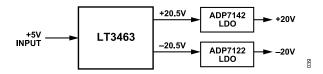


Figure 40. Bipolar Power Solution

Table 10. Recommended Power Management Devices

Product	Description	
LT3463	Dual micropower, DC to DC converter with Schottky diodes	
ADP7142	40V, 200mA, low noise, CMOS, LDO linear regulator	
ADP7182	−28V, −200mA, low noise, LDO linear regulator	

DIGITAL AUDIO CHANNEL TO ULTRA-LOW THD

Figure 41 shows an example application for the ADG6404. For precision audio signal chains, THD is a key specification. The THD performance of a switch is related to the on-resistance flatness, and the ADG6404 has exceptionally low on-resistance flatness of approximately $3m\Omega.$ Here, the ADG6404 is set up as a gain selection switch for an audio preamplifier to allow flexibility for user to select multiple gain ranges. The THD performance of the ADG6404 maximizes the signal fidelity and the low on-resistance minimizes any gain error in the system.

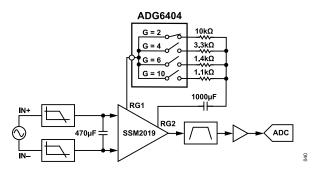


Figure 41. Digital Audio Channel to Ultra-Low THD Application

analog.com Rev. A | 18 of 19

OUTLINE DIMENSIONS

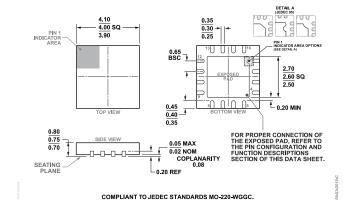


Figure 42. 16-Lead Lead Frame Chip Scale Package [LFCSP]
4 mm × 4 mm Body and 0.75 mm Package Height
(CP-16-17)
Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADG6404BCPZ-REEL7	-40°C to +125°C	16-Lead LFCSP (4mm × 4mm)	Reel, 1500	CP-16-17

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 11. Evaluation Boards

Model ¹	Description
EVAL-ADG6404EBZ	Evaluation Board

¹ Z = RoHS-Compliant Part.

