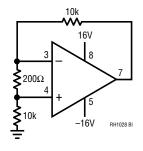


Ultralow Noise Precision High Speed Op Amps

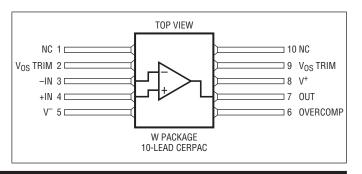
DESCRIPTION

The RH1028(gain of -1 stable)/RH1128(gain of +1 stable) achieve a new standard of excellence in noise performance with $0.9nV/\sqrt{Hz}$ 1kHz noise, $1.0nV/\sqrt{Hz}$ 10Hz noise. This ultralow noise is combined with excellent high speed specifications (gain-bandwidth product is 75MHz for RH1028, 20MHz for RH1128), distortion-free output, and true precision parameters ($0.25\mu V/^{\circ}C$ drift, $20\mu V$ offset voltage, 25 million voltage gain). Although the RH1028/RH1128 input stage operates at nearly 1mA of collector current to achieve low voltage noise, input bias current is only 50nA.

The RH1028/RH1128's voltage noise is less than the noise of a 50Ω resistor. Therefore, even in very low source impedance transducer or audio amplifier applications, the RH1028/RH1128's contribution to total system noise will be negligible.


MBSOLUTE MAXIMUM RATINGS

(Note 1)


Supply Voltage (-55°C to 125°C	C)±16V
Differential Input Current (Note	9)±25mA
Input Voltage	Equal to Supply Voltage
Output Short-Circuit Duration	Indefinite
Operating Temperature Range	55°C to 125°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 1	0 sec) 300°C

All registered trademarks and trademarks are the property of their respective owners.

BURN-IN CIRCUIT

PACKAGE INFORMATION

TABLE 1: ELECTRICAL CHARACTERISTICS

(Preirradiation) $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise noted.

				7	Γ _A = 25°	C	SUB-	-55°C ≤ T _A ≤ 125°C		JB55°C ≤ T _A ≤ 125°C SUF		SUB-	
SYMBOL	PARAMETER	CONDTIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS	
$\overline{V_{0S}}$	Input Offset Voltage		2		20	80	1		45	180	2, 3	μV	
$\Delta V_{OS} \over \Delta Time$	Long-Term Input Offset Voltage Stability		3		0.3							μV/M ₀	
$\Delta V_{OS} \over \Delta Temp$	Average Input Offset Voltage Drift		8						0.25	1.0		μV/°C	
I _{OS}	Input Offset Current	V _{CM} = 0V			18	150	1		30	200	2, 3	nA	
I _B	Input Bias Current	$V_{CM} = 0V$			±50	±400	1		±100	±600	2, 3	nA	
e _n	Input Noise Voltage Density	$f_0 = 10$ Hz $f_0 = 1000$ Hz, 100% Tested	5		1.0 0.9	2.5 1.6						nV/√Hz nV/√Hz	

TABLE 1: ELECTRICAL CHARACTERISTICS

(Preirradiation) $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise noted.

					Γ _A = 25°0	;	SUB-	-55°(-55°C ≤ T _A ≤ 125°C			
SYMBOL	PARAMETER	CONDTIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	SUB- GROUP	UNITS
I _n	Input Noise Current Density	f ₀ = 10Hz f ₀ = 1000Hz, 100% Tested	4, 6		4.7 1.0	24 3.6						pA/√Hz pA/√Hz
	Input Resistance Common Mode Differential Mode				300 20							MΩ kΩ
	Input Capacitance				5				-			pF
	Input Voltage Range			±11.0	±12.2			±10.3	±11.7			V
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 11V$ $V_{CM} = \pm 10.3V$		110	126		1	100	120		2, 3	dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$ $V_S = \pm 4.5V \text{ to } \pm 16V$		110	132		1	104	130		2, 3	dB
A _{VOL}	Large-Scale Voltage Gain	$\begin{aligned} R_L &\geq 2k, V_0 = \pm 10V \\ R_L &\geq 1k, V_0 = \pm 10V \\ R_L &\geq 600\Omega, V_0 = \pm 10V \end{aligned}$		5.0 3.5 2.0	25 20 15		4	2.0 1.5	14 10		5, 6	V/μV V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 2k \\ R_L \geq 600\Omega \end{array}$		±12.0 ±10.5	±13.0 ±12.2		4	±10.3	±11.6		5, 6	V
SR	Slew Rate	A _{VCL} = -1 (RH1028) A _{VCL} = -1 (RH1128)		11.0 4.5	15 6		4					V/µs V/µs
GWB	Gain Bandwidth Product	f ₀ = 20kHz (RH1028) f ₀ = 200kHz (RH1128)	7 7	50 11	75 20							MHz MHz
$\overline{Z_0}$	Open-Loop Output Impedance	$V_0 = 0, I_0 = 0$			80							Ω
Is	Supply Current				7.6	10.5	1		9	13	2, 3	mA

TABLE 1A: ELECTRICAL CHARACTERISTICS

(Postirradiation) $V_S = \pm 15V$, $V_{CM} = 0V$, $T_A = 25$ °C, unless otherwise noted. (Note 10)

SYMBOL	PARAMETER	CONDTIONS	NOTES	10KR/ MIN	AD(Si) Max	20KR	AD(Si) Max	50KR/ MIN	AD(Si) Max	100KF MIN	AD(Si) Max	200KF MIN	RAD(Si) Max	UNITS
$\overline{V_{0S}}$	Input Offset Voltage		2		100		120		140		160		180	μV
I _{OS}	Input Offset Current				200		200		200		300		500	nA
I _B	Input Bias Current				±600		±700		±950		±1100		±1700	nA
SR	Slew Rate	A _{VCL} = -1 (RH1028) A _{VCL} = -1 (RH1128)		7.5 3.0		7.5 3.0		7.5 3.0		7.5 3.0		7.5 3.0		V/µs V/µs
	Input Voltage Range			±11		±11		±11		±11		±11		V
CMRR	Common Mode Rejection Ratio	V _{CM} = ±11V		106		106		106		106		106		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 4V \text{ to } \pm 18V$		104		104		104		104		104		dB
A _{VOL}	Large-Signal Voltage Gain	$R_L \ge 2k$, $V_0 = \pm 10V$		2		2		2		2		2		V/µV
V _{OUT}	Maximum Output Voltage Swing	$\begin{array}{l} R_L \geq 2k \\ R_L \geq 600\Omega \end{array}$		±11.5 ±10		±11.5 ±10		±11.5 ±10		±11.5 ±10		±11.5 ±10		V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Input offset voltage measurements are performed by automatic test equipment approximately 0.5 seconds after application of power. In addition, at $T_A = 25^{\circ}\text{C}$, offset voltage is measured with the chip heated to approximately 55°C to account for the chip temperature rise when the device is fully warmed up.

Note 3: Long-term input offset voltage stability refers to the average trend line of Offset Voltage vs Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 days are typically 2.5 μ V.

Note 4: This parameter is tested on a sample basis only.

Note 5: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.

Note 6: Current noise is defined and measured with balanced source resistors. The resultant voltage noise (after subtracting the resistor noise on an RMS basis) is divided by the sum of the two source resistors to obtain current noise. Maximum 10Hz current noise can be inferred from 100% testing at 1kHz.

Note 7: Gain-bandwidth product is not tested. It is guaranteed by design and by inference from the slew rate measurement.

Note 8: This parameter is not 100% tested.

Note 9: The inputs are protected by back-to-back diodes. Current-limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds ±1.8V, the input current should be limited to 25mA.

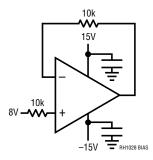
Note 10: Device is characterized at 10KRAD, 20KRAD, 50KRAD, 100KRAD and 200KRAD, and is production tested at 100KRAD only.

TABLE 2: ELECTRICAL TEST REQUIREMENTS

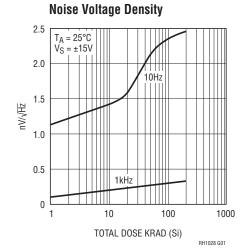
MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*,2,3,4
Group A Test Requirements (Method 5005)	1,2,3,4
Group B** and D for Class S, and Group C and D for Class B End Point Electrical Parameters (Method 5005)	1,2,3,4

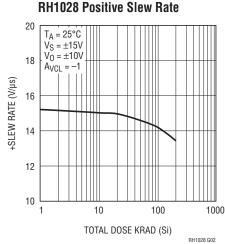
^{*}PDA Applies to subgroup 1. See PDA Test Notes.

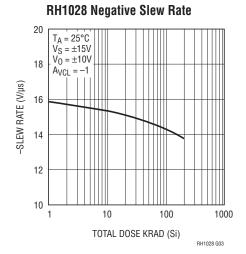
^{**}Post B5 and B6 25°C Limits are as follows:


	SUBGROUP 1	SUBGROUP 2, 3	UNITS
V _{OS}	±240	±340	μV
I _{OS}	±350	±400	nA
I _B	±760	±960	nA

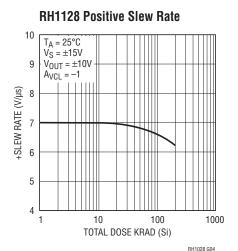
PDA Test Notes

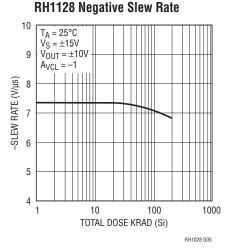

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures (including Delta parameters) of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

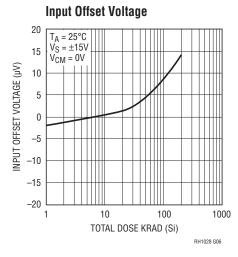

Linear Technology Corporation reserves the right to test to tighter limits than those given.

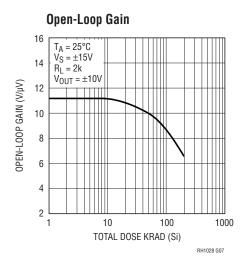

TOTAL DOSE BIAS CIRCUIT

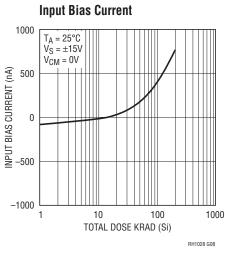
TYPICAL PERFORMANCE CHARACTERISTICS

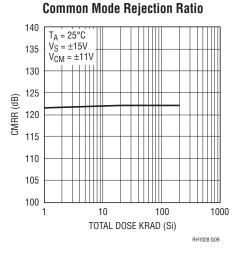


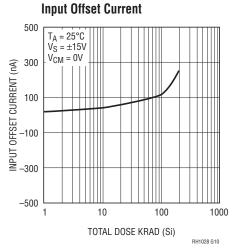


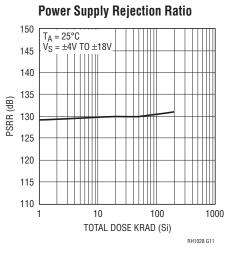


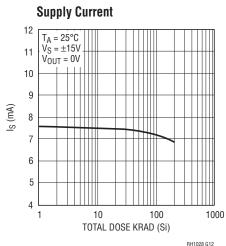

Rev. G

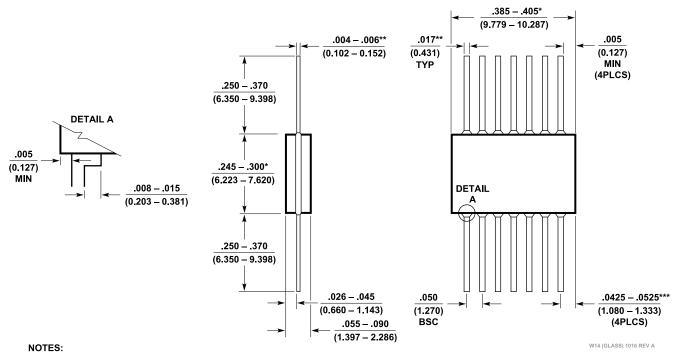

TYPICAL PERFORMANCE CHARACTERISTICS











Rev. G

PACKAGE OUTLINE DRAWINGS

*THIS DIMENSION DOES NOT ALLOW FOR OFF-CENTER LID, MENISCUS AND GLASS OVERRUN

W Package 10-Lead Flatpak Glass Sealed (Hermetic) (Reference LTC DWG # 05-08-1130) Dimensions shown in inches and (millimeters)

^{**}INCREASE DIMENSIONS BY 0.003 INCHES (0.076mm) WHEN LEAD FINISH A IS APPLIED (SOLDER DIPPED)

^{***}THIS DIMENSION NOT INCLUDE FOR A MAXIMUM 0.020 INCHES (0.508mm) OFF-SET TO CENTER LID

REVISION HISTORY (Revision history begins at Rev E)

REV	DATE	DESCRIPTION	PAGE NUMBER
Е	04/15	Update postirradiation 20/500/100/200k Rad Input Bias Current Specification	2
F	07/24	Changes to Table 2:Electrical Test Requirements	4
G	07/25	Changes to Table 1A: Electrical Characteristics	3
		Added Package Outline Drawings	6