CN0047: 在单端应用中使用8通道ADC AD7328

精确设计,严谨验证,即取即用。了解更多

概览

电路笔记PDF, 09/2010 (pdf, 354 kB)
下载英文版PDF, 09/2010 (pdf,  109kB)
优势和特点
  • 工业信号电平
  • 单端转差分
  • 出色的SNR和谐波失真性能
此电路中所用产品
    应用: 
  • 可编程逻辑控制和分布式控制系统
设计资源
设备驱动
Software, such as C code and/or FPGA code, used to communicate with a component's digital interface.
FPGA HDL

电路功能与优势

本文所述电路旨在优化AD7328的性能。所选的运算放大器和基准电压源能够提供低阻抗驱动、充足的建立时间,以及精密基准电压源,可确保AD7328发挥最大性能。

图1:单端转差分输入

电路描述

在特别注重谐波失真和信噪比特性的应用中,AD7328的模拟输入端应采用低阻抗源驱动。较大源阻抗会显著影响该ADC的交流性能,并且可能要求用一个输入缓冲放大器。不用放大器来驱动模拟输入端时,应将源阻抗限制在较低的值。由于AD7328的模拟输入具有可编程特性,因此选择驱动输入端的运算放大器时,主要取决于特定应用以及输入配置和所选的模拟输入电压范围。

差分工作要求用两个相位相差180°的等幅信号,同时驱动VIN+和VIN−。并非所有应用都会预先调理信号以供差分工作,因此经常需要执行单端至差分转换。可以用图1所示的运放对进行单端至差分转换。AD8620是一款理想的运算放大器,可以用来为AD7328提供一个单端转差分驱动器。AD8620是一款精密、低输入偏置电流、宽带宽JFET运算放大器(双路)。

图1所示的电路配置说明如何用AD8620运算放大器,将单端信号转换为差分信号,以便施加于AD7328的模拟输入端。V+和V-点的信号具有相等的幅度,但相位相差180°。

AD7328总共有8个单端模拟输入通道。图2显示ADC以单端模式工作时的典型连接图,其中AD797用来缓冲信号,再将信号施加于ADC的模拟输入端。

图2:单端工作模式

AD7328的模拟输入通道可通过独立编程,接受四种输入范围之一。AD7328可以接受±4 x VREF、±2 x VREF、±VREF和0至4 x VREF的输入信号。

AD7328允许将外部基准电压施加于REFIN/REFOUT引脚。基准电压的额定输入电压范围为2.5 V至3 V。用2.5 V而不是3 V基准电压时,AD7328能够接受较大的输入信号。在以上两幅电路图中,AD780均用作外部基准电压源。AD780是一款2.5 V/3 V超高精度基准电压源,可灵活选择电压范围。

常见变化

适合AD7328的基准电压源包括REF192AD1582ADR03ADR381ADR391、和ADR421。双通道、高速、低噪声运算放大器AD8022 也适合需要双运放的高频应用。在高性能系统中,也可以用一对AD8021s(AD8022的单通道型号)代替AD8022。对于较低频率的单端应用,诸如AD797 (单通道)和AD8610(单通道)、AD8620 (双通道)、AD8599 (双通道)以及ADA4941-1 (单端转差分)等运算放大器也是合适的替代产品。

此电路中所用产品:

产品 描述 可提供样片的产品型号
AD7328 软件可选的真双极性输入、8通道、12位(带符号位)A/D转换器 AD7328BRUZ
AD780 2.5 V/3.0 V超高精度带隙基准电压源

欲获取样片,请 联系ADI公司

AD8620 低输入偏置电流、宽带宽JFET精密双通道运算放大器 AD8620ARZ
沪ICP备09046653号
评价这款电路 X
content here.
content here.

评价这款电路

关闭