CN0206: 热电偶温度测量系统,耗用电流低于500 μA

精确设计,严谨验证,即取即用。了解更多

概览

优势和特点
  • 典型温度范围为-200 C至+400 C
  • T型热电偶测量系统
  • 低功耗500uA(最大值)、低系统噪声0.2度
  • 带可编程增益和冷结补偿的单芯片解决方案
  • 高性能和高精度
此电路中所用产品
    应用: 
  • 现场仪器仪表和智能发送器
  • 温度控制器
  • 高温产品
设计资源
设计和集成文件
  • Schematic
  • Bill of Materials
  • Gerber Files
  • PADS Files
  • Assembly Drawing
Download Design Files (358 kB)
评估硬件
Part numbers with "Z" indicate RoHS Compliance.
评估此款电路所需的评估板
  • EVAL-CFTL-6V-PWRZ ($ 16.60) Wall Power Supply for Eval Board
  • EVAL-CN0206-SDPZ ($ 60.00) Complete Type T Thermocouple Measurement System with Cold Junction Compensation
  • EVAL-CN0300-EB1Z ($ 119.00)  
  • EVAL-SDP-CB1Z ($ 99.00) Eval Control Board
查看库存和订购
设备驱动
Software, such as C code and/or FPGA code, used to communicate with a component's digital interface.
连接支持
This circuit supports 3rd party connectivity.

电路功能与优势

图1所示电路是一个基于24位Σ-Δ型ADC AD7793 的完整热电偶系统。AD7793是一款适合高精度测量应用的低功耗、低噪声、完整模拟前端,内置PGA、基准电压源、时钟和激励电流,从而大大简化了热电偶系统设计。系统峰峰值噪声约为0.02°C。

AD7793的最大功耗仅500 μA,因而适合低功耗应用,例如整个发送器的功耗必须低于4 mA的智能发送器等。AD7793还具有关断选项。在这种模式下,整个ADC及其辅助功能均关断,器件的最大功耗降至1 μA。

AD7793提供一种集成式热电偶解决方案,可以直接与热电偶接口。冷结补偿由一个热敏电阻和一个精密电阻提供。该电路只需要这些外部元件来执行冷结测量,以及一些简单的R-C滤波器来满足电磁兼容性(EMC)要求。

图1. 带冷结补偿的热电偶测量系统(原理示意图:未显示去耦和所有连接)

电路描述

本电路使用T型热电偶。该热电偶由铜和康铜构成,温度测量范围为−200°C至+400°C,产生的温度相关电压典型值为40 μV/°C。

热电偶的传递函数不是线性的。在0°C至+60°C的温度范围,其响应非常接近线性。但是,在更宽的温度范围内,必须使用一个线性化程序处理。

测试电路不包括线性化功能,因此,本电路的有用测量范围是0°C到+60°C。在该温度范围内,热电偶产生0 mV至2.4 mV的电压。内部1.17 V基准电压用于热电偶转换。因此,AD7793的增益配置为128。

AD7793采用单电源供电,热电偶产生的信号必须被偏置到地以上,从而处于该ADC支持的范围。对于128倍的增益,模拟输入端的绝对电压必须在GND + 300 mV至AVDD – 1.1 V范围内。

AD7793片上集成的偏置电压发生器偏置热电偶信号,使其共模电压为AVDD/2,确保以相当大的裕量满足输入电压限值要求。

热敏电阻在+25°C时的值为1 kΩ,0°C时的典型值为815 Ω,+30°C时的典型值为1040 Ω。假设0°C至30°C的传递函数为线性,则冷结温度与热敏电阻R之间的关系为:

冷结温度 = 30 × (R – 815)/(1040 – 815)

AD7793的1 mA激励电流用于为热敏电阻和2 kΩ精密电阻供电。基准电压利用该2 kΩ外部精密电阻产生。这种架构提供一种比率式配置,激励电流用于为热敏电阻供电,并产生基准电压。因此,激励电流值的偏差不会改变系统的精度。

对热敏电阻通道进行采样时,AD7793以1倍的增益工作。对于+30°C的最大冷结温度,热敏电阻上产生的最大电压为1 mA × 1040 Ω = 1.04 V。

热敏电阻的选择条件是:热敏电阻上产生的最大电压乘以PGA增益的结果小于或等于精密电阻上产生的电压。

对于ADC_CODE的转换值,相应的热敏电阻值R等于:

R = (ADC_CODE – 0x800000) × 2000/223

还需要考虑AD7793 IOUT1引脚的输出顺从电压。使用1 mA激励电流时,输出顺从电压等于AVDD – 1.1 V。从上述计算可知,电路满足这一要求,因为IOUT1的最大电压等于精密电阻上的电压加上热敏电阻上的电压,等于2 V + 1.04 V = 3.04 V。

AD7793以16.7 Hz的输出数据速率工作。每读取10个热电偶转换结果,就读取1个热敏电阻转换结果。相应的温度等于:

温度 = 热电偶温度 + 冷结温度

AD7793的转换结果由模拟微控制器ADuC832 处理,所得的温度显示在LCD显示器上。

该热电偶设计采用6 V(2节3 V锂电池)电池供电。一个二极管将6 V电压降至适合AD7793和模拟微控制器ADuC832的电平。ADuC832电源与AD7793电源之间有一个RC滤波器,用以降低进入AD7793的电源数字噪声。

图2显示了T型热电偶上产生的电压与温度的关系。圆圈内的区域是从0°C到+60°C,该区域内的传递函数接近线性。

图2. 热电偶电动势与温度的关系

当系统处于室温时,热敏电阻应指示室温的值。热敏电阻指示的是相对于冷结温度的相对温度,即冷结(热敏电阻)与热电偶的温差。因此,在室温时,热电偶应指示0°C。.

如果将热电偶放在一个冰桶中,热敏电阻仍旧测量环境(冷结)温度。热电偶应指示热敏电阻值的负值,使得总温度等于0。

最后,对于16.7 Hz的输出数据速率和128倍的增益,AD7793的均方根噪声等于0.088 μV。峰峰值噪声等于:

6.6 × 均方根噪声 = 6.6 × 0.088 μV = 0.581 μV

如果热电偶的灵敏度恰好为40 μV/°C,则热电偶的温度测量分辨率为:

0.581 μV ÷ 40 μV = 0.014°C

图3所示为实际的测试板。系统评估如下:分别在室温时以及将热电偶放入冰桶的情况下,测量热敏电阻温度、热电偶温度和分辨率。结果如表1所示。

图3. 采用AD7793的热电偶系统

equation

从表1可知,热电偶报告的温度正确,热敏电阻则有0.3°C的误差。这是未包括线性化处理时的系统精度。如果对热电偶和热敏电阻进行线性化处理,系统精度将会提高,系统将能测量更宽的温度范围。

如果每读取10次就计算一次最小与最大温度读数之差,则用温度表示的峰峰值噪声为0.02°C。因此,实际的峰峰值分辨率非常接近期望值。

常见变化

AD7793是一款低噪声、低功耗ADC。其它合适的ADC有 AD7792 AD7785,这两款器件具有与AD7793相同的特性组合,但AD7792为16位ADC,AD7785为20位ADC。

电路评估与测试

测试数据利用图3所示测试板获得。该系统的完整文档位于CN-0206设计支持包中: www.analog.com/CN0206-DesignSupport

此电路中所用产品:

产品 描述 可提供样片的产品型号
AD7793 3通道、低噪声、低功耗、24位Σ-Δ型ADC,内置片内仪表放大器和基准电压源 AD7793BRUZ
ADP3336 小型、可调输出、500 MA ANYCAP®低压差稳压器 ADP3336ARMZ-REEL7
评估硬件
评估此款电路所需的评估板
产品型号 描述 报价 RoHS 查看库存/
购买/样片
EVAL-CFTL-6V-PWRZ Wall Power Supply for Eval Board $ 16.60 Yes
EVAL-CN0206-SDPZ Complete Type T Thermocouple Measurement System with Cold Junction Compensation $ 60.00 Yes
EVAL-CN0300-EB1Z   $ 119.00 Yes
EVAL-SDP-CB1Z Eval Control Board $ 99.00 Yes
所示报价为单片价格。所列的美国报价单仅供预算参考,指美元报价(每片美国离岸价),如有修改,恕不另行通知。由于地区关税、商业税、汇率及手续费原因,国际报价可能不同。
沪ICP备09046653号
评价这款电路 X
content here.
content here.

评价这款电路

关闭