80V Synchronous 4-Switch Buck-Boost DC/DC Controller with Bidirectional Capability

FEATURES
- Single Inductor Allows V_{IN} Above, Below, or Equal to V_{OUT}
- Six Independent Forms of Regulation
 - V_{IN} Current (Forward and Reverse)
 - V_{OUT} Current (Forward and Reverse)
 - V_{IN} and V_{OUT} Voltage
- Forward and Reverse Discontinuous Conduction Mode Supported
- Supports MODE and DIR Pin Changes While Switching
- V_{INCHIP} Range 2.8V (Need $EXTV_{CC} > 6.4V$) to 80V
- V_{OUT} Range: 1.3V to 80V
- Synchronous Rectification: Up to 99% Efficiency
- Available in 40-Lead (5mm x 8mm) QFN with High Voltage Pin Spacing and 64-Lead (10mm x 10mm) eLQFP
- AEC-Q100 Qualified for Automotive Applications

APPLICATIONS
- High Voltage Buck-Boost Converters
- Bidirectional Charging System
- Automotive 48V Systems

DESCRIPTION

The LT®8708 is a high performance buck-boost switching regulator controller that operates from an input voltage that can be above, below or equal to the output voltage. Features are included to simplify bidirectional power conversion in battery/capacitor backup systems and other applications that may need regulation of V_{OUT}, V_{IN}, I_{OUT}, and/or I_{IN}. Forward and reverse current can be monitored and limited for the input and output sides of the converter. All four current limits (forward input, reverse input, forward output and reverse output) can be set independently using four resistors on the PCB.

The MODE pin can select between discontinuous conduction mode (DCM), continuous conduction mode (CCM), hybrid conduction mode (HCM) and Burst Mode® operation. In combination with the DIR (direction) pin, the chip can be configured to process power only from V_{IN} to V_{OUT} or only from V_{OUT} to V_{IN}. With a wide 2.8V to 80V input and 1.3V to 80V output range, the LT8708 is compatible with most solar, automotive, telecom and battery-powered systems.

All registered trademarks and trademarks are the property of their respective owners.

TYPICAL APPLICATION

12V Bidirectional Dual Battery System with FHCM and RHCM

![Diagram of 12V Bidirectional Dual Battery System with FHCM and RHCM]

Efficiency

- $V_{BAT2} = 13.5V$
- $I_{OUT} = 15A$

For more information www.analog.com
TABLE OF CONTENTS

Features .. 1
Applications .. 1
Typical Application .. 1
Description .. 1
Absolute Maximum Ratings 3
Pin Configuration .. 3
Order Information .. 4
Electrical Characteristics .. 4
Typical Performance Characteristics 9
Pin Functions ... 13
Block Diagram ... 15
Operation ... 16
Typographical Conventions 16
Start-Up ... 16
Start-Up: SHDN Pin .. 16
Start-Up: SWEN Pin .. 16
Start-Up: Soft-Start of Switching Regulator 17
Control Overview ... 17
Power Switch Control ... 18
Switch Control: Buck Region (Vin >> Vout) 19
Switch Control: Buck-Boost (Vin ≈ Vout) 19
Switch Control: Boost Region (Vin << Vout) 20
Switch Control: Soft-Start 20
Uni and Bidirectional Conduction 20
Bidirectional Conduction: CCM 21
Unidirectional Conduction: DCM 21
Unidirectional Conduction: HCM 22
Unidirectional Conduction: Burst Mode 22
Error Amplifiers .. 22
Vout Regulation and Sensing 23
Vout: Regulation ... 23
Vout: Above Regulation ... 23
Vout: Below Regulation and Undervoltage 23
Vin Regulation and Sensing 24
Vin: Regulation ... 24
Vin: Above Regulation and Overvoltage 24
Vin: Below Regulation .. 24
Current Monitoring and Limiting 24
Monitoring and Limiting: ICP pins 24
Monitoring: ICP and ICN Pins 25
INTVcc/EXTVcc/GateVcc/LDO33 Power 25
CLKOUT and Temperature Sensing 25
Applications Information ... 26
Verify the Power Flow Conditions 26
Operating Frequency Selection 26
Internal Oscillator ... 27
SYNC Pin and Clock Synchronization 27
CLKOUT Pin and Clock Synchronization 27
Inductor Current Sensing and Slope Compensation 27
RSense Selection and Maximum Current 28
RSense Selection: Max RSense in the Boost Region 28
RSense Selection: Max RSense in the Buck Region 30
RSense Selection: Final RSense Value 31
RSense Filtering .. 32
Inductor (L) Selection ... 32
L Selection: Load Current in Buck and Boost Regions 32
L Selection: Subharmonic Oscillations 33
L Selection: Maximum Current Rating 33
Power MOSFET Selection 34
Cin and Cout Selection ... 37
Schottky Diode (D1, D2, D3, D4) Selection 38
Topside MOSFET Driver Supply
(CB1, DB1, CB2, DB2) .. 39
Top Driver: Boost Cap Charge Control Block 39
Top Driver: Boost Diodes DB1 and DB2 39
VINHIMON, VOUTLIMON and RVSOFF 39
IN and IOUT Current Monitoring and Limiting 42
Loop Compensation .. 44
INTVcc Regulators and EXTVcc Connection 45
LDO33 Regulator ... 45
Voltage Lockouts .. 46
Junction Temperature Measurement 46
Thermal Shutdown .. 47
Efficiency Considerations 47
Circuit Board Layout Checklist 47
Hot Plugging Considerations 49
Design Example .. 49
Typical Applications ... 55
12V Bidirectional Dual Battery System with FHCM & RHCM Details .. 56
48V to 14V Bidirectional Dual Battery System with FHCM & RHCM Details 58
Package Description ... 63
Revision History .. 65
Typical Application ... 66
Related Parts ... 66

For more information www.analog.com
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{CSP}} - V_{\text{CSN}}, V_{\text{CSPIN}} - V_{\text{CSNIN}})</td>
<td>–0.3V to 0.3V</td>
</tr>
<tr>
<td>(V_{\text{CSPOUT}} - V_{\text{CSNOUT}})</td>
<td>–0.3V to 3V</td>
</tr>
<tr>
<td>CSP, CSN Voltage</td>
<td>–0.3V to 2.2V</td>
</tr>
<tr>
<td>(V_{\text{C}}) Voltage (Note 2)</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>RT, FBOUT, SS Voltage</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>IMON_INP, IMON_INN, IMON_OP, IMON_ON</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>ICP, ICN Voltage</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>SYNC Voltage</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>INTVCC, GATEVCC Voltage</td>
<td>–0.3V to 7V</td>
</tr>
<tr>
<td>(V_{\text{BOOST1}} - V_{\text{SW1}}, V_{\text{BOOST2}} - V_{\text{SW2}})</td>
<td>–0.3V to 7V</td>
</tr>
<tr>
<td>SWEN, RVSOFF Voltage</td>
<td>–0.3V to 7V</td>
</tr>
<tr>
<td>SWEN Current</td>
<td>0.5mA</td>
</tr>
<tr>
<td>RVSOFF Current</td>
<td>1mA</td>
</tr>
<tr>
<td>FBIN, SHDN Voltage</td>
<td>–0.3V to 30V</td>
</tr>
<tr>
<td>VOUTLOM0 Voltage</td>
<td>–0.3V to 30V</td>
</tr>
<tr>
<td>VOUTLOM1 Voltage</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>DIR, MODE Voltage</td>
<td>–0.3V to 5V</td>
</tr>
<tr>
<td>CSNIN, CSPIN, CSPOUT, CSNOUT Voltage</td>
<td>–0.3V to 80V</td>
</tr>
<tr>
<td>(V_{\text{INCHI}}, V_{\text{EXTVCC}}) Voltage</td>
<td>–0.3V to 80V</td>
</tr>
<tr>
<td>SW1, SW2 Voltage</td>
<td>81V (Note 6)</td>
</tr>
<tr>
<td>BOOST1, BOOST2 Voltage</td>
<td>–0.3V to 87V</td>
</tr>
<tr>
<td>BG1, BG2, TG1, TG2</td>
<td>(Note 5)</td>
</tr>
<tr>
<td>LD033, CLKOUT</td>
<td>(Note 8)</td>
</tr>
</tbody>
</table>

Operating Junction Temperature Range

- LT8708E (Notes 3, 8): –40°C to 125°C
- LT8708I (Notes 3, 8): –40°C to 125°C
- LT8708H (Notes 3, 8): –40°C to 150°C

Storage Temperature Range

- –65°C to 150°C

PIN CONFIGURATION

- LT8708
- HD Package: 40-lead (5mm × 8mm) Plastic QFN
- \(T_{\text{MAX}} = 150°C, \theta_{\text{JA}} = 36°C/W, \theta_{\text{JC}} = 3.8°C/W \)
- Exposed Pad (Pin 41) is GND, must be soldered to PCB

- LW Package: 64-lead (10mm × 10mm) Plastic LQFP
- \(T_{\text{MAX}} = 150°C, \theta_{\text{JA}} = 17°C/W, \theta_{\text{JC}} = 2.5°C/W \)
- Exposed Pad (Pin 65) is GND, must be soldered to PCB

For more information www.analog.com
LT8708

ORDER INFORMATION

<table>
<thead>
<tr>
<th>LEAD FREE FINISH</th>
<th>TAPE AND REEL</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT8708EUHG#PBF</td>
<td>LT8708EUHG#TRPBF</td>
<td>8708</td>
<td>40-Lead (5mm × 8mm) Plastic QFN</td>
<td>–40°C to 125°C</td>
</tr>
<tr>
<td>LT8708UHG#PBF</td>
<td>LT8708UHG#TRPBF</td>
<td>8708</td>
<td>40-Lead (5mm × 8mm) Plastic QFN</td>
<td>–40°C to 125°C</td>
</tr>
<tr>
<td>LT8708UHUHG#PBF</td>
<td>LT8708UHUHG#TRPBF</td>
<td>8708</td>
<td>40-Lead (5mm × 8mm) Plastic QFN</td>
<td>–40°C to 125°C</td>
</tr>
</tbody>
</table>

PACKAGE DESCRIPTION

- **TAPE AND REEL**
 - **PACKAGE DESCRIPTION**
 - **MSL RATING**
 - **TEMPERATURE RANGE**

AUTOMOTIVE PRODUCTS

<table>
<thead>
<tr>
<th>TRAY</th>
<th>PART MARKING*</th>
<th>PACKAGE DESCRIPTION</th>
<th>MSL RATING</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT8708ELWE#PBF</td>
<td>LT8708LWE</td>
<td>64-Lead (10mm × 10mm) Plastic eLQFP</td>
<td>3</td>
<td>–40°C to 125°C</td>
</tr>
<tr>
<td>LT8708ULWE#PBF</td>
<td>LT8708LWE</td>
<td>64-Lead (10mm × 10mm) Plastic eLQFP</td>
<td>3</td>
<td>–40°C to 125°C</td>
</tr>
<tr>
<td>LT8708HLWE#PBF</td>
<td>LT8708LWE</td>
<td>64-Lead (10mm × 10mm) Plastic eLQFP</td>
<td>3</td>
<td>–40°C to 125°C</td>
</tr>
</tbody>
</table>

Contact the factory for parts specified with wider operating temperature ranges. **The temperature grade is identified by a label on the shipping container. Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix. **Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These models are designated with a #W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_{A} = 25°C. V_{INCHIP} = 12V, SHDN = 3V, DIR = 3.3V unless otherwise noted (Note 3).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Supplies and Regulators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{INCHIP} Operating Voltage Range</td>
<td>EXTVCC = 0V</td>
<td>5.5</td>
<td></td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>EXTVCC = 7.5V</td>
<td>2.8</td>
<td></td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>V_{INCHIP} Quiescent Current</td>
<td>Not Switching, V_{EXTVCC} = 0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWEN = 3.3V</td>
<td>3.9</td>
<td>6.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>SWEN = 0V</td>
<td>2.45</td>
<td>4.5</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>V_{INCHIP} Quiescent Current in Shutdown</td>
<td>V_{SHDN} = 0V</td>
<td>0</td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>EXTVCC Switchover Voltage</td>
<td>I_{INTVCC} = –20mA, V_{EXTVCC} Rising</td>
<td>6.15</td>
<td>6.4</td>
<td>6.6</td>
<td>V</td>
</tr>
<tr>
<td>EXTVCC Switchover Hysteresis</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>INTVCC Current Limit</td>
<td>Maximum Current Draw from INTVCC and LD033 Pins Combined, Regulated from V_{INCHIP} or EXTVCC (12V)</td>
<td>90</td>
<td>127</td>
<td>165</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>INTVCC = 5.25V</td>
<td>28</td>
<td>42</td>
<td>55</td>
<td>mA</td>
</tr>
<tr>
<td>INTVCC Voltage</td>
<td>Regulated from V_{INCHIP}, I_{INTVCC} = 20mA</td>
<td>6.1</td>
<td>6.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Regulated from EXTVcc (12V), I_{INTVCC} = 20mA</td>
<td>6.1</td>
<td>6.3</td>
<td>6.5</td>
<td>V</td>
</tr>
<tr>
<td>INTVCC Load Regulation</td>
<td>I_{INTVCC} = 0mA to 50mA</td>
<td>–0.5</td>
<td>–1.5</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>INTVCC, GATEVCC Undervoltage Lockout</td>
<td>INTVCC Falling, GATEVCC Connected to INTVCC</td>
<td>4.45</td>
<td>4.65</td>
<td>4.85</td>
<td>V</td>
</tr>
</tbody>
</table>

For more information www.analog.com
Electrical Characteristics

The ◆ denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25°C$, $V_{\text{INCHIP}} = 12V$, $\text{SHDN} = 3V$, $\text{DIR} = 3.3V$ unless otherwise noted (Note 3).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTVCC, GATEVCC Undervoltage Lockout Hysteresis</td>
<td>GATEVCC Connected to INTVCC</td>
<td>170</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTVCC Regulator Dropout Voltage</td>
<td>$V_{\text{INCHIP}} - V_{\text{INTVCC}}$, $I_{\text{INTVCC}} = 20mA$</td>
<td>220</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD033 Pin Voltage</td>
<td>5mA from LD033 Pin</td>
<td>◆ 3.23</td>
<td>3.295</td>
<td>3.35</td>
<td>V</td>
</tr>
<tr>
<td>LD033 Pin Load Regulation</td>
<td>$I_{\text{LD033}} = 0.1mA$ to $5mA$</td>
<td>◆ −0.25</td>
<td>−1</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>LD033 Pin Current Limit</td>
<td>$\text{SYNC} = 3V$</td>
<td>◆ 12</td>
<td>17.25</td>
<td>22</td>
<td>mA</td>
</tr>
<tr>
<td>LD033 Pin Undervoltage Lockout</td>
<td>LD033 Falling</td>
<td>2.96</td>
<td>3.04</td>
<td>3.12</td>
<td>V</td>
</tr>
<tr>
<td>LD033 Pin Undervoltage Lockout Hysteresis</td>
<td></td>
<td>35</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Switching Regulator Control

Maximum Current Sense Threshold ($V_{\text{CSP}} - V_{\text{CSN}}$)	Boost Mode, Minimum M3 Switch Duty Cycle	◆ 76	93	110	mV
Maximum Current Sense Threshold ($V_{\text{CSP}} - V_{\text{CSN}}$)	Buck Mode, Minimum M2 Switch Duty Cycle	◆ 68	82	97	mV
Maximum Current Sense Threshold ($V_{\text{CSP}} - V_{\text{CSN}}$)	Boost Mode, Minimum M3 Switch Duty Cycle	◆ 79	93	108	mV
Maximum Current Sense Threshold ($V_{\text{CSP}} - V_{\text{CSN}}$)	Buck Mode, Minimum M2 Switch Duty Cycle	◆ 72	84	96	mV
Gain from V_C to Maximum Current Sense Voltage ($V_{\text{CSP}} - V_{\text{CSN}}$)	(A5 in the Block Diagram) Boost Mode	135	mV/V		
	(A5 in the Block Diagram) Buck Mode	−135	mV/V		
SHDN Input Voltage High	SHDN Rising to Enable the Device	◆ 1.175	1.221	1.275	V
	SHDN LWE	◆ 1.175	1.221	1.29	V
SHDN Input Voltage High Hysteresis		40	mV		
SHDN Input Voltage Low	Device Disabled, Low Quiescent Current ($LT8708E$, $LT8708I$)	◆ 0.35	V		
	$LT8708H$	◆ 0.3	V		
SHDN Pin Bias Current	$V_{\text{SHDN}} = 3V$	0	μA		
	$V_{\text{SHDN}} = 12V$	1	μA		
SWEN Rising Threshold Voltage		◆ 1.156	1.208	1.256	V
SWEN Threshold Voltage Hysteresis		22	mV		
SWEN Output Voltage Low	$I_{\text{SWEN}} = 200μA$	◆ 0.9	1.1	V	
	$\text{SHDN} = 0V$ or $V_{\text{INCHIP}} = 0V$	◆ 0.2	0.5	V	
	$\text{SHDN} = 3V$				
SWEN Internal Pull-Down Release Voltage	$\text{SHDN} = 3V$	◆ 0.75	0.8	V	
MODE Pin Continuous Conduction Mode (CCM) Threshold		◆ 0.4	V		
MODE Pin Hybrid DCM/CCM Mode (HCM) Range		◆ 0.8	1.2	V	
MODE Pin Discontinuous Conduction Mode (DCM) Range		◆ 1.6	2.0	V	
MODE Pin Burst Mode Operation Threshold		◆ 2.4	V		
DIR Pin Forward Operation Threshold		◆ 1.6	V		
DIR Pin Reverse Operation Threshold		◆ 1.2	V		
RVSOFF Output Voltage Low	$I_{\text{RVSOFF}} = 200μA$	◆ 0.08	0.5	V	
RVSOFF Falling Threshold Voltage		◆ 1.155	1.209	1.275	V
RVSOFF Threshold Voltage Hysteresis		165	mV		
Soft-Start Charging Current	$V_{SS} = 0V$	13	19	25	μA
ICN Rising Threshold for FDCM Operation	$\text{MODE} = 1V$ (HCM), $\text{DIR} = 3.3V$	◆ 235	255	280	mV
ICN Falling Threshold for CCM Operation	$\text{MODE} = 1V$ (HCM), $\text{DIR} = 3.3V$	◆ 185	205	235	mV
IMON_INP Rising Threshold for RDCM Operation	$\text{MODE} = 1V$ (HCM), $\text{DIR} = 0V$	◆ 235	255	280	mV
IMON_INP Falling Threshold for CCM Operation	$\text{MODE} = 1V$ (HCM), $\text{DIR} = 0V$	◆ 185	205	235	mV
LT8708

ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V_{INCHIP} = 12V$, $SHDN = 3V$, $DIR = 3.3V$ unless otherwise noted (Note 3).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Regulation Loops (Refer to Block Diagram to Locate Amplifiers)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation Voltage for FBOOT</td>
<td>Regulate V_C to 1.2V</td>
<td>●</td>
<td>1.193</td>
<td>1.207</td>
<td>1.222</td>
</tr>
<tr>
<td>Regulation Voltage for FBIN</td>
<td>Regulate V_C to 1.2V</td>
<td>●</td>
<td>1.184</td>
<td>1.205</td>
<td>1.226</td>
</tr>
<tr>
<td>Line Regulation for FBOOT and FBIN Error Amp Reference Voltage</td>
<td>$V_{INCHIP} = 12V$ to 80V. Not Switching</td>
<td></td>
<td></td>
<td>0.002</td>
<td>0.005</td>
</tr>
<tr>
<td>FBOOT Pin Bias Current</td>
<td>Current Out of Pin</td>
<td></td>
<td></td>
<td>15</td>
<td>nA</td>
</tr>
<tr>
<td>FBOOT Error Amp EA4 g_m</td>
<td></td>
<td></td>
<td></td>
<td>345</td>
<td>μmho</td>
</tr>
<tr>
<td>FBOOT Error Amp EA4 Voltage Gain</td>
<td></td>
<td></td>
<td></td>
<td>245</td>
<td>μmho</td>
</tr>
<tr>
<td>VOUTLOMON Voltage Activation Threshold</td>
<td>Falling</td>
<td></td>
<td></td>
<td>●</td>
<td>1.185</td>
</tr>
<tr>
<td>VOUTLOMON Threshold Voltage Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>mV</td>
</tr>
<tr>
<td>VOUTLOMON Pin Bias Current</td>
<td>$V_{VOUTLOMON} = 1.24V$, Current Into Pin</td>
<td></td>
<td></td>
<td>●</td>
<td>0.8</td>
</tr>
<tr>
<td>FBIN Pin Bias Current</td>
<td>Current Out of Pin</td>
<td></td>
<td></td>
<td>10</td>
<td>nA</td>
</tr>
<tr>
<td>FBIN Error Amp EA3 g_m</td>
<td></td>
<td></td>
<td></td>
<td>235</td>
<td>μmho</td>
</tr>
<tr>
<td>FBIN Error Amp EA3 Voltage Gain</td>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>μmho</td>
</tr>
<tr>
<td>VINHIMON Voltage Activation Threshold</td>
<td>Rising</td>
<td></td>
<td></td>
<td>●</td>
<td>1.185</td>
</tr>
<tr>
<td>VINHIMON Threshold Voltage Hysteresis</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>mV</td>
</tr>
<tr>
<td>VINHIMON Pin Bias Current</td>
<td>$V_{VINHIMON} = 1.17V$, Current Out of Pin</td>
<td></td>
<td></td>
<td>●</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Current Regulation Loops (Refer to Block Diagram to Locate Amplifiers)								
Regulation Voltages for IMON_INP and IMON_OP	$V_C = 1.2V$			●	1.185	1.209	1.231	V
Regulation Voltages for IMON_INN and IMON_ON	$V_C = 1.2V$			●	1.185	1.21	1.24	V
Line Regulation for IMON_INP, IMON_INN, IMON_OP and IMON_ON Error Amp Reference Voltage	$V_{INCHIP} = 12V$ to 80V				0.002	0.005	%/V	
CSPIN Bias Current	$V_{CSPIN} = 12V$			84	μA			
CSPIN Bias Current	$V_{CSPIN} = 1.5V$			4.25	μA			
CSNIN Bias Current	BOOST Capacitor Charge Control Block Not Active	$V_{SWEN} = 3.3V$, $V_{CSPIN} = V_{CSNIN} = 12V$				0.01	μA	
CSNIN Bias Current	$V_{SWEN} = 3.3V$, $V_{CSPIN} = V_{CSNIN} = 1.5V$						μA	
CSNIN Bias Current	$V_{SWEN} = 0V$						μA	
CSPIN, CSNIN Common Mode Operating Voltage Range					0	80	V	
CSPIN, CSNIN Differential Mode Operating Voltage Range					●	−100	100	mV
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$						μA	
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				67	70	73	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				64.5	70	75.5	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				62.5	70	75.5	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				60	70	75	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				58	70	75	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				56	70	75	μA
IMON_INP Output Current	$V_{CSPIN} = V_{CSNIN} = 50mV$, $V_{CSNIN} = 5V$				54	70	75	μA
IMON_INP and IMON_INN Max Output Current					120	μA		
IMON_INP Error Amp EA5 g_m					190	μmho		
IMON_INP Error Amp EA5 Voltage Gain					130	μmho		
IMON_INP Error Amp EA1 g_m	$FBIN = 0V$, $FBOOT = 3.3V$				190	μmho		
ELECTRICAL CHARACTERISTICS

The ● denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ C$. $V_{INCHIP} = 12V$, $SHDN = 3V$, $DIR = 3.3V$ unless otherwise noted (Note 3).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMON_INN Error Amp EA1 Voltage Gain</td>
<td>$FBIN = 0V$, $FBOUT = 3.3V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSPOUT Bias Current</td>
<td>$V_{CSPOUT} = 12V$</td>
<td>0.01</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = 1.5V$</td>
<td>0.01</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>CSNOUT Bias Current</td>
<td>$BOOST$ Capacitor Charge Control Block Not Active</td>
<td>83</td>
<td>4.25</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{SWEN} = 3.3V$, $V_{CSPOUT} = V_{CSNOUT} = 1.5V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{SWEN} = 0V$</td>
<td>0.01</td>
<td></td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>CSPOUT, CSNOUT Common Mode Operating Voltage Range</td>
<td>●</td>
<td>0</td>
<td>80</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>CSPOUT, CSNOUT Differential Mode Operating Voltage Range</td>
<td>●</td>
<td>–100</td>
<td>100</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>IMON_OP, ICP Output Current</td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 50mV$, $V_{CSNOUT} = 5V$</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 50mV$, $V_{CSNOUT} = 5V$</td>
<td>65</td>
<td>70</td>
<td>76</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>22.5</td>
<td>25</td>
<td>27.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 5mV$, $V_{CSNOUT} = 5V$ (OFN)</td>
<td>20.5</td>
<td>25</td>
<td>29</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 5mV$, $V_{CSNOUT} = 5V$ (LWE)</td>
<td>20.5</td>
<td>25</td>
<td>30</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>12.5</td>
<td>15</td>
<td>17.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSPOUT} = V_{CSNOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>10.5</td>
<td>15</td>
<td>19.5</td>
<td>μA</td>
</tr>
<tr>
<td>IMON_ON, ICN Output Current</td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 50mV$, $V_{CSNOUT} = 5V$</td>
<td>67</td>
<td>70</td>
<td>73</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 50mV$, $V_{CSNOUT} = 5V$</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>22.5</td>
<td>25</td>
<td>27.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 5mV$, $V_{CSNOUT} = 5V$ (OFN)</td>
<td>20.5</td>
<td>25</td>
<td>29</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 5mV$, $V_{CSNOUT} = 5V$ (LWE)</td>
<td>20.5</td>
<td>25</td>
<td>30</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>12.5</td>
<td>15</td>
<td>17.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>$V_{CSNOUT} = V_{CSPOUT} = 5mV$, $V_{CSNOUT} = 5V$</td>
<td>10.5</td>
<td>15</td>
<td>19.5</td>
<td>μA</td>
</tr>
<tr>
<td>IMON_OP, IMON_ON, ICP and ICN Max Output Current</td>
<td>●</td>
<td>120</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IMON_OP Error Amp EA6 g_m</td>
<td></td>
<td>190</td>
<td></td>
<td></td>
<td>μmho</td>
</tr>
<tr>
<td>IMON_OP Error Amp EA6 Voltage Gain</td>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
<tr>
<td>IMON_ON Error Amp EA2 g_m</td>
<td>$FBIN = 0V$, $FBOUT = 3.3V$</td>
<td></td>
<td></td>
<td></td>
<td>μmho</td>
</tr>
<tr>
<td>IMON_ON Error Amp EA2 Voltage Gain</td>
<td>$FBIN = 0V$, $FBOUT = 3.3V$</td>
<td></td>
<td></td>
<td></td>
<td>V/V</td>
</tr>
</tbody>
</table>

NMOS Gate Drivers

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TG1, TG2 Rise Time</td>
<td>$C_{LOAD} = 3300pF$ (Note 4)</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TG1, TG2 Fall Time</td>
<td>$C_{LOAD} = 3300pF$ (Note 4)</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BG1, BG2 Rise Time</td>
<td>$C_{LOAD} = 3300pF$ (Note 4)</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BG1, BG2 Fall Time</td>
<td>$C_{LOAD} = 3300pF$ (Note 4)</td>
<td>20</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TG1 Off to BG1 On Delay</td>
<td>$C_{LOAD} = 3300pF$ Each Driver</td>
<td>90</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BG1 Off to TG1 On Delay</td>
<td>$C_{LOAD} = 3300pF$ Each Driver</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>TG2 Off to BG2 On Delay</td>
<td>$C_{LOAD} = 3300pF$ Each Driver</td>
<td>90</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>BG2 Off to TG2 On Delay</td>
<td>$C_{LOAD} = 3300pF$ Each Driver</td>
<td>80</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum On-Time for Main Switch in Boost Operation ($t_{ON(MIN)}$)</td>
<td>Switch M3, $C_{LOAD} = 3300pF$</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum On-Time for Synchronous Switch in Buck Operation ($t_{ON(MIN)}$)</td>
<td>Switch M2, $C_{LOAD} = 3300pF$</td>
<td>200</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum Off-Time for Main Switch in Steady-State Boost Operation</td>
<td>Switch M3, $C_{LOAD} = 3300pF$</td>
<td>230</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Minimum Off-Time for Synchronous Switch in Steady-State Buck Operation</td>
<td>Switch M2, $C_{LOAD} = 3300pF$</td>
<td>230</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>
The \textit{\textbullet} denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^\circ \text{C}$. $V_{\text{INCHIP}} = 12\text{V}$, $\text{SHDN} = 3\text{V}$, $\text{DIR} = 3.3\text{V}$ unless otherwise noted (Note 3).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Switch Frequency Range</td>
<td>SYNCCing or Free Running</td>
<td>100</td>
<td>400</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>Switching Frequency, F_{OSC}</td>
<td>$R_T = 365k$</td>
<td>\textbullet</td>
<td>102</td>
<td>120</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>$R_T = 215k$</td>
<td>\textbullet</td>
<td>170</td>
<td>202</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>$R_T = 124k$</td>
<td>\textbullet</td>
<td>310</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>SYNC High Level for Synchronization</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SYNC Low Level for Synchronization</td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>SYNC Clock Pulse Duty Cycle</td>
<td>$V_{\text{SYNC}} = 0\text{V}$ to 2V</td>
<td>20</td>
<td>80</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Recommended Min SYNC Ratio $F_{\text{SYNC}}/F_{\text{OSC}}$</td>
<td></td>
<td></td>
<td>3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLKOUT Output Voltage High</td>
<td>$V_{\text{LD033}} - V_{\text{CLKOUT}}, 1\text{mA Out of CLKOUT Pin}, I_{\text{LD033}} = 0\mu\text{A}$</td>
<td>100</td>
<td>250</td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>CLKOUT Output Voltage Low</td>
<td>$1\text{mA Into CLKOUT Pin}$</td>
<td></td>
<td>25</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>CLKOUT Duty Cycle</td>
<td></td>
<td></td>
<td>22.7</td>
<td>44.1</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>$T_J = -40^\circ \text{C}$</td>
<td></td>
<td></td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_J = 25^\circ \text{C}$</td>
<td></td>
<td></td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_J = 125^\circ \text{C}$</td>
<td></td>
<td>77</td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Do not force voltage on the V_C pin.

Note 3: The LT8708E is guaranteed to meet performance specifications from 0°C to 125°C junction temperature. Specifications over the -40°C to 125°C operating junction temperature range are assured by design, characterization and correlation with statistical process controls. The LT8708I is guaranteed over the full -40°C to 125°C junction temperature range. The LT8708H is guaranteed over the full -40°C to 150°C operating junction temperature range.

Note 4: Rise and fall times are measured using 10% and 90% levels. Delay times are measured using 50% levels.

Note 5: Do not apply a voltage or current source to these pins. They must be connected to capacitive loads only, otherwise permanent damage may occur.

Note 6: Negative voltages on the SW1 and SW2 pins are limited, in an application, by the body diodes of the external NMOS devices, M2 and M3, or parallel Schottky diodes when present. The SW1 and SW2 pins are tolerant of these negative voltages in excess of one diode drop below ground, guaranteed by design.

Note 7: This IC includes overtemperature protection that is intended to protect the device during momentary overload conditions. Junction temperature will exceed the maximum operating junction temperature when overtemperature protection is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability.

Note 8: Do not force voltage or current into these pins.
TYPICAL PERFORMANCE CHARACTERISTICS

Efficiency vs Output Current
(Boost Region – page 59)

Feedback Voltages
(V
C
 = 1.2V)

Feedback Voltages (Five Parts)

Oscillator Frequency

Maximum Inductor Current Sense Voltage vs Duty Cycle

Inductor Current Sense Voltage at Minimum Duty Cycle

Maximum Inductor Current Sense Voltage at Minimum Duty Cycle

For more information www.analog.com
LT8708

TYPICAL PERFORMANCE CHARACTERISTICS

Minimum Inductor Current Sense Voltage vs Duty Cycle

Minimum Inductor Current Sense Voltage at Minimum Duty Cycle

Maximum and Minimum V_C vs SS

INTV_CC Line Regulation (EXTV_CC = 0V)

INTV_CC Line Regulation (V_IN = 12V)

IMONx, ICx Output Current

CLKOUT Duty Cycle

LD033 Pin Regulation (I_LD033 = 1mA)

V_IN Supply Current vs Voltage (Not Switching)
TYPICAL PERFORMANCE CHARACTERISTICS

SHDN Pin Current

Internal \(V_{\text{IN}} \) UVLO

SHDN and SWEN Pin Thresholds vs Temperature

VINHIMON and VOUTLOMON Pin Thresholds vs Temperature

VINHIMON and VOUTLOMON Pin Hysteresis Current vs Temperature
TYPICAL PERFORMANCE CHARACTERISTICS

Discontinuous Mode (page 59)

Continuous Mode (page 59)

Continuous Mode (page 59)

Continuous Mode (page 59)

Load Step (page 59)

Load Step (page 59)

Load Step (page 59)

For more information www.analog.com
PIN FUNCTIONS (QFN/eLQFP)

CLKOUT (Pin 1/63): Clock Output Pin. Use this pin to synchronize one or more compatible switching regulator ICs to the LT8708. CLKOUT toggles at the same frequency as the internal oscillator or as the SYNC pin, but is approximately 180° out of phase. CLKOUT may also be used as a temperature monitor since the CLKOUT duty cycle varies linearly with the part’s junction temperature. The CLKOUT pin can drive capacitive loads up to 200pF.

SS (Pin 2/2): Soft-Start Pin. Place at least 220nF of capacitance here. Upon start-up, this pin will be charged by an internal resistor to 3.3V.

SHDN (Pin 3/3): Shutdown Pin. Tie high to enable chip. Ground to shut down and reduce quiescent current to a minimum. Don’t float this pin.

CSN (Pin 4/4): The (–) Input to the Inductor Current Sense and DCM Detect Comparator.

CSP (Pin 5/5): The (+) Input to the Inductor Current Sense and DCM Detect Comparator. The \(V_C \) pin voltage and built-in offsets between CSP and CSN pins, in conjunction with the \(R_{SENSE} \) value, set the inductor current trip threshold.

ICN (Pin 6/6): Negative \(V_{OUT} \) Current Monitor. The current out of this pin is 20\(\mu \)A plus a current proportional to the negative average \(V_{IN} \) current. See the Applications Information section for more information.

DIR (Pin 7/7): Direction pin when MODE is set for DCM (discontinuous conduction mode) or HCM (hybrid conduction mode) operation. Otherwise this pin is ignored. Connect the pin to GND to process power from the \(V_{OUT} \) to \(V_{IN} \). Connect the pin to LDO33 to process power from the \(V_{IN} \) to \(V_{OUT} \).

FBIN (Pin 8/8): \(V_{IN} \) Feedback Pin. This pin is connected to the input of error amplifier EA3 and is used to detect and/or regulate low \(V_{IN} \) voltage.

FBOUT (Pin 9/9): \(V_{OUT} \) Feedback Pin. This pin is connected to the input of error amplifier EA4 and is used to detect and/or regulate high \(V_{OUT} \) voltage.

\(V_C \) (Pin 10/10): Error Amplifier Output Pin. Tie external compensation network to this pin.

IMON_INP (Pin 11/11): Positive \(V_{IN} \) Current Monitor and Limit Pin. The current out of this pin is 20\(\mu \)A plus a current proportional to the positive average \(V_{IN} \) current. IMON_INP also connects to error amplifier EA5 and can be used to limit the maximum positive \(V_{IN} \) current. See the Applications Information section for more information.

IMON_INN (Pin 12/12): Negative \(V_{IN} \) Current Monitor and Limit Pin. The current out of this pin is 20\(\mu \)A plus a current proportional to the negative average \(V_{IN} \) current. IMON_INN also connects to error amplifier EA1 and can be used to limit the maximum negative \(V_{IN} \) current. See the Applications Information section for more information.

RT (Pin 13/13): Timing Resistor Pin. Adjusts the switching frequency. Place a resistor from this pin to ground to set the frequency. Do not float this pin.

SYNC (Pin 14/14): To synchronize the switching frequency to an outside clock, simply drive this pin with a clock. The high voltage level of the clock needs to exceed 1.3V, and the low level should be less than 0.5V. Drive this pin to less than 0.5V to revert to the internal free-running clock. See the Applications Information section for more information.

BG1, BG2 (Pin 16/16, Pin 18/18): Bottom Gate Drive. Drives the gate of the bottom N-channel MOSFETs and GATEV_{CC}.

GATEV_{CC} (Pin 17/17): Power supply for bottom gate drivers. Must be connected to the INTV_{CC} pin. Do not power from any other supply. Locally bypass to GND.

BOOST1, BOOST2 (Pin 24/24, Pin 26/26): Boosted Floating Driver Supply. The (+) terminal of the bootstrap capacitor connects here. The BOOST1 pin swings from a diode voltage below GATEV_{CC} up to \(V_{IN} + GATEV_{CC} \). The BOOST2 pin swings from a diode voltage below GATEV_{CC} up to \(V_{OUT} + GATEV_{CC} \).

TG1, TG2 (Pin 23/23, Pin 25/25): Top Gate Drive. Drives the top N-channel MOSFETs with voltage swings equal to GATEV_{CC} superimposed on the switch node voltages.

SW1, SW2 (Pin 21/21, Pin 22/22): Switch Nodes. The (–) terminals of the bootstrap capacitors connect here.

For more information www.analog.com
PIN FUNCTIONS (QFN/eLQFP)

RVSOFF (Pin 25/37): Reverse Conduction Disable Pin. This is an input/output open-drain pin that requires a pull up resistor. Pulling this pin low disables reverse current operation. See the Uni and Bidirectional Conduction section for more information.

VOULTMON (Pin 26/38): VOUT Low Voltage Monitor Pin. Connect a ±1% resistor divider between VOUT, VOULTMON and GND to set an undervoltage level on VOUT. When VOUT is lower than this level, reverse conduction is disabled to prevent drawing current from VOUT. See the Applications Information section for more information.

VINHIMON (Pin 27/39): VIN High Voltage Monitor Pin. Connect a ±1% resistor divider between VIN, VINHIMON and GND in order to set an overvoltage level on VIN. When VIN is higher than this level, reverse conduction is disabled to prevent current flow into VIN. See the Applications Information section for more information.

ICP (Pin 28/40): Positive VOUT Current Monitor Pin. The current out of this pin is 20μA plus a current proportional to the positive average VOUT current. See the Applications Information section for more information.

EXTVC (Pin 29/42): External VCC Input. When EXTVCC exceeds 6.4V (typical), INTVC will be powered from this pin. When EXTVCC is lower than 6.4V, the INTVC will be powered from VINCHIP.

CSPOUT (Pin 30/46): The (+) Input to the VOUT Current Monitor Amplifier. This pin and the CSNOUT pin measure the voltage across the sense resistor, RSENSE2, to provide the VOUT current signals. Connect this pin to VOUT when not in use. See Applications Information section for proper use of this pin.

CSNOUT (Pin 31/47): The (–) Input to the VOUT Current Monitor Amplifier. Connect this pin to VOUT when not in use. See Applications Information section for proper use of this pin.

CSBIN (Pin 32/52): The (–) Input to the VIN Current Monitor Amplifier. This pin and the CSPIN pin measure the voltage across the sense resistor, RSENSE1, to provide the VIN current signals. Connect this pin to VIN when not in use. See Applications Information section for proper use of this pin.

CSPIN (Pin 33/53): The (+) Input to the VIN Current Monitor Amplifier. Connect this pin to VIN when not in use. See Applications Information section for proper use of this pin.

VINCHIP (Pin 34/55): Main Input Supply Pin for the LT8708. It must be locally bypassed to ground.

INTVC (Pin 35/57): 6.3V Regulator Output. Must be connected to the GATEVC pin. INTVC is powered from EXTVCC when the EXTVCC voltage is higher than 6.4V, otherwise INTVC is powered from VINCHIP. Bypass this pin to ground with a minimum 4.7μF ceramic capacitor.

SWEN (Pin 36/58): Switching Regulator Enable Pin. Tie high through a resistor to enable the switching. Ground to disable switching. This pin is pulled down during shutdown, a thermal lockout or when an internal UVLO (undervoltage lockout) is detected. Don’t float this pin. See the Start-Up: SWEN Pin section for more details.

MODE (Pin 37/59): Conduction Mode Select Pin. The voltage applied to this pin sets the conduction mode of the controller. Apply less than 0.4V to enable continuous conduction mode (CCM). Apply 0.8V to 1.2V to enable the hybrid conduction mode (HCM). Apply 1.6V to 2.0V to enable the discontinuous conduction mode (DCM). Apply more than 2.4V to enable Burst Mode operation.

IMON_OP (Pin 38/60): Positive VOUT Current Monitor and Limit Pin. The current out of this pin is 20μA plus a current proportional to the positive average VOUT current. IMON_OP also connects to error amplifier EA6 and can be used to limit the maximum positive VOUT current. See the Applications Information section for more information.

IMON_ON (Pin 39/61): Negative VOUT Current Monitor and Limit Pin. The current out of this pin is 20μA plus a current proportional to the negative average VOUT current. IMON_ON also connects to error amplifier EA2 and can be used to limit the maximum negative VOUT current. See the Applications Information section for more information.

LD033 (Pin 40/62): 3.3V Regulator Output. Bypass this pin to ground with a minimum 0.1μF ceramic capacitor.

GND (Pin 15/19, Exposed Pad Pin 41/65): Ground. Tie directly to local ground plane.
Figure 1. Block Diagram
OPERATION

TYPOGRAPHICAL CONVENTIONS

The LT8708 is a high performance 4-switch buck-boost controller that includes features to facilitate bidirectional current and power flow. Using the LT8708, an application can command power to be delivered from V_{IN} to V_{OUT} or from V_{OUT} to V_{IN} as needed. Some terms, listed below, are used throughout this data sheet in reference to the direction of current and power flow. In order to clarify these direction-based concepts, these terms are defined as follows:

- **V_{IN} and I_{IN}**: The V_{IN} side of circuits drawn in this data sheet will always be on the left. V_{IN} is connected to the SW1 side of the buck-boost inductor through M1. I_{IN} is the V_{IN} current.

- **V_{OUT} and I_{OUT}**: The V_{OUT} side of circuits drawn in this data sheet will always be on the right. V_{OUT} is connected to the SW2 side of the buck-boost inductor through M4. I_{OUT} is the V_{OUT} current.

- **Supply (Input)**: Power Source. The power source is most commonly applied to V_{IN}. However, V_{OUT} can be a Supply (or Input) when power is being delivered from V_{OUT} to V_{IN}.

- **Load (Output)**: Devices that are consuming the power. The Load is most commonly connected to V_{OUT}. However, V_{IN} can connect to the Load (or Output) when power is being delivered from V_{OUT} to V_{IN}.

- **Forward Conduction**: Current or power flowing from the V_{IN} or SW1 node (or side) to the V_{OUT} or SW2 node (or side) of the circuit. This is generally left to right on schematics.

- **Reverse Conduction**: Current or power flowing from the V_{OUT} or SW2 node (or side) to the V_{IN} or SW1 node (or side) of the circuit. This is general right to left on schematics.

- **Positive Current**: Current that flows from the SW1 side of the buck-boost inductor to the SW2 side. Also refers to current that flows from V_{IN} and/or into V_{OUT}.

- **Reverse Current**: Current that flows from the SW2 side of the buck-boost inductor to the SW1 side. Also refers to current that flows from V_{OUT} and/or into V_{IN}.

Refer to the Block Diagram (Figure 1) when reading the following sections about the operation of the LT8708.

START-UP

Figure 2 illustrates the start-up sequence for the LT8708.

Start-Up: SHDN Pin

The master shutdown pin for the chip is $SHDN$. When driven below 0.35V (LT8708E, LT8708I) or 0.3V (LT8708H), the chip is disabled (CHIP OFF state) and quiescent current is minimal. Increasing the $SHDN$ voltage can increase quiescent current but will not enable the chip until $SHDN$ is driven above 1.221V (typical) after which the $INTV_{CC}$ and LDO33 regulators are enabled (SWITCHER OFF 1 state). External devices powered by LDO33 can become active at this time if enough voltage is available on V_{INCHIP} or $EXTV_{CC}$ to raise $INTV_{CC}$, and thus LDO33, to an adequate voltage.

Start-Up: SWEN Pin

The SWEN pin is used to enable the switching regulator after the chip has also been enabled by driving $SHDN$ high. SWEN must be pulled high through a resistor to enable the switching regulator. The typical activation threshold is 1.208V as shown in the Electrical Characteristics section. When the SWEN pin voltage is below the activation threshold, the CSP-CSN, CSPIN-CSNIN and CSPOUT-CSNOUT current sense circuits on the chip are disabled.

SWEN has an internal pull-down that is activated when the switching regulator is unable to operate (see CHIP OFF and SWITCHER OFF 1 states in Figure 2). After the chip is able to operate and SWEN is internally pulled down below 0.8V (typical), the internal SWEN pull-down is disabled and start-up can proceed past the SWITCHER OFF 1 state.

LDO33 or $INTV_{CC}$ are convenient nodes to pull SWEN up to. Choose a pull-up resistor value that limits the current to less than 200μA when SWEN is pulled low. The SWEN pin can also be digitally driven through a current limiting resistor. Note in the Electrical Characteristics section, the SWEN output low voltage is 0.9V (typical) when $SHDN$ is low and/or V_{INCHIP} is unpowered. The SWEN output low is 0.2V when $SHDN$ is 3V and V_{INCHIP} is powered.
Start-Up: Soft-Start of Switching Regulator

In the INITIALIZE state, the SS (soft-start) pin is pulled low to prepare for soft-starting the switching regulator. After SS has been discharged to less than 50mV, the SOFT-START state begins. In this state, as SS gradually rises, the soft-start circuitry provides a gradual ramp of V_C and the inductor current in the appropriate direction (refer to the V_C vs SS Voltage graph in the Typical Performance Characteristics section). This prevents abrupt surges of inductor current and helps the output voltage ramp smoothly into regulation. See the Switch Control: Soft-Start section for information about the power switch control during soft-start.

During soft-start, an integrated 180k (typical) resistor pulls SS up to 3.3V. The rising ramp rate of the SS pin voltage is set by this 180k resistor and the external capacitor connected to this pin. When SS reaches 1.8V (typical), the LT8708 exits soft-start and enters normal operation. Typical values for the external soft-start capacitor range from 220nF to 2μF. A minimum of 220nF is recommended.

CONTROL OVERVIEW

The LT8708 is a current mode controller that provides an output voltage above, below or equal to the input voltage. It also provides bidirectional current monitoring and regulation capabilities at both the input and the output.

The ADI proprietary control architecture employs an inductor current-sensing resistor (R_{SENSE}) in buck, boost or buck-boost regions of operation. The inductor current is controlled by the voltage on the V_C pin, which is the combined output of six internal error amplifiers EA1 – EA6.
These amplifiers can be used to limit or regulate their respective voltages or currents as shown in Table 1.

Table 1. Error Amplifiers (EA1 – EA6)

<table>
<thead>
<tr>
<th>AMPLIFIER NAME</th>
<th>PIN NAME</th>
<th>USED TO LIMIT OR REGULATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA1</td>
<td>IMON_INN</td>
<td>Negative I_IN</td>
</tr>
<tr>
<td>EA2</td>
<td>IMON_ON</td>
<td>Negative I_OUT</td>
</tr>
<tr>
<td>EA3</td>
<td>FBIN</td>
<td>V_IN Voltage</td>
</tr>
<tr>
<td>EA4</td>
<td>FBOUT</td>
<td>V_OUT Voltage</td>
</tr>
<tr>
<td>EA5</td>
<td>IMON_INP</td>
<td>Positive I_IN</td>
</tr>
<tr>
<td>EA6</td>
<td>IMON_OP</td>
<td>Positive I_OUT</td>
</tr>
</tbody>
</table>

The V_C voltage typically has a min-max range of about 1.2V. The maximum V_C voltage commands the most positive inductor current and, thus, commands the most power flow from V_IN to V_OUT. The minimum V_C voltage commands the most negative inductor current and, thus, commands the most power flow from V_OUT to V_IN.

In a simple example of V_OUT regulation, the FBOUT pin receives the V_OUT voltage feedback signal which is compared to the internal reference voltage using EA4. Low V_OUT voltage raises V_C and, thus, more current flows into V_OUT. Conversely, higher V_OUT reduces V_C, thus, reducing the current into V_OUT or even drawing current and power from V_OUT.

Note that the current and power flow can also be restricted to one direction, as needed, by the selected conduction mode discussed in the Uni and Bidirectional Conduction section.

As mentioned previously, the LT8708 also provides bi-directional current regulation capabilities at both the input and the output. The V_OUT current can be regulated or limited in the forward and reverse directions (EA6 and EA2, respectively). The V_IN current can also be regulated or limited in the forward direction and reverse directions (EA5 and EA1, respectively).

In a common application, V_OUT might be regulated using EA4, while the remaining error amplifiers are monitoring for excessive input or output current or an input under-voltage condition. In other applications, such as a battery backup system, a battery connected to V_OUT might be charged with constant current (EA6) to a maximum voltage (EA4) and also reversed, at times, to supply power back to V_IN using the other error amplifiers to regulate V_IN and limit the maximum current.

POWER SWITCH CONTROL

The following discussions about the power switch control assume that the LT8708 is operating in the continuous conduction mode (see Bidirectional Conduction: CCM). Other conduction modes have slight differences that are discussed later in their respective Conduction sections.

Figure 3 shows a simplified diagram of how the four power switches are connected to the inductor, V_IN, V_OUT and ground. Figure 4 shows the regions of operation for the LT8708 as a function of V_OUT – V_IN or switch duty cycle (DC). The power switches are properly controlled so the transfer between modes is continuous.
OPERATION

Switch Control: Buck Region (\(V_{IN} >> V_{OUT}\))

When \(V_{IN}\) is significantly higher than \(V_{OUT}\), the part will run in the buck region. In this region M3 is always off and switch M4 is always on. At the start of every cycle, synchronous switch M2 is turned on first. Inductor current is sensed by amplifier A4 while switch M2 is on. A slope compensation ramp is added to the sensed voltage which is then compared by A5 to a reference that is proportional to \(V_C\). After the sensed inductor current falls below the reference, switch M2 is turned off and switch M1 is turned on for the remainder of the cycle. Switches M1 and M2 will alternate, behaving like a typical synchronous buck regulator. Figure 5 shows the switching waveforms in the buck region.

![Figure 5. Buck Region (\(V_{IN} >> V_{OUT}\))]}

The part will continue operating in the buck region over a range of switch M2 duty cycles. The duty cycle of switch M2 in the buck region is given by:

\[
DC_{(M2,BUCK)} = \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \cdot 100\%
\]

As \(V_{IN}\) and \(V_{OUT}\) get closer to each other, the duty cycle decreases until the minimum duty cycle of the converter, in the buck region, reaches \(DC_{(ABSMIN,M2,BUCK)}\). If the duty cycle becomes lower than \(DC_{(ABSMIN,M2,BUCK)}\) the part will move to the buck-boost region.

\[
DC_{(ABSMIN,M2,BUCK)} = t_{ON(M2,MIN)} \cdot f \cdot 100\%
\]

where:

\(t_{ON(M2,MIN)}\) is the minimum on-time for the synchronous switch in buck operation (200ns typical, see Electrical Characteristics).

\(f\) is the switching frequency.

When \(V_{IN}\) is much higher than \(V_{OUT}\), the duty cycle of switch M2 will increase, causing the M2 switch off-time to decrease. The M2 switch off-time should be kept above 230ns (typical, see Electrical Characteristics) to maintain steady-state operation and avoid duty cycle jitter, increased output ripple and reduction in maximum output current.

Switch Control: Buck-Boost (\(V_{IN} \approx V_{OUT}\))

When \(V_{IN}\) is close to \(V_{OUT}\), the controller operates in the buck-boost region. Figure 6 shows typical waveforms in this region. Every cycle, if the controller starts with switches M2 and M4 turned on, the controller first operates as if in the buck region. When A5 trips, switch M2 is turned off and M1 is turned on until the middle of the clock cycle. Next, switch M4 turns off and M3 turns on. The LT8708 then operates as if in boost mode until A2 trips. Finally, switch M3 turns off and M4 turns on until the end of the cycle.

If the controller starts with switches M1 and M3 turned on, the controller first operates as if in the boost region. When A2 trips, switch M3 is turned off and M4 is turned on until the middle of the clock cycle. Next, switch M1
turns off and M2 turns on. The LT8708 then operates as if in buck mode until A5 trips. Finally, switch M2 turns off and M1 turns on until the end of the cycle.

Switch Control: Boost Region (VIN << VOUT)

When VOUT is significantly higher than VIN, the part operates in the boost region. In this region switch M1 is always on and switch M2 is always off. At the start of every cycle, switch M3 is turned on first. Inductor current is sensed by amplifier A4 while switch M3 is on. A slope compensation ramp is added to the sensed voltage which is then compared (A2) to a reference that is proportional to VC. After the sensed inductor current rises above the reference voltage, switch M3 is turned off and switch M4 is turned on for the remainder of the cycle. Switches M3 and M4 will alternate, behaving like a typical synchronous boost regulator.

The part will continue operating in the boost region over a range of switch M3 duty cycles. The duty cycle of switch M3 in the boost region is given by:

\[DC_{(M3,BOOST)} = \left(1 - \frac{\text{VIN}}{\text{VOUT}}\right) \times 100\% \]

As VIN and VOUT get closer to each other, the duty cycle decreases until the minimum duty cycle of the converter, in the boost region, reaches DC_{(ABSMIN,M3,BOOST)}. If the duty cycle becomes lower than DC_{(ABSMIN,M3,BOOST)}, the part will move to the buck-boost region.

\[DC_{(ABSMIN,M3,BOOST)} = t_{ON(M3,MIN)} \times f \times 100\% \]

where:

- \(t_{ON(M3,MIN)} \) is the minimum on-time for the main switch in boost operation (200ns typical, see Electrical Characteristics).
- \(f \) is the switching frequency.

When VOUT is much higher than VIN, the duty cycle of switch M3 will increase, causing the M3 switch off-time to decrease. The M3 switch off-time should be kept above 230ns (typical, see Electrical Characteristics) to maintain steady-state operation and avoid duty cycle jitter, increased output ripple and reduction in maximum output current.

Switch Control: Soft-Start

During soft-start, the LT8708 operates in the same three regions discussed above (buck, buck-boost and boost). However, a few differences in switch control happen during soft-start.

First, M1 and M4 are not turned on simultaneously while SS ramps up to 0.8V (typical). When M1 and M4 would normally both be on, they are instead turned off, leaving all four switches off. After SS rises above 0.8V, during the time when M1 and M4 would normally both be on, they are turned on briefly instead. This brief amount of time increases as SS rises until M1 & M4 are allowed to remain on as long as the normal switching sequence requires.

Second, M2 and M3 will occasionally turn on together for one cycle to refresh both boost capacitors. This refresh cycle happens because M1 and M4 switch more frequently during soft-start than in normal operation. As such, the Boost Capacitor Charge Control block (see Figure 1) cannot always keep the boost capacitors charged. M2 and M3 are turned on when either BOOSTx-SWx voltage drops below 5V (typical). Note that during the refresh cycle, the inductor current slope is nearly zero, thus the boost capacitors can be refreshed without much disturbance to the ongoing switching operations.

UNI AND BIDIRECTIONAL CONDUCTION

The LT8708 has one bidirectional and three unidirectional current conduction modes, primarily selected by the MODE pin. The bidirectional mode (CCM: continuous conduction mode) allows current and power to flow from VIN to VOUT, or vice versa, under control of the VC pin. The unidirectional modes (DCM: discontinuous
OPERATION

Conduction mode, HCM: hybrid current mode and Burst Mode operation) only allow current and power to flow in one direction. Unidirectional settings override the \(V_C \) pin’s attempt to direct current and power opposite to the selected direction.

The DIR pin selects the allowed power direction when using the DCM and HCM unidirectional modes. The Burst Mode operation only operates in the forward direction and is not affected by the DIR pin. In DCM and HCM modes, driving \(\text{DIR} > 1.6\text{V (typical)} \) selects forward operation which only allows power flow from \(V_{\text{IN}} \) to \(V_{\text{OUT}} \). Driving \(\text{DIR} < 1.2\text{V (typical)} \) selects reverse operation which only allows power flow from \(V_{\text{OUT}} \) to \(V_{\text{IN}} \).

Next, a low state on the \(\text{RVSOFF} \) pin inhibits reverse current and power flow. \(\text{RVSOFF} \) is an open-drain pin that requires a pull-up resistor. \(\text{LD033} \) or \(\text{INTVCC} \) are convenient nodes to pull \(\text{RVSOFF} \) up to. Normally, \(\text{RVSOFF} \) is only pulled low in response to a low \(V_{\text{OUT}} \) voltage (via the \(\text{VOUTLOMON} \) comparator) or a high \(V_{\text{IN}} \) voltage (via the \(\text{VINHIMON} \) comparator). However, external devices are permitted to pull \(\text{RVSOFF} \) low as needed. More information is available in the \(\text{VINHIMON}, \text{VOUTLOMON} \) and \(\text{RVSOFF} \) section.

Table 2 summarizes selection of the various conduction modes. See the Electrical Characteristics for the voltage thresholds of the \(\text{DIR}, \text{VINHIMON}, \text{VOUTLOMON} \) and \(\text{RVSOFF} \) pins.

<table>
<thead>
<tr>
<th>MODE PIN</th>
<th>DIR PIN STATE</th>
<th>RVSOFF PIN STATE</th>
<th>CONDUCTION MODE</th>
<th>POSSIBLE DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.4V</td>
<td>–</td>
<td>Hi</td>
<td>CCM</td>
<td>Forward and Reverse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lo</td>
<td>DCM</td>
<td>Forward</td>
</tr>
<tr>
<td>0.8V to 1.2V</td>
<td>Hi</td>
<td>–</td>
<td>HCM</td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Lo</td>
<td>Hi</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lo</td>
<td>–</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>1.6V to 2.0V</td>
<td>Hi</td>
<td>–</td>
<td>DCM</td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td>Lo</td>
<td>Hi</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lo</td>
<td>–</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>>2.4V</td>
<td>–</td>
<td>Hi</td>
<td>Burst Mode Operation</td>
<td>Forward</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lo</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

The conduction configuration can be changed during operation, as needed, with the following restrictions:

1. Before transitioning from \(\text{MODE} = \text{Burst Mode operation} \) to \(\text{MODE} = \text{CCM} \), the \(\text{DIR} \) pin must be driven to the Hi (Forward) state.

2. Avoid control pulses on the \(\text{MODE} \) and \(\text{DIR} \) pins narrower than 15 \(\text{LT8708} \) clock cycles.

Note: The \(V_C \) pin may be railed at the moment the \(\text{DIR} \) pin or \(\text{MODE} \) pin changes state. The railed \(V_C \) voltage corresponds to zero current in one direction and maximum current in the other. Therefore, if a small value \(R_{\text{SENSE}} \) resistor is used, the chip may momentarily command high inductor current immediately after the \(\text{DIR} \) or \(\text{MODE} \) pin change. An undersized inductor may become saturated in this case. An edge detector on the \(\text{DIR} \) and/or \(\text{MODE} \) pin can be used to reset the chip, forcing a soft-start and limiting the initial current. See the 48V to 14V Bidirectional Dual Battery System with FHCM & RHCM in the Typical Applications section as an example.

More details about each of the four conduction modes are provided in the following sub-sections.

Bidirectional Conduction: CCM

The continuous conduction mode allows the inductor current to flow in the forward or reverse direction, depending on the \(V_C \) voltage. When CCM is selected, high \(V_C \) voltage causes current and power to flow from \(V_{\text{IN}} \) to \(V_{\text{OUT}} \) and low \(V_C \) voltage causes current and power to flow from \(V_{\text{OUT}} \) to \(V_{\text{IN}} \). At very light load currents the inductor current may ripple positive and negative as the appropriate average current is delivered to the appropriate output.

Unidirectional Conduction: DCM

The discontinuous conduction mode restricts the inductor current so that it can only flow in one direction, positive towards \(V_{\text{OUT}} \) (Forward DCM) or negative towards \(V_{\text{IN}} \) (Reverse DCM). The forward/reverse selection is made by driving the \(\text{DIR} \) pin as desired.

When FDCM is selected, higher \(V_C \) voltage increases the power flowing from \(V_{\text{IN}} \) to \(V_{\text{OUT}} \). Lower \(V_C \) voltage reduces or stops the flow. When RDCM is selected, lower
OPERATION

V_C voltage increases the power flowing from V_{OUT} into V_{IN}. Higher V_C voltage reduces or stops the flow.

Forward (or reverse) DCM affects the power switches as follows. Under light loading conditions, in FDCM (or RDCM), synchronous switch M4 (or M1) is turned off whenever instantaneous reverse (or forward) current in the inductor is detected. This is to prevent drawing current from V_{OUT} (or V_{IN}) and feeding current into V_{IN} (or V_{OUT}). Under very light loads, the current comparator may also remain tripped for several cycles and force switches M1 (or M2) and M3 (or M4) to stay off for the same number of cycles i.e., skipping pulses. Synchronous switch M2 (or M3) will remain on during the skipped cycles, but since switch M4 (or M1) is off, the inductor current will not reverse directions.

Unidirectional Conduction: HCM

Large inductor current ripple can sometimes result in high power dissipation of the M4 (or M1) junction diode during the FDCM (or RDCM) operation described above. This can happen, for example, when V_{IN} >> V_{OUT} and the average V_{OUT} current is relatively high, but M4 is turned off to block negative components of the AC inductor current. The hybrid current mode (or HCM) is an alternative to DCM that often reduces the maximum M4 (or M1) heating in such cases.

The hybrid current mode is a mixture of the light load DCM operation and CCM operation, but only allows average current flow in one direction. As such, it is possible to have the lower portions of the inductor current ripple flow opposite to the selected direction while the average current remains in the selected direction. The DIR pin is used to select the desired forward (or FHCM) or reverse (or RHCM) direction of average current flow.

HCM works by measuring the average forward V_{OUT} current and the average reverse V_{IN} current indicated on ICN and IMON_INP, respectively. In FHCM (or RHCM), light load is detected when ICN (or IMON_INP) is above 255mV (typical). As a result, M4 (or M1) is turned off to prevent average current flow opposite to the desired direction. Heavy load is detected when ICN (or IMON_INP) is below 205mV (typical). As a result, CCM operation is enabled, allowing M4 (or M1) to turn on and reduce the diode’s power dissipation.

NOTE: In FHCM operation connect a 17.4k resistor from ground to the ICN pin, and in RHCM operation, connect a 17.4k resistor from ground to the IMON_INP pin.

Unidirectional Conduction: Burst Mode

In Burst Mode operation, a V_C voltage is set, with about 25mV of hysteresis, below which switching activity is inhibited and above which switching activity is re-enabled. A typical example is when, at light output currents, V_{OUT} rises and forces the V_C pin below the threshold that temporarily inhibits switching. After V_{OUT} drops slightly and V_C rises ~25mV, the switching is resumed, initially in the buck-boost region. Burst Mode operation can increase efficiency at light load currents by eliminating unnecessary switching activity and related power losses. In Burst Mode operation, inductor current is only allowed in the forward direction, regardless of the voltage on the DIR pin. Burst Mode operation handles reverse-current detection similar to forward DCM. The M4 switch is turned off when reverse inductor current is detected.

ERROR AMPLIFIERS

The six internal error amplifiers combine to drive V_C according to Table 3, with the highest priority being at the top.

Table 3. Error Amp Priorities

<table>
<thead>
<tr>
<th>TYPICAL CONDITION</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMON_INN > 1.21V</td>
<td>to Reduce Negative I<sub>N</sub></td>
</tr>
<tr>
<td>IMON_ON > 1.21V</td>
<td>to Reduce Negative I<sub>OUT</sub></td>
</tr>
<tr>
<td>V<sub>C</sub> Falls</td>
<td>to Reduce Positive I<sub>N</sub> or Increase Negative I<sub>N</sub></td>
</tr>
<tr>
<td>V<sub>C</sub> Falls</td>
<td>to Reduce Positive I<sub>OUT</sub> or Increase Negative I<sub>OUT</sub></td>
</tr>
<tr>
<td>V<sub>C</sub> Rises</td>
<td>to Reduce Positive I<sub>N</sub></td>
</tr>
<tr>
<td>V<sub>C</sub> Rises</td>
<td>Default</td>
</tr>
</tbody>
</table>

Note that certain error amplifiers are disabled under the conditions shown in Table 4. A disabled error amplifier is unable to affect V_C and can be treated as if its associated row is removed from Table 3.
OPERATION

Table 4. Automatically Disabled Error Amp Conditions

<table>
<thead>
<tr>
<th>ERROR AMP</th>
<th>PIN NAME</th>
<th>VOUTLOMON ASSERTED</th>
<th>VINHIMON ASSERTED</th>
<th>RDCM or RHCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA1</td>
<td>IMON_INN</td>
<td></td>
<td></td>
<td>4*</td>
</tr>
<tr>
<td>EA2</td>
<td>IMON_ON</td>
<td></td>
<td></td>
<td>4*</td>
</tr>
<tr>
<td>EA3</td>
<td>FBIN</td>
<td>2*</td>
<td></td>
<td>4*</td>
</tr>
<tr>
<td>EA4</td>
<td>FBOUT</td>
<td>1*</td>
<td></td>
<td>3* 4*</td>
</tr>
<tr>
<td>EA5</td>
<td>IMON_INP</td>
<td></td>
<td></td>
<td>4*</td>
</tr>
<tr>
<td>EA6</td>
<td>IMON_OP</td>
<td></td>
<td></td>
<td>4*</td>
</tr>
</tbody>
</table>

A 1* – 4* indicates that the error amplifier listed for that row is disabled under that column’s condition. The purposes of disabling the respective amplifiers are listed below:

1* This improves transient response when VOUTLOMON deasserts.
2* This improves transient response when VINHIMON deasserts.
3* Since power can only transfer from VOUT to VIN, this prevents higher FBOUT/VOUT voltages from interfering with the FBIN/VIN voltage regulation.
4* No switching occurs in this condition. Disabling the error amplifiers improves transient response when resuming switching operation.

Some applications don’t require the use of all six error amplifiers. When unused, the respective input pin(s) should be driven so that they don’t interfere with the operation of the remaining amplifiers. Use Table 5 as a guide.

Table 5. Disabling Unused Amplifiers

<table>
<thead>
<tr>
<th>AMPLIFIER NAME</th>
<th>PIN NAME</th>
<th>TIE TO DISABLE</th>
<th>EXAMPLE DISABLED PIN CONNECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA1</td>
<td>IMON_INN</td>
<td>< 0.9V</td>
<td>GND</td>
</tr>
<tr>
<td>EA2</td>
<td>IMON_ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA3</td>
<td>FBIN</td>
<td>> 1.5V</td>
<td>LD033</td>
</tr>
<tr>
<td>EA4</td>
<td>FBOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA5</td>
<td>IMON_INP</td>
<td>< 0.9V</td>
<td>GND</td>
</tr>
<tr>
<td>EA6</td>
<td>IMON_OP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOUT REGULATION AND SENSING

Two pins, FBOUT and VOUTLOMON, are provided to sense the VOUT voltage and issue the appropriate response to the switching regulator.

VOUT: Regulation

VOUT is regulated, subject to the priorities in Table 3, using a resistor divider between VOUT, FBOUT and ground. FBOUT connects to the EA4 amplifier to drive VC. When FBOUT rises near or above the EA4 reference (1.207V typical), VC typically falls, commanding less current into VOUT. The VOUT regulation voltage is given by the equation:

\[
V_{OUT} = 1.207V \cdot \left(1 + \frac{R_{FBOUT1}}{R_{FBOUT2}}\right)
\]

where:

- \(R_{FBOUT1}\) and \(R_{FBOUT2}\) are shown in Figure 1.

VOUT: Above Regulation

When the FBOUT pin and EA4 detect that VOUT is significantly above regulation, VC typically falls to its minimum voltage. The LT8708 responds to the minimum VC voltage according to the conduction mode enabled by MODE, DIR and RVSOFF. If reverse conduction is not allowed (FDCM, FHCM and Burst Mode operation) then switching will stop and current won’t be delivered to VIN. If reverse conduction is allowed (CCM, RDCM and RHCM), then current and power will flow from VOUT to VIN.

VOUT: Below Regulation and Undervoltage

When the FBOUT pin and EA4 detect VOUT is below regulation, VC typically rises. If forward conduction is enabled (CCM, FDCM, FHCM and Burst mode), then current and power will flow from VIN to VOUT.

A resistor divider between VOUT, VOUTLOMON and ground is used to detect VOUT undervoltage. This function prevents reverse conduction, from VOUT to VIN, from drawing VOUT down lower than desired. When undervoltage is detected by VOUTLOMON, RVSOFF is pulled low to disable reverse current and power. This function can be used as a UVLO (undervoltage lockout), for example, when a battery or supercapacitor, connected to VOUT, is supplying power to VIN. See the VINHIMON, VOUTLOMON and RVSOFF section for more detailed information.
LT8708

OPERATION

VIN REGULATION AND SENSING

Two pins, FBIN and VINHIMON, are provided to sense the \(V_{IN} \) voltage and issue the appropriate response to the switching regulator.

VIN: Regulation

Subject to the priorities in Table 3, a resistor divider between \(V_{IN} \), FBIN and ground can be used to regulate \(V_{IN} \) or serve an undervoltage lockout function. A few application examples are as follows:

- For \(V_{IN} \) supplies with high source impedance (i.e., a solar panel), \(V_{IN} \) regulation can prevent the supply voltage from dropping too low under high \(V_{OUT} \) load conditions.
- For \(V_{IN} \) supplies with low source impedance (i.e., batteries and voltage supplies), the FBIN pin can be used to stop switching activity when the \(V_{IN} \) supply voltage gets too low for proper system operation.
- \(V_{IN} \) can also be regulated to a maximum voltage when power is flowing from \(V_{OUT} \) to \(V_{IN} \), such as in a battery backup application.

When FBIN falls near or below the EA3 reference (1.205V typical), the \(V_{C} \) voltage falls and reduces current draw from \(V_{IN} \). The \(V_{IN} \) regulation voltage is given by the equation:

\[
V_{IN} = 1.205V \cdot \left(1 + \frac{R_{FBIN1}}{R_{FBIN2}}\right)
\]

where:

- \(R_{FBIN1} \) and \(R_{FBIN2} \) are shown in Figure 1.

VIN: Above Regulation and Overvoltage

When the FBIN pin and EA3 detect \(V_{IN} \) is above regulation, \(V_{C} \) is allowed to rise. If forward conduction is enabled (CCM, FDCM, FHCM and Burst Mode operation), then current and power can flow from \(V_{IN} \) to \(V_{OUT} \). If only reverse conduction is enabled (RDCM and RHCM), then switching will stop and current won’t be delivered into \(V_{IN} \). NOTE: This above-regulation condition is required to allow forward conduction in an application.

A resistor divider between \(V_{IN} \), VINHIMON and ground is used to detect \(V_{IN} \) overvoltage. This function prevents reverse conduction, from \(V_{OUT} \) to \(V_{IN} \), from forcing \(V_{IN} \) higher than desired. When overvoltage is detected by VINHIMON, RVSOFF is pulled low to disable reverse current and power. This function can be used as an OVLO (over voltage lockout), for example, when a battery, connected to \(V_{IN} \), is being charged from \(V_{OUT} \). See the VINHIMON, VOUTLOMON and RVSOFF section for more detailed information.

VIN: Below Regulation

When the FBIN pin and EA3 detect that \(V_{IN} \) is significantly below regulation, \(V_{C} \) may fall to its minimum voltage. The LT8708 responds to the minimum \(V_{C} \) voltage according to the conduction mode enabled by MODE, DIR and RVSOFF. If only forward conduction is allowed (FDCM, FHCM and Burst Mode operation) then switching will stop and current won’t be drawn from \(V_{OUT} \). If reverse conduction is allowed (CCM, RDCM and RHCM), then current and power will flow from \(V_{OUT} \) to \(V_{IN} \).

UVLO functions are available to detect low \(V_{IN} \) voltage. These functions are discussed in the Voltage Lockouts section.

CURRENT MONITORING AND LIMITING

Monitoring and Limiting: IMON Pins

The LT8708 can monitor \(V_{IN} \) and \(V_{OUT} \) current (\(I_{IN} \) and \(I_{OUT} \)) in both the positive and negative directions. The CSPIN and CSNIN pins connect across a current sense resistor to monitor \(I_{IN} \). External resistors are connected from the IMON_INP and IMON_INN pins to GND. Their resulting voltages are linearly proportional to positive \(I_{IN} \) and negative \(I_{IN} \) respectively. See amplifier A3 in the Block Diagram.

Similarly, an \(I_{OUT} \) sense resistor, measured by CSPOUT and CSNOUT, is used to monitor the \(V_{OUT} \) current. External resistors are connected from the IMON_OP and IMON_ON pins to GND. Their resulting voltages are linearly proportional to positive \(I_{OUT} \) and negative \(I_{OUT} \) respectively. See amplifier A1 in the Block Diagram.

For more information www.analog.com
OPERATION

The I_{IN} and I_{OUT} currents can be limited and regulated to independent maximum positive values. When I_{IN} causes V_{MON_INP} to rise near or above $1.209V$ (typical), EA5 typically causes V_C to pull down and limit/regulate the maximum current. Similarly, when I_{OUT} causes V_{MON_OP} to rise near or above $1.209V$ (typical), EA6 typically causes V_C to pull down and limit/regulate the maximum current. See Table 3 for error amplifier priorities.

The I_{IN} and I_{OUT} currents can also be limited and regulated to independent maximum negative values. When I_{IN} causes V_{MON_INN} to rise near or above $1.21V$ (typical), EA1 causes V_C to pull up and limit the maximum current. Similarly, when I_{OUT} causes V_{MON_ON} to rise near or above $1.21V$ (typical), EA2 causes V_C to pull up and limit the maximum current.

The I_{IN} and I_{OUT} current limits can provide many benefits. They can be used to prevent overloading the input supply, allow for constant-current battery and supercapacitor charging and can also serve as short-circuit protection for constant-voltage regulators. See the Applications Information section for more information about the current monitors and the current regulation and limiting.

Monitoring: ICP and ICN Pins

ICP and ICN are additional current monitor pins with output currents typically equal to those of V_{MON_OP} and V_{MON_ON}, respectively.

In contrast to V_{MON_OP}, ICP is internally pulled to $-0.6V$ (typical) when V_C is at its minimum and the conduction mode is either RDCM or RHCM. Also, in contrast to V_{MON_ON}, ICN is internally pulled to $-0.6V$ (typical) when V_C is at its maximum and the conduction mode is FDCM, FHCM or Burst Mode operation.

Always connect a $17.4k$ resistor from ICP to ground and from ICN to ground.

INTV$_{CC}$/EXTV$_{CC}$/GATEV$_{CC}$/LDO33 POWER

Power for the top and bottom MOSFET drivers, the LDO33 pin and most internal circuitry is derived from the INTV$_{CC}$ pin. INTV$_{CC}$ is regulated to $6.3V$ (typical) from either the V_{INCHIP} or EXTV$_{CC}$ pin. When the EXTV$_{CC}$ pin is left open or tied to a voltage less than $6.2V$ (typical), an internal low dropout regulator regulates INTV$_{CC}$ from V_{INCHIP}. If EXTV$_{CC}$ is taken above $6.4V$ (typical), another low dropout regulator will instead regulate INTV$_{CC}$ from EXTV$_{CC}$.

Regulating INTV$_{CC}$ from EXTV$_{CC}$ allows the power to be derived from the lowest supply voltage (highest efficiency) such as the LT8708 switching regulator output (see INTV$_{CC}$ Regulators and EXTV$_{CC}$ Connection in the Applications Information section for more details).

The GATEV$_{CC}$ pin directly powers the bottom MOSFET drivers for switches M2 and M3 (see Figure 3). GATEV$_{CC}$ should always be connected to INTV$_{CC}$ and should not be powered or connected to any other source. Undervoltage lockouts (UVLOs) monitoring INTV$_{CC}$ and GATEV$_{CC}$ disable the switching regulator when the pins are below $4.65V$ (typical).

The LDO33 pin can provide power to external components such as a microcontroller and/or can provide an accurate bias voltage. Load current is limited to $17.25mA$ (typical). As long as SHDN is high, the LDO33 output is linearly regulated from the INTV$_{CC}$ pin and is not affected by the INTV$_{CC}$ or GATEV$_{CC}$ UVLOs or the SWEN pin voltage. LDO33 remains regulated as long as SHDN is high and sufficient voltage is available on INTV$_{CC}$ (typically > $4.0V$). An undervoltage lockout monitoring LDO33 will disable the switching regulator when LDO33 is below $3.04V$ (typical).

CLKOUT AND TEMPERATURE SENSING

The CLKOUT pin toggles at the LT8708’s internal clock frequency whether the internal clock is synchronized to an external source or is free-running based on the external R_T resistor. The CLKOUT pin can be used to synchronize other devices to the LT8708’s switching frequency. Also, the duty cycle of CLKOUT is proportional to the die temperature and can be used to monitor the die for thermal issues.
APPLICATIONS INFORMATION

This Applications Information section provides additional details for setting up an application using the LT8708. Topics include verifying the power flow conditions, selection of various external components including the switching MOSFETs, sensing resistors, filter capacitors, diodes and the primary inductor among others. In addition, more information is provided about voltage lockouts, current monitoring, PCB layout and efficiency considerations. This section wraps up with a design example to illustrate the use of the various design equations presented here.

VERIFY THE POWER FLOW CONDITIONS

Due to the configurability of the LT8708, a methodical approach should be used to verify that power will flow, as intended, under all relevant conditions. Table 6(a) and 6(b) are provided to help with this verification.

First, using Table 6(a), note which \(V_{IN} \) and \(V_{OUT} \) combinations are used in the application. For example, print a copy of Table 6(a) and highlight or circle the applicable cells.

In Table 6(a):

- \(V_{IN_FBIN} \) is the \(V_{IN} \) voltage when FBIN is at 1.205V (typ)
- \(V_{OUT_FBOUT} \) is the \(V_{OUT} \) voltage when FBOUT is at 1.207V (typ)
- \(V_{IN_VINHIMON} \) is the \(V_{IN} \) voltage when VINHIMON at 1.207V (typ)
- \(V_{OUT_VOUTLOMON} \) is the \(V_{OUT} \) voltage when VOUTLOMON is at 1.207V (typ)

If one or more of the FBIN, FBOUT, VINHIMON and VOUTLOMON pins are tied to their inactive states (see Table 5 and the VINHIMON, VOUTLOMON and RVSOFF section), the associated row(s) or column(s) will not apply to the application. For example, if FBIN is tied to LDO33 to deactivate that pin function, then the \(V_{IN < V_{IN_FBIN}} \) row of Table 6(a) is not applicable and no cells in that row should be circled.

Next, for each cell identified in Table 6(a), check that the operating condition described in Table 6(b) meets the application’s requirements.

Table 6. Power Flow Verification Table

6(a)

<table>
<thead>
<tr>
<th>(V_{OUT/VIN})</th>
<th>(V_{OUT < V_{OUT_VOUTLOMON}})</th>
<th>(V_{OUT > V_{OUT_VOUTLOMON} & V_{OUT < V_{OUT_FBOUT}}})</th>
<th>(V_{OUT > V_{OUT_FBOUT}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IN < V_{IN_FBIN}})</td>
<td>No Power Transfer</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>(V_{IN > V_{IN_FBIN} & V_{IN < V_{IN_VINHIMON}}})</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>(V_{IN > V_{IN_VINHIMON}})</td>
<td>A</td>
<td>D</td>
<td>No Power Transfer</td>
</tr>
</tbody>
</table>

6(b)

<table>
<thead>
<tr>
<th>MODE = BURST</th>
<th>MODE = CCM</th>
<th>MODE = DCM/HCM, DIR = FWD</th>
<th>MODE = DCM/HCM, DIR = RVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power Flows from (V_{IN}) to (V_{OUT})</td>
<td>No Power Flow</td>
<td>Power Flows from (V_{OUT}) to (V_{IN})</td>
</tr>
<tr>
<td>B</td>
<td>No Power Flow</td>
<td>Power Flows from (V_{OUT}) to (V_{IN})</td>
<td>No Power Flow</td>
</tr>
<tr>
<td>C</td>
<td>No Power Flow</td>
<td>No Power Flow</td>
<td>Power Flows from (V_{OUT}) to (V_{IN})</td>
</tr>
<tr>
<td>D</td>
<td>Power Flows from (V_{IN}) to (V_{OUT})</td>
<td>No Power Flow</td>
<td>No Power Flow</td>
</tr>
</tbody>
</table>

Note: Table 6(a) and Table 6(b) assume that the RVSOFF pin is not driven low by an external device.

See the Design Example section for a further example of using these tables.

OPERATING FREQUENCY SELECTION

The LT8708 uses a constant frequency architecture between 100kHz and 400kHz. The frequency can be set using the internal oscillator or can be synchronized to an external clock source. Selection of the switching frequency is a trade-off between efficiency and component size. Low frequency operation increases efficiency by reducing MOSFET switching losses, but requires more inductance and/or capacitance to maintain low output ripple voltage. For high power applications, consider operating at lower frequencies to minimize MOSFET heating from switching losses. The switching frequency can be set by placing an appropriate resistor from the RT pin to ground and tying the SYNC pin low. The frequency can also be synchronized to an external clock source driven into the SYNC pin. The following sections provide more details.
INTERNAL OSCILLATOR

The operating frequency of the LT8708 can be set using the internal free-running oscillator. When the SYNC pin is driven low (< 0.5V), the operating frequency is set by the value of the resistor from the RT pin to ground. An internally trimmed timing capacitor resides inside the IC. The oscillator frequency is calculated using the following formula:

\[f_{\text{osc}} = \left(\frac{43.750}{R_T + 1} \right) \text{kHz} \]

where:

- \(f_{\text{osc}} \) is in kHz and \(R_T \) is in kΩ.

Conversely, \(R_T \) (in kΩ) can be calculated from the desired frequency (in kHz) using:

\[R_T = \left(\frac{43.750}{f_{\text{osc}}} - 1 \right) \text{kΩ} \]

SYNC PIN AND CLOCK SYNCHRONIZATION

The operating frequency of the LT8708 can be synchronized to an external clock source. To synchronize to the external source, simply provide a digital clock signal into the SYNC pin. The LT8708 will operate at the SYNC clock frequency.

The duty cycle of the SYNC signal must be between 20% and 80% for proper operation. Also, the frequency of the SYNC signal must meet the following two criteria:

1. SYNC may not toggle outside the frequency range of 100kHz to 400kHz unless it is stopped low to enable the free-running oscillator.

2. The SYNC pin frequency can always be higher than the free-running oscillator set frequency, \(f_{\text{osc}} \), but should not be less than 25% below \(f_{\text{osc}} \).

After SYNC begins toggling, it is recommended that switching activity is stopped before the SYNC pin stops toggling. Excess inductor current can result when SYNC stops toggling as the LT8708 transitions from the external SYNC clock source to the internal free-running oscillator clock. Switching activity can be stopped by driving either the SWEN or SHDN pin low.

CLKOUT PIN AND CLOCK SYNCHRONIZATION

The CLKOUT pin can drive up to 200pF and toggles at the LT8708’s internal clock frequency whether the internal clock is synchronized to the SYNC pin or is free-running based on the external \(R_T \) resistor. The rising edge of CLKOUT is approximately 180° out of phase from the internal clock’s rising edge or the SYNC pin’s rising edge if it is toggling. CLKOUT starts toggling when the INITIALIZE state is entered (see Figure 2).

The CLKOUT pin can be used to synchronize other devices to the LT8708’s switching frequency. For example, the CLKOUT pin can be tied to the SYNC pin of another LT8708 regulator which will operate approximately 180°out of phase of the master LT8708. The frequency of the master LT8708 can be set by the external \(R_T \) resistor or by toggling the SYNC pin. Note that the \(R_T \) pin of the slave LT8708 must have a resistor tied to ground. In general, use the same value \(R_T \) resistor for all of the synchronized LT8708s.

The duty cycle of CLKOUT is proportional to the die temperature and can be used to monitor the die for thermal issues. See the Junction Temperature Measurement section for more information.

INDUCTOR CURRENT SENSING AND SLOPE COMPENSATION

The LT8708 operates using inductor current mode control. As described previously in the Power Switch Control section, the LT8708 measures the peak of the inductor current waveform in the boost region and the valley of the inductor current waveform in the buck region. The inductor current is sensed across the \(R_{\text{SENSE}} \) resistor with pins CSP and CSN. During any given cycle, the peak (boost region) or valley (buck region) of the inductor current waveform is controlled by the \(V_C \) pin voltage.

Slope compensation provides stability in constant-frequency current mode control architectures by preventing subharmonic oscillations at high duty cycles. This is accomplished internally by adding a compensating ramp to the inductor current signal in the boost region, or subtracting a ramp from the inductor current signal in the buck region. At higher duty cycles, this results in a reduction of maximum inductor current in the boost region, and an increase...
APPLICATIONS INFORMATION

of the maximum inductor current in the buck region. For example, refer to the Maximum Inductor Current Sense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section. The graph shows that, with \(V_C \) at its maximum voltage, the maximum peak inductor sense voltage \(V_{\text{RSENSE}} \) is between 47mV and 93mV depending on the duty cycle. It also shows that the maximum inductor valley current in the buck region is 82mV increasing to \(\sim \)130mV at higher duty cycles.

RSENSE SELECTION AND MAXIMUM CURRENT

The \(R_{\text{SENSE}} \) resistance must be chosen properly to achieve the desired amount of output current (forward conduction) and input current (reverse conduction). Too much resistance can limit the input/output current below the application requirements. Start by determining the maximum allowed \(R_{\text{SENSE}} \) resistances in the forward and reverse boost regions (\(R_{\text{SENSE(MAX,BOOST,FWD)}} \) and \(R_{\text{SENSE(MAX,BOOST,RVS)}} \)). Follow this by finding the maximum allowed \(R_{\text{SENSE}} \) resistances in the forward and reverse buck regions (\(R_{\text{SENSE(MAX,BOOST,FWD)}} \) and \(R_{\text{SENSE(MAX,BUCK,FWD)}} \)). The selected \(R_{\text{SENSE}} \) resistance must be less than all four values.

RSENSE Selection: Max RSENSE in the Boost Region

Forward Conduction: In this section \(R_{\text{SENSE(MAX,BOOST,FWD)}} \) is calculated which is the maximum allowed \(R_{\text{SENSE}} \) resistance when operating in the boost region with forward conduction (\(V_{\text{IN}} \) to \(V_{\text{OUT}} \)). Skip this section and assume \(R_{\text{SENSE(MAX,BOOST,FWD)}} = \infty \) when this operating condition does not apply to the application.

In the boost region, the maximum positive \(V_{\text{OUT}} \) current capability is the lowest when \(V_{\text{IN}} \) is at its minimum and \(V_{\text{OUT}} \) is at its maximum. Therefore, \(R_{\text{SENSE}} \) must be chosen to meet the output current requirements under these conditions.

Start by finding the maximum boost region duty cycle which occurs when \(V_{\text{IN}} \) is minimum and \(V_{\text{OUT}} \) is maximum using:

\[
\text{DC}_{\text{(MAX,M3,BOOST)}} = \left(1 - \frac{V_{\text{IN(MIN,BOOST)}}}{V_{\text{OUT(MAX,BOOST)}}} \right) \cdot 100\%
\]

For example, an application with a \(V_{\text{IN}} \) range of 12V to 48V and \(V_{\text{OUT}} \) set to 36V will have:

\[
\text{DC}_{\text{(MAX,M3,BOOST)}} = \left(1 - \frac{12V}{36V} \right) \cdot 100\% = 67\%
\]

Referring to the Maximum Inductor Current Sense Voltage graph in the Typical Performance Characteristics section, the maximum \(R_{\text{SENSE}} \) voltage at 67% duty cycle is 68mV, or:

\[
V_{\text{RSENSE(MAX,BOOST,MAXDC)}} = 68\text{mV}
\]

for \(V_{\text{IN}} = 12V, V_{\text{OUT}} = 36V \).

Next, the inductor ripple current in the boost region must be determined. If the main inductor \(L \) is not known, the maximum ripple current \(\Delta I_{\text{L(MAX,BOOST)}} \) can be estimated by choosing \(\Delta I_{\text{L(MAX,BOOST)}} \) to be 30% to 50% of the maximum peak inductor current in the boost region as follows:

\[
\Delta I_{\text{L(MAX,BOOST)}} = \frac{V_{\text{OUT(MAX,BOOST)}} \cdot I_{\text{OUT(MAX,FWD)}}}{V_{\text{IN(MIN,BOOST)}} \cdot \left(\%\text{Ripple} - 0.5 \right)} \text{A}
\]

where:

\(I_{\text{OUT(MAX,FWD)}} \) is the maximum \(V_{\text{OUT}} \) load current required in the boost region.

\%Ripple is 30% to 50%

For example, using \(V_{\text{OUT(MAX)}} = 36V, V_{\text{IN(MIN)}} = 12V, I_{\text{OUT(MAX,FWD)}} = 2A \) and \%Ripple = 40% we can calculate:

\[
\Delta I_{\text{L(MAX,BOOST)}} = \frac{36V \cdot 2A}{12V \cdot \left(\frac{100\%}{40\%} - 0.5 \right)} = 3A
\]
Otherwise, if the inductance is already known then $\Delta L_{(MAX,BOOST,FWD)}$ can be more accurately calculated as follows:

$$\Delta L_{(MAX,BOOST)} = \left(\frac{DC_{(MAX,M3,BOOST)}}{100\%} \right) \times \frac{V_{IN(MIN,BOOST)}}{f \times L} A$$

where:

- $DC_{(MAX,M3,BOOST)}$ is the maximum duty cycle percentage in the boost region as calculated previously
- f is the switching frequency
- L is the inductance of the main inductor

After the maximum ripple current is known, the maximum allowed R_{SENSE} in the boost region while in forward conduction (V_{IN} to V_{OUT}) can be calculated as follows:

$$R_{SENSE(MAX,BOOST,FWD)} = \frac{2 \times VRSENSE(MAX,BOOST,MAXDC) \times V_{IN(MIN,BOOST)}}{(2 \times I_{OUT(MAX,FWD)} \times V_{OUT(MAX,BOOST)}) + (\Delta I_{L(MAX,BOOST)} \times V_{IN(MIN,BOOST)})} \Omega$$

where:

- $VRSENSE(MAX,BOOST,MAXDC)$ is the maximum inductor current sense voltage as discussed in the previous section.

Using values from the previous examples:

$$R_{SENSE(MAX,BOOST,FWD)} = \frac{2 \times 68mV \times 12V}{(2 \times 2A \times 36V) + (3A \times 12V)} = 9.1m\Omega$$

Reverse Conduction: In this section $R_{SENSE(MAX,BOOST,RVS)}$ is calculated which is the maximum allowed R_{SENSE} resistance when operating in the boost region with reverse conduction (V_{OUT} to V_{IN}). Skip this section and assume $R_{SENSE(MAX,BOOST,RVS)} = \infty$ when this operating condition does not apply to the application.

In the boost region, the maximum reverse V_{IN} current capability is the lowest when operating at the minimum duty cycle. See Switch Control: Boost Region ($V_{IN} << V_{OUT}$) section for the equation to calculate the minimum duty cycle $DC_{(ABSMIN,M3,BOOST)}$.

Before calculating the maximum R_{SENSE} resistance allowed during reverse operation, however, the inductor ripple current must be determined. If the main inductor L is not known, the ripple current $\Delta I_{L(MIN,BOOST)}$ can be estimated by choosing $\Delta I_{L(MIN,BOOST)}$ to be 10% of the minimum peak inductor current in the boost region as follows:

$$\Delta I_{L(MIN,BOOST)} = \frac{I_{IN(MAX,RVS)}}{\left(\frac{100\%}{10\%} - 0.5 \right)} A$$

where:

- $I_{IN(MAX,RVS)}$ is the maximum V_{IN} load current required in the boost region in the reverse direction

If the inductance is already known then $\Delta I_{L(MIN,BOOST)}$ can be calculated as follows:

$$\Delta I_{L(MIN,BOOST)} = \left(\frac{DC_{(ABSMIN,M3,BOOST)}}{100\%} \right) \times \frac{V_{IN(MIN,BOOST)}}{f \times L} A$$

where:

- $DC_{(ABSMIN,M3,BOOST)}$ is the minimum duty cycle percentage in the boost region (see Switch Control: Boost Region ($V_{IN} << V_{OUT}$) section)
- f is the switching frequency
- L is the inductance of the main inductor

Now that the inductor ripple current is known, the maximum allowed R_{SENSE} in the boost region while in reverse conduction can be calculated as follows:

$$R_{SENSE(MAX,BOOST,RVS)} = \frac{2 \times |VRSENSE(MIN,BOOST,MINDC)| \Omega}{(2 \times I_{IN(MAX,RVS)}) - \Delta I_{L(MIN,BOOST)}}$$
where:

\[V_{\text{RSENSE(MIN,BOOST,MINDC)}} \] is the minimum inductor current sense voltage in the boost region at the minimum duty cycle. Typical value is \(-93\text{mV}\).

Negative result from the above equation indicates that any \(R_{\text{SENSE}} \) value can meet the requirement. Substitute the calculated result with \(\infty \) and move onto the next section.

R\text{SENSE} Selection: Max R\text{SENSE} in the Buck Region

Forward Conduction: In this section \(R_{\text{SENSE(MAX,BUCK,FWD)}} \) is calculated which is the maximum allowed \(R_{\text{SENSE}} \) resistance when operating in the buck region with forward conduction (\(V_{\text{IN}} \) to \(V_{\text{OUT}} \)).

In the buck region, the maximum \(V_{\text{OUT}} \) current capability is the lowest when operating at the minimum duty cycle. See Switch Control: Boost Region (\(V_{\text{IN}} << V_{\text{OUT}} \)) section for the equation to calculate the minimum duty cycle \(DC_{(\text{ABSMIN, M2,BUCK)}} \).

Before calculating the maximum \(R_{\text{SENSE}} \) resistance, however, the inductor ripple current must be determined. If the main inductor \(L \) is not known, the ripple current \(\Delta I_{L(MIN,BUCK)} \) can be estimated by choosing \(\Delta I_{L(MIN,BUCK)} \) to be 10% of the maximum peak inductor current in the buck region as follows:

\[\Delta I_{L(MIN,BUCK)} = \frac{I_{\text{OUT(MAX,FWD)}}}{10\% - 0.5} \text{A} \]

where:

\(I_{\text{OUT(MAX,FWD)}} \) is the maximum \(V_{\text{OUT}} \) load current required in the buck region in the forward direction.

If the inductance is already known then \(\Delta I_{L(MIN,BUCK)} \) can be calculated as follows:

\[\Delta I_{L(MIN,BUCK)} = \frac{\left(DC_{(\text{ABSMIN,M2,BUCK)}} / 100\% \right) \cdot V_{\text{OUT(MIN,BUCK)}}}{f \cdot L} \text{A} \]

where:

\(DC_{(\text{ABSMIN,M2,BUCK)}} \) is the minimum duty cycle percentage in the buck region as calculated previously.

\(f \) is the switching frequency

\(L \) is the inductance of the main inductor

After the inductor ripple current is known, the maximum allowed \(R_{\text{SENSE}} \) in the buck region while in forward conduction can be calculated as follows:

\[R_{\text{SENSE(MAX,BUCK,FWD)}} = \frac{2 \cdot V_{\text{RSENSE(MAX,BUCK,MINDC)}}}{\left(2 \cdot I_{\text{OUT(MAX,FWD)}} - \Delta I_{L(MIN,BUCK)} \right) \Omega} \]

where:

\(V_{\text{RSENSE(MAX,BUCK,MINDC)}} \) is the maximum inductor current sense voltage at the minimum duty cycle. Typical value is \(82\text{mV} \).

Negative result from the above equation indicates that any \(R_{\text{SENSE}} \) value can meet the requirement. Substitute the calculated result with \(\infty \) and move onto the next section.

Reverse Conduction: In this section \(R_{\text{SENSE(MAX, BUCK, RVS)}} \) is calculated which is the maximum allowed \(R_{\text{SENSE}} \) resistance when operating in the buck region with reverse conduction (\(V_{\text{OUT}} \) to \(V_{\text{IN}} \)). Skip this section and assume \(R_{\text{SENSE(MAX, BUCK, RVS)}} = \infty \) when this operating condition does not apply to the application.

In the buck region, the maximum reverse \(V_{\text{IN}} \) current capability is the least when \(V_{\text{IN}} \) is at its maximum and \(V_{\text{OUT}} \) is at its minimum for buck operation. Therefore \(R_{\text{SENSE}} \) must be chosen to meet the \(V_{\text{IN}} \) current requirements under these conditions.

Start by finding the buck region duty cycle when \(V_{\text{IN}} \) is minimum and \(V_{\text{OUT}} \) is maximum using:

\[DC_{(\text{MAX,M2,BUCK)}} = \frac{1 - \frac{V_{\text{OUT(MIN,BUCK)}}}{V_{\text{IN(MAX,BUCK)}}}}{100\%} \]

APPLICATIONS INFORMATION
APPLICATIONS INFORMATION

Next, the inductor ripple current in the buck region must be determined. If the main inductor \(L \) is not known, the maximum ripple current \(\Delta I_{L(\text{MAX,BUCK})} \) can be estimated by choosing \(\Delta I_{L(\text{MAX,BUCK})} \) to be 30% to 50% of the maximum peak inductor current in the buck region as follows:

\[
\Delta I_{L(\text{MAX,BUCK})} = \frac{V_{\text{IN(MAX,BUCK)}} \cdot I_{\text{IN(MAX,RVS)}}}{V_{\text{OUT(MIN,BUCK)}} \cdot \left(100\% - 0.5 \cdot \%\text{Ripple} \right)} \cdot A
\]

where:

\(I_{\text{IN(MAX,RVS)}} \) is the maximum \(V_{\text{IN}} \) load current in the reverse direction required in the buck region.

\(\%\text{Ripple} \) is 30% to 50%

Otherwise, if the inductance is already known then \(\Delta I_{L(\text{MAX,BUCK})} \) can be more accurately calculated as follows:

\[
\Delta I_{L(\text{MAX,BUCK})} = \frac{DC_{(\text{MAX,M2,BUCK})} \cdot V_{\text{OUT(MIN,BUCK)}}}{f \cdot L} \cdot A
\]

where:

\(DC_{(\text{MAX,M2,BUCK})} \) is the maximum duty cycle percentage in the buck region as calculated previously

\(f \) is the switching frequency

\(L \) is the inductance of the main inductor

After the maximum ripple current is known, the maximum allowed \(R_{\text{SENSE}} \) in the buck region while in reverse conduction can be calculated as follows:

\[
R_{\text{SENSE}(\text{MAX,BUCK,RVS})} = \frac{2 \cdot V_{\text{RSENSE}(\text{MIN,BUCK,MAXDC})} \cdot V_{\text{OUT(MIN,BUCK)}}}{\left(2 \cdot I_{\text{IN(MAX,RVS)}} \cdot I_{\text{IN(MAX,BUCK)}} \right) + \left(\Delta I_{L(\text{MAX,BUCK})} \cdot V_{\text{OUT(MIN,BUCK)}} \right)} \cdot \Omega
\]

where:

\(V_{\text{RSENSE}(\text{MIN,BUCK,MAXDC})} \) is the minimum inductor current sense voltage at the maximum duty cycle. This value is determined in a similar manner to \(V_{\text{RSENSE}(\text{MAX,BOOST,MAXDC})} \) discussed previously in the \(R_{\text{SENSE}} \) Selection: Max \(R_{\text{SENSE}} \) in the Boost Region (Forward Conduction) section.

\(R_{\text{SENSE}} \) Selection: Final \(R_{\text{SENSE}} \) Value

The final \(R_{\text{SENSE}} \) value should be lower than all four maximum \(R_{\text{SENSE}} \) values, \(R_{\text{SENSE}(\text{MAX,BOOST,FWD})}, R_{\text{SENSE}(\text{MAX,BOOST,RVS})}, R_{\text{SENSE}(\text{MAX,BUCK,FWD})} \) and \(R_{\text{SENSE}(\text{MAX,BUCK,RVS})} \). A margin of 20% to 30% is recommended.

Figure 8 shows approximately how the maximum positive \(I_{\text{OUT}} \) and inductor currents would vary with \(V_{\text{IN}}/V_{\text{OUT}} \) while all other operating parameters remain constant (frequency = 120kHz, inductance = 10\(\mu \)H, \(R_{\text{SENSE}} = 1\, \text{m}\Omega \)). This graph is normalized and accounts for changes in maximum current due to the slope compensation ramps and the effects of changing ripple current. The curve is theoretical but can be used as a guide to predict relative changes in maximum currents over a range of \(V_{\text{IN}}/V_{\text{OUT}} \) voltages. Similarly, when in reverse conduction, Figure 9 shows approximately how the maximum negative \(I_{\text{IN}} \) and inductor currents would vary with \(V_{\text{IN}}/V_{\text{OUT}} \).
APPLICATIONS INFORMATION

INDUCTOR (L) SELECTION

For high efficiency, choose an inductor with low core loss, such as ferrite. Also, the inductor should have low DC resistance to reduce the I^2R losses, and must be able to handle the peak inductor current without saturating. To minimize radiated noise, use a toroid, pot core or shielded bobbin inductor.

The operating frequency and inductor selection are inter-related in that higher operating frequencies allow the use of smaller inductor and capacitor values. The following sections discuss several criteria to consider when choosing an inductor value. For optimal performance, choose an inductor that meets all of the following criteria.

L Selection:

- **Load Current in Buck and Boost Regions**

Small inductances result in increased ripple currents and thus, due to the positive and negative inductor current limits, decrease the maximum average forward I_{OUT} in the boost region and the maximum average reverse I_{IN} in the buck region.

In order to provide adequate forward I_{OUT} at low V_{IN} voltages in the boost region, L should be at least:

$$L_{(\text{MIN1,BOOST})} = \frac{V_{IN(\text{MIN,BOOST})} \cdot (\text{DC}_{(\text{MAX,M3,BOOST})})}{2 \cdot f \cdot \left(\frac{R_{SENSE}}{V_{IN(\text{MIN,BOOST})}} \cdot I_{OUT(\text{MAX,FWD})} \cdot V_{OUT(\text{MAX,BOOST})} \right)^{H}}$$

where:

- $\text{DC}_{(\text{MAX,M3,BOOST})}$ is the maximum duty cycle percentage of the M3 switch (see R_{SENSE} Selection: Max R_{SENSE} in the Boost Region section)
- f is the switching frequency
- $V_{RSENSE(\text{MAX,BOOST,MAXDC})}$ is the maximum current sense voltage in the boost region at maximum duty cycle (see R_{SENSE} Selection: Max R_{SENSE} in the Boost Region section)

R_{SENSE} FILTERING

Certain applications may require filtering of the inductor current sense signals due to excessive switching noise that can appear across R_{SENSE}. Higher operating voltages, higher values of R_{SENSE}, and more capacitive MOSFETs will all contribute additional noise across R_{SENSE} when the SW pins transition. The CSP/CSN sense signals can be filtered by adding one of the RC networks shown in Figure 10. Most PC board layouts can be drawn to accommodate either network on the same board. The network should be placed as close as possible to the IC. The network in Figure 10b can reduce common mode noise seen by the CSP/CSN pins of the LT8708 at the expense of some increased ground trace noise as current passes through the capacitors. A short direct path from the capacitor grounds to the IC ground should be used on the PC board. Resistors greater than 10Ω should be avoided as these can increase offset voltages at the CSP/CSN pins. The RC product should be kept to less than 30ns.
APPLICATIONS INFORMATION

$I_{OUT(MAX,FWD)}$ is the maximum forward V_{OUT} current in boost region.

To provide adequate reverse I_{IN} current at low V_{OUT} voltages in the buck region, L should be at least:

$$L_{(MIN1,BUCK)} = \frac{V_{OUT(MIN,BUCK)} \cdot \left(\frac{DC_{(MAX,M2,BUCK)}}{100\%} \right)}{2 \cdot f \cdot \left(\frac{V_{RSENSE(MIN,BUCK,MAXDC)} - I_{IN(MAX,RVS)} \cdot V_{IN(MAX,BUCK)}}{V_{OUT(MIN,BUCK)}} \right)} \Omega$$

where:

- $DC_{(MAX,M2,BUCK)}$ is the maximum duty cycle percentage of the M2 switch (see R_{SENSE} Selection: Max R_{SENSE} in the Buck Region section).
- f is the switching frequency.
- $V_{RSENSE(MIN,BUCK,MAXDC)}$ is the minimum current sense voltage in the buck region at maximum duty cycle (see R_{SENSE} Selection: Max R_{SENSE} in the Buck Region section).
- $I_{IN(MAX,RVS)}$ is the maximum reverse V_{IN} current in buck region.

Negative values of $L_{(MIN1,BOOST)}$ or $L_{(MIN1,BUCK)}$ indicate that the load current can’t be delivered because the inductor current limit is too low. If $L_{(MIN1,BOOST)}$ or $L_{(MIN1,BUCK)}$ is too large or is negative, consider reducing the R_{SENSE} resistor value to increase the inductor current limit.

L Selection: Subharmonic Oscillations

The LT8708’s internal slope compensation circuits will prevent subharmonic oscillations that can otherwise occur when V_{IN}/V_{OUT} is less than 0.5 or greater than 2. The slope compensation circuits will prevent these oscillations provided that the inductance exceeds a minimum value (see the earlier section Inductor Current Sensing and Slope Compensation for more information). Choose an inductance greater than all of the relevant $L_{(MIN)}$ limits discussed below. Negative calculation results can be interpreted as zero.

In the boost region, if V_{OUT} can be greater than twice V_{IN}, calculate $L_{(MIN2,BOOST)}$ as follows:

$$L_{(MIN2,BOOST)} = \left(\frac{V_{OUT(MAX,BOOST)} - \left(V_{IN(MAX,BOOST)} \cdot V_{OUT(MAX,BOOST)} \right) \cdot R_{SENSE}}{0.08 \cdot f} \right)$$

In the buck region, if V_{IN} can be greater than twice V_{OUT}, calculate $L_{(MIN2,BUCK)}$ as follows:

$$L_{(MIN2,BUCK)} = \left(\frac{V_{IN(MAX,BUCK)} \cdot 1 - \left(V_{OUT(MIN,BUCK)} \right)}{V_{IN(MAX,BUCK)} - V_{OUT(MIN,BUCK)}} \cdot R_{SENSE} \right) \frac{0.08 \cdot f}{2}$$

L Selection: Maximum Current Rating

The inductor must have a rating greater than its maximum operating current to prevent inductor saturation resulting in efficiency loss. The maximum forward inductor current in the boost region is:

$$I_{L(MAX,BOOST,FWD)} = I_{OUT(MAX,FWD)} \cdot \frac{V_{OUT(MAX,BOOST)}}{V_{IN(MIN,BOOST)}} + \left(\frac{V_{IN(MIN,BOOST)} \cdot \left(\frac{DC_{(MAX,M3,BOOST)}}{100\%} \right)}{2 \cdot L \cdot f} \right) \Omega$$

where:

- $DC_{(MAX,M3,BOOST)}$ is the maximum duty cycle percentage of the M3 switch (see R_{SENSE} Selection and Maximum Current section).
The maximum reverse inductor current in the boost region for applications in which $V_{\text{OUT}(\text{MAX})} \geq 2 \cdot V_{\text{IN}(\text{MAX})}$ is:

$$I_{L(\text{MAX,BOOST,RVS})} \approx I_{\text{IN}(\text{MAX,RVS})} + \left(\frac{V_{\text{IN}(\text{MAX,BOOST})}}{4 \cdot L \cdot f} \right) A$$

For applications in which $V_{\text{OUT}(\text{MAX})} < 2 \cdot V_{\text{IN}(\text{MAX})}$, the maximum reverse inductor current is smaller than the value given by the above equation. The following equation can be used to calculate the reverse inductor current for given combinations of V_{IN} and V_{OUT}:

$$I_{L(\text{MAX,BOOST,RVS})} \approx I_{\text{IN}(\text{MAX,RVS})} + \left(\frac{V_{\text{IN}} \cdot (V_{\text{OUT}} - V_{\text{IN}})}{2 \cdot L \cdot f \cdot V_{\text{OUT}}} \right) A$$

where:

$V_{\text{OUT}} > V_{\text{IN}}$

The maximum positive inductor current in the buck region for applications in which $V_{\text{IN}(\text{MAX})} \geq 2 \cdot V_{\text{OUT}(\text{MAX})}$ is:

$$I_{L(\text{MAX,BUCK,FWD})} \approx I_{\text{OUT}(\text{MAX,FWD})} + \left(\frac{V_{\text{OUT}(\text{MAX,BUCK})}}{4 \cdot L \cdot f} \right) A$$

For applications with $V_{\text{IN}(\text{MAX})} < 2 \cdot V_{\text{OUT}(\text{MAX})}$, the maximum forward inductor current is smaller than the value given by the above equation. The following equation can be used to calculate the forward inductor current for given combinations of V_{IN} and V_{OUT}:

$$I_{L(\text{BUCK,FWD})} \approx I_{\text{OUT}(\text{MAX,FWD})} + \left(\frac{V_{\text{OUT}} \cdot (V_{\text{IN}} - V_{\text{OUT}})}{2 \cdot L \cdot f \cdot V_{\text{IN}}} \right) A$$

where:

$V_{\text{IN}} > V_{\text{OUT}}$

The maximum reverse inductor current when operating in the buck region is:

$$I_{L(\text{MAX,BUCK,RVS})} \approx I_{\text{IN}(\text{MAX,RVS})} \cdot \frac{V_{\text{IN}(\text{MAX,BUCK})}}{V_{\text{OUT}(\text{MIN,BUCK})}} + \left(\frac{V_{\text{OUT}(\text{MIN,BUCK})} \cdot DC_{\text{(MAX,M2,BUCK)}}}{2 \cdot L \cdot f \cdot 100\%} \right) A$$

where:

$DC_{\text{(MAX,M2,BUCK)}}$ is the maximum duty cycle percentage of the M2 switch in the buck region (see R_{SENSE} Selection: Max R_{SENSE} in the Buck Region section).

Note that the inductor current can be higher when there are load transients or the load current exceeds the expected maximum amount. It can also be higher during start-up if inadequate soft-start capacitance is used, or during output shorts. Consider using the I_{IN} and/or I_{OUT} current limiting to help prevent the inductor current from becoming excessive. I_{IN} and I_{OUT} current limiting are discussed later in the I_{IN} and I_{OUT} Current Monitoring and Limiting section. Careful board evaluation of the maximum inductor current is recommended.

POWER MOSFET SELECTION

The LT8708 requires four external N-channel power MOSFETs, two for the top switches (switches M1 and M4, shown in Figure 3) and two for the bottom switches (switches M2 and M3, shown in Figure 3). Important parameters for the power MOSFETs are the breakdown voltage $V_{\text{BR,DSS}}$, threshold voltage $V_{\text{GS,TH}}$, on-resistance $R_{\text{DS(ON)}}$, output capacitance C_{DSS}, and maximum current $I_{\text{DS(MAX)}}$. The gate drive voltage is set by the 6.3V GATEVCC supply. Consequently, logic-level threshold MOSFETs must be used in LT8708 applications.
APPLICATIONS INFORMATION

It is very important to consider power dissipation when selecting power MOSFETs. The most efficient circuit will use MOSFETs that dissipate the least amount of power. Power dissipation must be limited to avoid overheating that might damage the devices. In forward conduction, the M1 and M3 switches will have the highest power dissipation, while M2 and M4 will have the highest power dissipation in reverse conduction. In some cases it can be helpful to use two or more MOSFETs in parallel to reduce power dissipation in each device. This is most helpful when power is dominated by \(I^2R \) losses while the MOSFET is “on”. The additional capacitance of connecting MOSFETs in parallel can sometimes slow down switching edge rates and consequently increase total switching power losses.

The following sections provide guidelines for calculating power consumption of the individual MOSFETs. From a known power dissipation, the MOSFET junction temperature can be obtained using the following formula:

\[
T_J = T_A + P \cdot R_{\text{TH(JA)}}
\]

where:

- \(T_J \) is the junction temperature of the MOSFET
- \(T_A \) is the ambient air temperature
- \(P \) is the power dissipated in the MOSFET
- \(R_{\text{TH(JA)}} \) is the MOSFET’s thermal resistance from the junction to the ambient air. Refer to the manufacturer’s data sheet.

\(R_{\text{TH(JA)}} \) normally includes the \(R_{\text{TH(JC)}} \) for the device plus the thermal resistance from the case to the ambient temperature \(R_{\text{TH(CA)}} \). Compare the calculated value of \(T_J \) to the manufacturer’s data sheets to help choose MOSFETs that will not overheat.

The power dissipation of the external N-channel MOSFETs comes from two primary components: (1) \(I^2R \) power when the switch is fully “on” and inductor current is flowing between the drain and source connections and (2) power dissipated while the switch is turning “on” and “off”. The MOSFET switching power consists of (A) a combination of high current and high voltage as the switch turns “on” and “off” and (B) charging and discharging the SW1 or SW2 node capacitance, which is dominated by the output capacitance of the external MOSFETs. Use Table 7 to determine which power components are applicable in the various regions of operation.

Table 7. NMOS Power in Various Operating Regions

<table>
<thead>
<tr>
<th>OPERATING REGION</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos. Buck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck-Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neg. Buck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buck-Boost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The MOSFET power components listed above can be approximated using the following equations. Note that \(I_{\text{IN}} \) can be substituted for \(I_{\text{OUT}} \) using:

\[
I_{\text{IN}} = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot I_{\text{OUT}}
\]

where necessary.

\(I^2R \) Component Equations:

- \(P_{\text{I^2R(M1,BUCK)}} \) or \(P_{\text{I^2R(M4,BOOST)}} \)
 \[
 \cong \frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot I_{\text{OUT}}^2 \cdot R_{\text{DS(ON)}} \cdot R_{\text{\tau}}
 \]

- \(P_{\text{I^2R(M1,BOOST)}} \)
 \[
 \cong \left(\frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot I_{\text{OUT}} \right)^2 \cdot R_{\text{DS(ON)}} \cdot R_{\text{\tau}}
 \]

- \(P_{\text{I^2R(M2,BUCK)}} \)
 \[
 \cong \frac{V_{\text{IN}} - V_{\text{OUT}}}{V_{\text{IN}}} \cdot I_{\text{OUT}}^2 \cdot R_{\text{DS(ON)}} \cdot R_{\text{\tau}}
 \]

- \(P_{\text{I^2R(M3,BOOST)}} \)
 \[
 \cong \frac{V_{\text{OUT}} - V_{\text{IN}}}{V_{\text{IN}}} \cdot I_{\text{OUT}} \cdot I_{\text{OUT}} \cdot R_{\text{DS(ON)}} \cdot R_{\text{\tau}}
 \]

- \(P_{\text{I^2R(M4,BUCK)}} \)
 \[
 \cong I_{\text{OUT}}^2 \cdot R_{\text{DS(ON)}} \cdot R_{\text{\tau}}
 \]
APPLICATIONS INFORMATION

Switching Component Equations for M1 and M2:

\[P_{SW[M1,BUCK]} \text{ or } P_{SW[M2,BUCK]} \]
\[= P_{SWA} + P_{SWB} \]
\[= (V_{IN} \cdot |I_{OUT}| \cdot f \cdot t_{RF1}) \]
\[+ (0.5 \cdot C_{OSS(M1+M2)} \cdot V_{IN}^2 \cdot f) \] W

Switching Component Equations for M3 and M4:

\[P_{SW[M3,BOOST]} \text{ or } P_{SW[M4,BOOST]} \]
\[= P_{SWA} + P_{SWB} \]
\[= \left(V_{OUT}^2 \cdot |I_{OUT}| \cdot f \cdot \frac{t_{RF2}}{V_{IN}} \right) \]
\[+ (0.5 \cdot C_{OSS(M3+M4)} \cdot V_{OUT}^2 \cdot f) \] W

where:

- \(t_{RF1} \) is the average of the SW1 pin rise and fall times. Typical values are 20 – 40ns depending on the MOSFET capacitance and \(V_{IN} \) voltage.
- \(t_{RF2} \) is the average of the SW2 pin rise and fall times and, similar to \(t_{RF1} \), is typically 20ns – 40ns depending on the MOSFET capacitance and \(V_{OUT} \) voltage.
- \(R_{DS(ON)} \) is the “on” resistance of the MOSFET at 25°C
- \(\rho_T \) is a normalization factor (unity at 25°C) accounting for the significant variation in MOSFET on-resistance with temperature, typically about 0.4%/°C, as shown in Figure 11. For a maximum junction temperature of 125°C, using a value = 1.5 is reasonable.

Switch M1: For positive conduction, the maximum power dissipation in M1 occurs either in the buck region when \(V_{IN} \) is highest, \(V_{OUT} \) is highest, and switching power losses are greatest, or in the boost region when \(V_{IN} \) is smallest, \(V_{OUT} \) is highest and M1 is always on.

In most cases of negative conduction, the M1 switching power dissipation is quite small and \(I^2R \) power losses dominate. In negative conduction, M1 \(I^2R \) power is greatest in the boost region due to the lower \(V_{IN} \) and higher \(V_{OUT} \) that cause the M1 switch to be “on” for the most amount of time.

Switch M2: In most cases of positive conduction, the M2 switching power dissipation is quite small and \(I^2R \) power losses dominate. In positive conduction, M2 \(I^2R \) power is greatest in the buck region due to the higher \(V_{IN} \) and lower \(V_{OUT} \) that cause M2 to be “on” for the most amount of time.

For negative conduction, the maximum power dissipation in M2 occurs in the buck region when \(V_{IN} \) is highest and \(V_{OUT} \) is lowest.

Switch M3: If the inductor current is positive, the maximum power dissipation in M3 occurs when \(V_{IN} \) is lowest and \(V_{OUT} \) is highest.

In most cases of negative conduction, the M3 switching power dissipation is quite small and \(I^2R \) power losses dominate. In negative conduction, M3 \(I^2R \) power is greatest in the boost region due to the lower \(V_{IN} \) and higher \(V_{OUT} \) that cause the M3 switch to be “on” for the most amount of time.

Switch M4: If the inductor current is positive, in most cases the switching power dissipation in the M4 switch is quite small and \(I^2R \) power losses dominate. \(I^2R \) power is greatest in the boost region due to the lower \(V_{IN} \) and higher \(V_{OUT} \) that cause M4 switch to be “on” for the most amount of time.

If the inductor current is negative, the maximum power dissipation in the M4 switch occurs either in the boost region when \(V_{IN} \) is highest, \(V_{OUT} \) is highest, and switching power losses are greatest, or in the buck region when \(V_{IN} \) is highest, \(V_{OUT} \) is lowest and M4 is always on.

Figure 11. Normalized MOSFET RDS(ON) vs Temperature
Gate Resistors: In some cases it can be beneficial to add 1Ω to 10Ω of resistance between some of the NMOS gate pins and their respective gate driver pins on the LT8708 (i.e., TG1, BG1, TG2, BG2). Due to parasitic inductance and capacitance, ringing can occur on SW1 or SW2 when low capacitance MOSFETs are turned on/off too quickly. The ringing can be of greatest concern when operating the MOSFETs or the LT8708 near the rated voltage limits. Additional gate resistance slows the switching speed, minimizing the ringing.

Excessive gate resistance can have two negative side effects on performance:

1. Slowing the switch transition times can also increase power dissipation in the switch. This is described above.

2. Capacitive coupling from the SW1 or SW2 pin to the switch gate node can turn it on when it's supposed to be off, thus increasing power dissipation. With too much gate resistance, this would happen to the M2 switch when SW1 is rising with positive inductor current and to the M3 switch when SW2 is rising with negative inductor current.

Careful board evaluation should be performed when optimizing the gate resistance values. SW1 and SW2 pin ringing can be affected by the inductor current levels, therefore board evaluation should include measurements at a wide range of load currents, V_IN and V_OUT. When performing PCB measurements of the SW1 and SW2 pins, be sure to use a very short ground post from the PCB ground to the scope probe ground sleeve in order to minimize false inductive voltage readings.

C_IN AND C_OUT SELECTION

V_IN and V_OUT capacitance is necessary to suppress voltage ripple caused by discontinuous current moving in and out of the regulator. A parallel combination of capacitors is typically used to achieve high capacitance and low ESR (equivalent series resistance). Dry tantalum, special polymer, aluminum electrolytic and ceramic capacitors are all available in surface mount packages. Capacitors with low ESR and high ripple current ratings, such as OS-CON and POSCAP are also available.

Ceramic capacitors should be placed near the regulator input and output to suppress high frequency switching spikes. A ceramic capacitor, of at least 1μF at the maximum V_INCHP operating voltage, should also be placed from V_INCHP to GND as close to the LT8708 pins as possible. Due to their excellent low ESR characteristics ceramic capacitors can significantly reduce input ripple voltage and help reduce power loss in the higher ESR bulk capacitors. X5R or X7R dielectrics are preferred, as these materials retain their capacitance over wide voltage and temperature ranges. Many ceramic capacitors, particularly 0805 or 0603 case sizes, have greatly reduced capacitance at the desired operating voltage.

V_IN Capacitance: Discontinuous V_IN current is highest in the buck region due to the M1 switch toggling on and off. Make sure that the C_IN capacitor network has low enough ESR and is sized to handle the maximum RMS current. For buck operation, the V_IN RMS current is given by:

\[
I_{IN,RMS} \approx I_{OUT} \sqrt{\frac{V_{IN}}{V_{OUT}}} A
\]

This formula has a maximum at \(V_{IN} = 2 \cdot V_{OUT} \), where \(I_{IN,RMS} = I_{OUT} / 2 \). This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.

C_IN is necessary to reduce the V_IN voltage ripple caused by discontinuities and ripple of I_IN. The effects of ESR and the bulk capacitance must be considered when choosing the correct capacitor for a given V_IN ripple.

The V_IN ripple due to the voltage drop across the bulk cap ESR_BULK, without having any ceramic capacitance in parallel, is approximately:

\[
\Delta V_{IN,BUCK,BULK} \approx I_{OUT} \cdot ESR_{BULK} V
\]
When low ESR ceramic capacitance is added in parallel with the bulk capacitor, the V_{IN} ripple is approximately:

$$\Delta V_{(IN,BUCK,CERAM)} \approx I_{OUT} \cdot V_{OUT} \cdot ESR_{CERAM} \cdot \left(1 - \exp \left(\frac{-V_{OUT}}{V_{IN} \cdot f \cdot ESR_{CERAM} \cdot C_{IN-CERAM}}\right)\right) V$$

Add enough ceramic capacitance to make sure $\Delta V_{(IN,BUCK,CERAM)}$ is adequate for the application. In a properly designed application, $\Delta V_{(IN,BUCK,CERAM)}$ should be much smaller than $\Delta V_{(IN,BUCK,BULK)}$.

VOUT Capacitance: Discontinuous V_{OUT} current is highest in the boost region due to the M4 switch toggling on and off. Make sure that the C_{OUT} capacitor network has low enough ESR and is sized to handle the maximum RMS current. For boost operation, the V_{OUT} RMS current is given by:

$$I_{(OUT,RMS)} \approx I_{OUT} \cdot \sqrt{\frac{V_{OUT}}{V_{IN}}} - 1 \quad \text{A}$$

This formula has a maximum when V_{IN} is minimum and V_{OUT} is maximum.

C_{OUT} is necessary to reduce the V_{OUT} ripple caused by discontinuities and ripple of I_{OUT}. The effects of ESR and the bulk capacitance must be considered when choosing the right capacitor for a given V_{OUT} ripple.

The V_{OUT} ripple due to the voltage drop across the bulk cap ESR without having any ceramic caps in parallel is approximately:

$$\Delta V_{(OUT,BOOST,BULK)} \approx \frac{V_{OUT} \cdot I_{OUT} \cdot ESR_{BULK}}{V_{IN}}$$

$$\Delta V_{(OUT,BUCK,BULK)} \approx I_{RIPPLE} \cdot ESR_{BULK}$$

With enough ceramic caps added in parallel, the steady state V_{OUT} ripple due to charging and discharging the ceramic C_{OUT} is given by the following equations:

$$\Delta V_{(OUT,BOOST,CERAM)} \approx I_{OUT} \cdot ESR_{CERAM} \cdot \left(1 - \exp \left(\frac{V_{IN} - V_{OUT}}{V_{OUT} \cdot f \cdot ESR_{CERAM} \cdot C_{OUT-CERAM}}\right)\right) V$$

for $V_{OUT} > V_{IN}$, and

$$\Delta V_{(OUT,BUCK,CERAM)} \approx V_{OUT} \cdot \left(1 - \frac{V_{OUT}}{V_{IN}}\right) \cdot \frac{8 \cdot L \cdot f^2 \cdot C_{OUT-CERAM}}{\text{V}}$$

for $V_{OUT} < V_{IN}$

Add enough ceramic caps to make sure $\Delta V_{(OUT,BOOST,CERAM)}$ and $\Delta V_{(OUT,BUCK,CERAM)}$ are adequate for the application. In a properly designed application, $\Delta V_{(OUT,BOOST,CERAM)}$ and $\Delta V_{(OUT,BUCK,CERAM)}$ should be much smaller than $\Delta V_{(OUT,BOOST,BULK)}$ and $\Delta V_{(OUT,BUCK,BULK)}$, respectively.

SCHOTTKY DIODE (D1, D2, D3, D4) SELECTION

During forward conduction the Schottky diodes, D2 and D4, shown in Figure 1, conduct during the dead time between the conduction of the power MOSFET switches. They help to prevent the body diodes of synchronous switches M2 and M4 from turning on and storing charge. For example, D4 can significantly reduce reverse-recovery current when M3 turns on, which improves converter efficiency, reduces switch M3 power dissipation, and reduces noise in the inductor current sense resistor (R_{SENSE}). Similarly, during reverse conduction, D1 and D3 conduct during the dead time between the conduction of the power MOSFET switches. In order for the diodes to be effective, the inductance between them and the synchronous switch must be as small as possible, mandating that these components be placed very close to the MOSFETs.
APPLICATIONS INFORMATION

For applications with high input or output voltages (typically >40V) avoid Schottky diodes with excessive reverse-leakage currents, particularly at high temperatures. Some ultra-low V F diodes will trade-off increased high temperature leakage current for reduced forward voltage. Diodes D1 and D2 can have reverse voltages in excess of V IN and D3 and D4 can have reverse voltages in excess of V OUT. The combination of high reverse voltage and current can lead to self-heating of the diode. Besides reducing efficiency, this can increase leakage current which increases temperatures even further. Choose packages with lower thermal resistance (θ JA) to minimize self heating of the diodes.

TOPSIDE MOSFET DRIVER SUPPLY (C B1, D B1, C B2, D B2)

The top MOSFET drivers (TG1 and TG2) are driven digitally between their respective SW and BOOST pin voltages. The BOOST voltages are biased from floating booststrap capacitors C B1 and C B2, which are normally recharged through external silicon diodes D B1 and D B2 when the respective top MOSFET is turned off. The capacitors are charged to about 6.3V (about equal to GATEV CC) forcing the V BOOST1-SW1 and V BOOST2-SW2 voltages to be about 6.3V. The boost capacitors C B1 and C B2 need to store about 100 times the gate charge required by the top switches M1 and M4. In most applications, a 0.1μF to 0.47μF, X5R or X7R dielectric capacitor is adequate. The bypass capacitance from GATEV CC to GND should be at least 10 times the C B1 or C B2 capacitance.

Top Driver: Boost Cap Charge Control Block

When the LT8708 operates exclusively in the boost or buck region, M1 or M4 respectively may be “on” continuously. This prevents the respective bootstrap capacitor, C B1 or C B2, from being recharged through the silicon diode, D B1 or D B2. The Boost Cap Charge Control block (see Figure 1) keeps the appropriate bootstrap capacitor charged in these cases. In the boost region, when M1 is always on, current is drawn, as needed, from the CSNOUT and/or BOOST2 pins to charge the C B1 capacitor. In the buck region, when M4 is always on, current is drawn, as needed, from the CSNIN and/or BOOST1 pins to charge the C B2 capacitor. Because of this function, CSPIN and CSNIN should be connected across R SENSE1 in series with the M1 drain. Connect both pins to the M1 drain if they are not being used. Also, CSPOUT and CSNOUT should be connected across R SENSE2 in series with the M4 drain or connect both to the M4 drain if not being used.

Top Driver: Boost Diodes D B1 and D B2

Although Schottky diodes have the benefit of low forward voltage drops, they can exhibit high reverse current leakage and have the potential for thermal runaway under high voltage and temperature conditions. Silicon diodes are thus recommended for diodes D B1 and D B2. Make sure that D B1 and D B2 have reverse breakdown voltage ratings higher than V IN(MAX) and V OUT(MAX) and have less than 1mA of reverse-leakage current at the maximum operating junction temperature. Make sure that the reverse-leakage current at high operating temperatures and voltages won’t cause thermal runaway of the diode.

In some cases it is recommended that up to 5Ω of resistance is placed in series with D B1 and D B2. The resistors reduce surge currents in the diodes and can reduce ringing at the SW and BOOST pins of the IC. Since SW pin ringing is highly dependent on PCB layout, SW pin edge rates and the type of diodes used, careful measurements directly at the SW pins of the IC are recommended. If required, a single resistor can be placed between GATEV CC and the common anodes of D B1 and D B2 (as in the front page application) or by placing separate resistors between the cathodes of each diode and the respective BOOST pins. Excessive resistance in series with D B1 and D B2 can reduce the BOOST-SW capacitor voltage when the M2 or M3 on-times are very short and should be avoided.

VINHIMON, VOUTLomon AND RVSOFF

During reverse conduction, current and power are drawn from V OUT and delivered to V IN. This has the potential to draw V OUT lower than desired or drive V IN higher than desired, depending on the supplies and loads. The VINHIMON and VOUTLomon pins are used to detect either of these conditions and disable reverse conduction by pulling RVSOFF low.
The purpose of the VINHIMON and VOUTLOMON functions becomes clearer when considering the priorities of the error amplifiers (see Table 3). A few important cases should be considered.

1. **V\text{IN} and V\text{OUT} are both above regulation**: In this case FBIN is greater than 1.205V while FOUT is greater than 1.207V. Normally this condition causes VC to fall due to FOUT being above 1.207V. The LT8708 responds by increasing the reverse current and power being fed into V\text{IN}.

 This can be an undesirable response, for example, if V\text{IN} is connected to a battery being charged from V\text{OUT}. The solution is to use VINHIMON to detect the maximum V\text{IN} and disable reverse conduction by pulling RVSOFF low.

2. **V\text{IN} and V\text{OUT} are both below regulation**: In this case FBIN is below 1.205V while FOUT is below 1.207V. Normally this condition causes VC to fall due to FBIN being below 1.205V. The LT8708 responds by increasing the reverse current and power being drawn from V\text{OUT}.

 This can be an undesirable response, for example, if V\text{OUT} is connected to a battery or supercapacitor supplying power to V\text{IN}. The solution is to use VOUTLOMON to detect the minimum V\text{OUT} and disable reverse conduction by pulling RVSOFF low.

If VINHIMON rises above its activation threshold or VOUTLOMON falls below its activation threshold (see Electrical Characteristics), the LT8708 will pull the RVSOFF pin low and not allow M4 switch to turn on if the inductor current is negative. In addition to the 24mV (typical) voltage hysteresis, the VINHIMON pin will source 1μA (typical) current and the VOUTLOMON pin will sink 1μA (typical) current as current hysteresis.

There are two ways to configure the VINHIMON and VOUTLOMON pins. Method (1) uses dedicated resistor dividers for VINHIMON and VOUTLOMON respectively, while method (2) uses common resistor dividers for VINHIMON and FBIN as well as for VOUTLOMON and FOUT, allowing improved tracking with the FOUT and FBIN regulation voltages, respectively.

1. Connect a resistor divider between V\text{IN}, VINHIMON and GND to configure the V\text{IN} overvoltage threshold. Connect a resistor divider between V\text{OUT}, VOUTLOMON and GND to configure the V\text{OUT} undervoltage threshold. (see Figure 12). Use the following equations to calculate the resistor values:

 \[R_{\text{HIMON1}} = \frac{V_{\text{OVIN}}^+ - 1.207}{I_{\text{FBDIV}}} \]
 \[R_{\text{HIMON2}} = \frac{1.207}{I_{\text{FBDIV}}} \]
 \[R_{\text{HIMON3}} = \left(\frac{1.207 - V_{\text{HYSMON}}}{I_{\text{HYSMON}}} \right) - \left(\frac{R_{\text{HIMON1}} \cdot R_{\text{HIMON2}}}{R_{\text{HIMON1}} + R_{\text{HIMON2}}} \right) - \left(\frac{V_{\text{OVIN}}^- \cdot R_{\text{HIMON2}}}{I_{\text{HYSMON}} \cdot (R_{\text{HIMON1}} + R_{\text{HIMON2}})} \right) - \left(\frac{V_{\text{OVIN}}^-}{R_{\text{HIMON1}} + R_{\text{HIMON2}}} \right) \]

 \[R_{\text{LOMON1}} = \frac{V_{\text{UVOUT}}^- - 1.207}{I_{\text{FBDIV}}} \]
 \[R_{\text{LOMON2}} = \frac{1.207}{I_{\text{FBDIV}}} \]
 \[R_{\text{LOMON3}} = \left(\frac{V_{\text{UVOUT}}^+ \cdot R_{\text{LOMON2}}}{I_{\text{HYSMON}} \cdot (R_{\text{LOMON1}} + R_{\text{LOMON2}})} \right) - \left(\frac{R_{\text{LOMON1}} \cdot R_{\text{LOMON2}}}{R_{\text{LOMON1}} + R_{\text{LOMON2}}} \right) - \left(\frac{1.207 + V_{\text{HYSMON}}}{I_{\text{HYSMON}}} \right) \]

where:

- \(I_{\text{FBDIV}} \) is the desired current through the resistor string. 50μA – 100μA is a good value.
- \(V_{\text{OVIN}}^+ \) and \(V_{\text{OVIN}}^- \) are the rising and falling V\text{IN} overvoltage thresholds.
- \(V_{\text{UVOUT}}^+ \) and \(V_{\text{UVOUT}}^- \) are the rising and falling V\text{OUT} undervoltage thresholds.
- \(R_{\text{HIMON1-3}} \) and \(R_{\text{LOMON1-3}} \) are shown in Figure 12.
- \(V_{\text{HYSMON}} \) is the VINHIMON and VOUTLOMON hysteresis voltage. Typical value is 24mV.
- \(I_{\text{HYSMON}} \) is the VINHIMON and VOUTLOMON hysteresis current. Typical value is 1μA.
Use the following equations to calculate the resistor values:

\[
\begin{align*}
R_{IN3} &= \frac{1.207 \cdot V_{IN}}{V_{OVIN^+} \cdot I_{FBDIV}} \\
R_{IN1} &= V_{OVIN^+} \cdot R_{IN3} \cdot \left(\frac{1}{\frac{1}{1.207} - \frac{1}{V_{IN}}} \right) \\
R_{IN2} &= \left(\frac{V_{OVIN^+} - V_{IN}}{V_{IN}} \right) \cdot R_{IN3} \\
R_{IN4} &= \left(\left(R_{IN1} + R_{IN2} \right) \cdot I_{HYSMON} + V_{OVIN^+} - V_{OVIN^-} \right) \cdot 1.207 \frac{V_{OVIN^+}}{V_{OVIN^+} \cdot I_{HYSMON}} \\
&\quad - \left(\frac{V_{HYSMON}}{I_{HYSMON}} \right) \left(\frac{V_{OVIN^+} - 1.207}{V_{OVIN^+}} \right) \cdot R_{IN3} \\
R_{OUT3} &= \frac{1.207}{I_{FBDIV}} \\
R_{OUT1} &= \frac{V_{OUT} \cdot R_{OUT3} \cdot \left(\frac{1}{\frac{1}{1.207} - \frac{1}{V_{UVOUT^-}}} \right)}{V_{UVOUT^-}} \\
R_{OUT2} &= \frac{V_{OUT} - V_{UVOUT^-}}{V_{UVOUT^-}} \cdot R_{OUT3} \\
R_{OUT4} &= \left(\frac{R_{OUT1} \cdot I_{HYSMON} + V_{UVOUT^+} - V_{UVOUT^-} \cdot 1.207}{V_{UVOUT^-} \cdot I_{HYSMON}} \right) \\
&\quad - \left(\frac{V_{HYSMON}}{I_{HYSMON}} \right) \left(\frac{V_{UVOUT^-} - 1.207}{V_{UVOUT^-}} \right) \cdot R_{OUT3}
\end{align*}
\]

where:

- \(I_{FBDIV} \) is the desired current through the resistor string. 50\(\mu \)A – 100\(\mu \)A is a good value.
- \(V_{IN} \) and \(V_{OUT} \) are the desired regulation voltages.
- \(V_{OVIN^+} \) and \(V_{OVIN^-} \) are the rising and falling \(V_{IN} \) overvoltage thresholds.
APPLICATIONS INFORMATION

V_{UVOUT^+} and V_{UVOUT^-} are the rising and falling V_{OUT} undervoltage thresholds.

$R_{\text{IN1-4}}$ and $R_{\text{OUT1-4}}$ are shown in Figure 13 and Figure 14.

V_{HYSMON} is the V_{VINHIMON} and $V_{\text{VOUTLOMON}}$ hysteresis voltage. Typical value is 24mV.

I_{HYSMON} is the V_{VINHIMON} and $V_{\text{VOUTLOMON}}$ hysteresis current. Typical value is 1μA.

If unused, tie V_{VINHIMON} to GND and/or $V_{\text{VOUTLOMON}}$ to LDO33.

Note: after the resistor values are selected, make sure to check that the FBIN and VOUTLOMON voltages are below their ABSMAX values when V_{IN} and V_{OUT} are at their maximum, respectively.

I_{\text{IN}} AND I_{\text{OUT}} CURRENT MONITORING AND LIMITING

The LT8708 has independent I_{IN} and I_{OUT} current monitors that can monitor and limit the respective currents in both positive and negative directions. Figure 15 and Figure 16 illustrate the operation of the current monitor circuits.

The remaining discussion refers to the I_{IN} current monitor circuit of Figure 15. All discussion and equations are also applicable to the I_{OUT} current monitor circuit, substituting pin and device names as appropriate.

Current Monitoring: The IMON_INP and IMON_INN pins can be used to monitor I_{IN} in the forward and reverse directions, respectively. When configured as shown in Figure 15, the IMON_INP and IMON_INN voltages are proportional to I_{IN}. $V_{\text{IMON_INP}}$ is proportional to the positive I_{IN} current, increasing as I_{IN} becomes more positive. $V_{\text{IMON_INN}}$ is proportional to the negative I_{IN} current, increasing as I_{IN} becomes more negative.
APPLICATIONS INFORMATION

Transconductance amplifier A3 performs this monitoring function. A3 converts the current sense voltage, $V_{\text{CSPIN-CSNIN}}$, into two currents:

$$+V_{\text{CSPIN-CSNIN}} \cdot \frac{1 \text{mA}}{V}$$

and

$$-V_{\text{CSPIN-CSNIN}} \cdot \frac{1 \text{mA}}{V}$$

These currents are added to 20μA offsets and then forced into $R_{\text{IMON_INP}}$ and $R_{\text{IMON_INN}}$, respectively.

Due to the 20μA offset currents, $V_{\text{IMON_INP}}$ and $V_{\text{IMON_INN}}$ are not 0V when I_{IN} is 0A. Instead, $V_{\text{IMON_INP}(0)} = 10 \text{μA} \cdot R_{\text{IMON_INP}}$ Volts and $V_{\text{IMON_INN}(0)} = 2 \text{mA} \cdot R_{\text{IMON_INN}}$ Volts (typical) when $I_{\text{IN}} = 0 \text{A}$. As I_{IN} becomes increasingly negative, $V_{\text{IMON_INP}}$ reduces below $V_{\text{IMON_INP}(0)}$ until $V_{\text{IMON_INP}} = 0 \text{V}$. Similarly, as I_{IN} becomes increasingly positive, $V_{\text{IMON_INN}}$ reduces below $V_{\text{IMON_INN}(0)}$ until $V_{\text{IMON_INN}} = 0 \text{V}$. $I_{\text{IMON_INP}}$ and $I_{\text{IMON_INN}}$ will not be driven below ground as their output currents can only be positive or zero.

The complete transfer functions for $I_{\text{IMON_INP}}$ and $I_{\text{IMON_INN}}$ are given in the equations below:

$$V_{\text{IMON_INP}} = \left(\frac{1 \text{mA}}{V} \cdot R_{\text{SENSE1}} \cdot I_{\text{IN}} + 20 \text{μA} \right) \cdot R_{\text{IMON_INP}}$$

$$V_{\text{IMON_INN}} = \left(-\frac{1 \text{mA}}{V} \cdot R_{\text{SENSE1}} \cdot I_{\text{IN}} + 20 \text{μA} \right) \cdot R_{\text{IMON_INN}}$$

The differential voltage $V_{\text{CSPIN-CSNIN}}$ should remain between -100mV and 100mV due to the limited current that can be driven out of $I_{\text{IMON_INP}}$ and $I_{\text{IMON_INN}}$. If the instantaneous $V_{\text{CSPIN-CSNIN}}$ exceeds these limits but the average $V_{\text{CSPIN-CSNIN}}$ is within the limits, consider including the current sense filter described in the next section.

In addition, $I_{\text{IMON_INP}}$ and $I_{\text{IMON_INN}}$ should be filtered with capacitors $C_{\text{IMON_INP}}$ and $C_{\text{IMON_INN}}$ due to I_{IN} ripple and discontinuities that can occur in various regions of operation. A few nF of capacitance is usually sufficient.

Current Limiting:

As shown in Figure 15, $I_{\text{IMON_INP}}$ voltage that exceeds 1.209V (typical) causes V_C to reduce, thus limiting the forward I_{IN} and inductor currents. $I_{\text{IMON_INN}}$ voltage that exceeds 1.21V (typical) causes V_C to increase, thus limiting the reverse I_{IN} and inductor currents (see the Error Amplifiers section). The forward I_{IN} limit, $I_{\text{(IN,FWD,LIMIT)}}$, can be set as needed by choosing the appropriate R_{SENSE1} and $R_{\text{IMON_INP}}$ resistors using the following equation:

$$R_{\text{IMON_INP}} = \frac{1.209}{I_{\text{(IN,FWD,LIMIT)}} \cdot \frac{1 \text{mA}}{V} \cdot R_{\text{SENSE1}} + 20 \text{μA} \Omega}$$

For example, if R_{SENSE1} is chosen to be 12.5mΩ and the desired forward I_{IN} current limit is 4A then:

$$R_{\text{IMON_INP}} = \frac{1.209}{4 \text{A} \cdot \frac{1 \text{mA}}{V} \cdot 12.5 \text{mΩ} + 20 \text{μA} \Omega} = 17.3 \text{kΩ}$$

Similarly, the reverse I_{IN} limit, $I_{\text{(IN,RVS,LIMIT)}}$, can be set as needed by choosing the appropriate R_{SENSE1} and $R_{\text{IMON_INN}}$ resistors using the following equation:

$$R_{\text{IMON_INN}} = \frac{1.21}{I_{\text{(IN,RVS,LIMIT)}} \cdot \frac{1 \text{mA}}{V} \cdot R_{\text{SENSE1}} + 20 \text{μA} \Omega}$$

$C_{\text{IMON_INP}}$ and $C_{\text{IMON_INN}}$ capacitors of at least a few nF are necessary to maintain loop stability when $I_{\text{IMON_INP}}$ and $I_{\text{IMON_INN}}$, respectively, are used to operate the LT8708 at constant current limit.

Review the Electrical Characteristics and the IMON Output Currents graph in the Typical Performance Characteristics section to understand the operational limits of the IMON_OP, IMON_ON, IMON_INP and IMON_INN currents.

External currents can be summed to the IMON pins to adjust I_{IN} and/or I_{OUT} limit in both directions while switching. When the IMON_OP and IMON_ON pins are used in
APPLICATIONS INFORMATION

this way, ICP and ICN can be used to monitor the I_{OUT} current in the forward and reverse directions respectively (see the Current Monitoring, Regulation and Limiting: ICP and ICN Pins section).

Current Sense Filter: The + and – outputs of current sense amplifiers A1 and A3 are rated to provide a range of –20μA to +100μA. For example, IMON_INP, which primarily reports forward I_{IN} current, may not provide the expected output current when $V_{CSPIN-CSNIN}$ exceeds 100mV. In addition, the IMON_INP pin will not provide the expected output current when $V_{CSPIN-CSNIN}$ is below –20mV.

Currents that flow through the current sense resistors (R_{SENSE1}, R_{SENSE2} in Figure 17) are often discontinuous and can contain significant AC content during each switching cycle. One example is the forward I_{IN} in the buck region. If the I_{IN} current presents an average differential ($V_{CSPIN-CSNIN}$) less than 100mV, but contains AC peaks exceeding 100mV, the IMON_INP current may clip. To prevent clipping, the current sense filter shown in Figure 17, can be added. The filter will reduce the peak differential ($V_{CSPIN-CSNIN}$) to <100mV while keeping the same average, thus allowing the correct result to be presented on IMON_INP. As another example, consider the reverse I_{OUT} measured by IMON_ON. If the current presents an average differential ($V_{CSNOUT-CSPOUT}$) less than 100mV, but contains AC peaks exceeding 100mV, the current sense filter can be used to reduce the peaks below 100mV while keeping the same average.

The –20μA output current limits for amplifiers A1 and A3 are often most important when using the HCM mode (see the Unidirectional Conduction: HCM section). The current sense amplifier outputs may clip at the –20μA limits when the average sensed current is low but contains high AC content. Clipping may distort the ICN or IMON_INP voltages that are used to select between heavy and light load HCM operation. Once again, the current sense filter can be used to reduce the AC content appearing at the amplifier inputs.

Current sense filter(s) should be connected as shown in Figure 16. Note that resistance in series with CSNIN and CSNOUT is not recommended. As described in the Topside MOSFET Driver Supply (CB1, DB1, CB2, DB2) section, the CSNIN and CSNOUT pins are also connected to the Boost Cap Charge Control block (also see Figure 1) and can draw current under certain conditions. In addition, the same CSNIN and CSNOUT current sense pins can draw bias current under normal operating conditions, while CSPIN and CSPOUT can draw zero (typical) bias current. A time constant lower than 10μs is recommended for the filter(s).

Also, because of their use with the Boost Cap Charge Control block, tie the CSPIN and CSNIN pins to V_{IN} and tie the IMON_INP and IMON_INN pins to ground when the input current sensing is not in use. Similarly, the CSPOUT and CSNOUT pins should be tied to V_{OUT}, the IMON_OP, IMON_ON pins should be grounded when not in use.

LOOP COMPENSATION

The loop stability is affected by a number of factors including the inductor value, output capacitance, load current, V_{IN}, V_{OUT} and the V_{C} resistor and capacitors. The LT8708 uses internal transconductance error amplifiers driving V_{C} to help compensate the control loop. For most applications a 3.3nF series capacitor at V_{C} is a good value. The parallel capacitor (from V_{C} to GND) is typically 1/10th the value of the series capacitor to filter high frequency noise. A larger V_{C} series capacitor value may be necessary if the output capacitance is reduced. A good starting value for the V_{C} series resistor is 20k. Lower resistance will improve stability but will slow the loop response. Use a trim pot instead of a fixed resistor for initial bench evaluation to determine the optimum value.
APPLICATIONS INFORMATION

Also note that C_{IMON_INP} and C_{IMON_INN} capacitors of at least a few nF are necessary to maintain loop stability when IMON_INP and IMON_INN, respectively, are used to operate the LT8708 at constant current limit.

INTVCC REGULATORS AND EXTVCC CONNECTION

The LT8708 features two PNP LDOs (low dropout regulators) that regulate the 6.35V (typical) INTVCC pin from either the V_INCHIP or EXTVCC supply pin. INTVCC powers the MOSFET gate drivers via the required GATEVCC connection and also powers the LDO33 pin regulator and much of the LT8708’s internal control circuitry. The INTVCC LDO selection is determined automatically by the EXTVCC pin voltage. When EXTVCC is lower than 6.2V (typical), INTVCC is regulated from the V_INCHIP pin LDO. After EXTVCC rises above 6.4V (typical), INTVCC is regulated by the EXTVCC pin LDO instead.

Overcurrent protection circuitry typically limits the maximum current draw from either LDO to 127mA. When GATEVCC and INTVCC are below 4.65V, during start-up or during an overload condition, the typical current limit is reduced to 42mA. The INTVCC pin must be bypassed to ground with a minimum 4.7μF ceramic capacitor placed as close as possible to the INTVCC and GND pins. An additional ceramic capacitor should be placed as close as possible to the GATEVCC and GND pins to provide good bypassing to supply the high transient current required by the MOSFET gate drivers. 1μF to 4.7μF is recommended.

Power dissipated in the INTVCC LDOs must be minimized to improve efficiency and prevent overheating of the LT8708. Since LDO power dissipation is proportional to the supply voltage and V_{INCHIP} can be as high as 80V in some applications, the EXTVCC pin is available to regulate INTVCC from a lower supply voltage. The EXTVCC pin is connected to V_{OUT} in many applications since V_{OUT} is often regulated to a much lower voltage than the maximum V_{INCHIP}. During start-up, power for the MOSFET drivers, control circuits and the LDO33 pin is usually derived from V_{INCHIP} until V_{OUT}/EXTVCC rises above 6.4V, after which the power is derived from V_{OUT}/EXTVCC. This works well, for example, in a case where V_{OUT} is regulated to 12V and the maximum V_{INCHIP} voltage is 40V. EXTVCC can be floated or grounded when not in use or can also be connected to an external power supply if available.

The following list summarizes the three possible connections for EXTVCC:

1. EXTVCC left open (or grounded). This will cause INTVCC to be powered from V_{INCHIP} through the internal 6.3V regulator at the cost of a small efficiency penalty.
2. EXTVCC connected directly to V_{OUT} ($V_{\text{OUT}} > 6.4V$). This is the normal connection for the regulator and usually provides the highest efficiency.
3. EXTVCC connected to an external supply. If an external supply is available greater than 6.4V (typical) it may be used to power EXTVCC.

Powering INTVCC from EXTVCC can also provide enough gate drive when V_{INCHIP} drops as low as 2.8V. This allows the part to operate with a reduced V_{INCHIP} voltage after V_{OUT} gets into regulation.

The maximum current drawn through the INTVCC LDO occurs under the following conditions:

1. Large (capacitive) MOSFETs are being driven at high frequencies.
2. V_{IN} and/or V_{OUT} is high, thus requiring more charge to turn the MOSFET gates on and off.
3. The LDO33 pin output current is high.
4. In some applications, LDO current draw is maximum when the part is operating in the buck-boost region where V_{IN} is close to V_{OUT} since all four MOSFETs are switching.

To check for overheating find the operating conditions that consume the most power in the LT8708 (P_{LT8708}). This will often be under the same conditions just listed that maximize LDO current. Under these conditions monitor the CLKOUT pin duty cycle to measure the approximate die temperature. See the Junction Temperature Measurement section for more information.

LDO33 REGULATOR

The LT8708 includes a low dropout regulator (LDO) to regulate the LDO33 pin to 3.3V. This pin can be used to power external circuitry such as a microcontroller or other desired peripherals. The input supply for the LDO33 pin regulator is INTVCC. Therefore INTVCC must have sufficient...
APPLICATIONS INFORMATION

Voltage, typically > 4.0V, to properly regulate LDO33. The LDO33 and INTV\textsubscript{CC} regulators are enabled by the SHDN pin and are not affected by SWEN. The LDO33 pin regulator has overcurrent protection circuitry that typically limits the output current to 17.25mA. An undervoltage lockout monitors LDO33 and disables switching activity when LDO33 falls below 3.04V (typical). LDO33 should be bypassed locally with 0.1\,\mu F or more.

VOLTAGE LOCKOUTS

The LT8708 contains several voltage detectors to make sure the chip is under proper operating conditions. Table 8 summarizes the pins that are monitored and also indicates the state that the LT8708 will enter if an under or over voltage condition is detected.

Table 8. Voltage Lockout Conditions

<table>
<thead>
<tr>
<th>PIN(S)</th>
<th>APPROXIMATE VOLTAGE CONDITION</th>
<th>CHIP STATE (Figure 2)</th>
<th>READ SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{INCHIP}})</td>
<td><2.5V</td>
<td>CHIP OFF</td>
<td>Operation: Start-Up</td>
</tr>
<tr>
<td>SHDN</td>
<td><1.18V</td>
<td>SWITCHER OFF</td>
<td></td>
</tr>
<tr>
<td>INTV\textsubscript{CC} and GATEV\textsubscript{CC}</td>
<td><4.65V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEN</td>
<td><1.18V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDO33</td>
<td><3.04V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VINHIMON</td>
<td>>1.207V</td>
<td></td>
<td>Applications Information:</td>
</tr>
<tr>
<td>VOUTLomon</td>
<td>>1.120V</td>
<td></td>
<td>VINHIMON, VOUTLomon and RVSOFF</td>
</tr>
<tr>
<td>RVSOFF</td>
<td><1.209V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBIN</td>
<td><1.205V</td>
<td></td>
<td>Voltage Lockouts</td>
</tr>
</tbody>
</table>

The conditions are listed in order of priority from top to bottom. If multiple over/undervoltage conditions are detected, the chip will enter the state listed highest on the table.

Due to their accurate thresholds, configurable undervoltage lockouts (UVLOs) can be implemented using the SHDN and SWEN and in some cases, FBIN pin. The UVLO function sets the turn on/off of the LT8708 at a desired minimum voltage. For example, a resistor divider can be connected between \(V_{\text{IN}} \), SHDN and GND as shown in Figure 1. From the Electrical Characteristics, SHDN has typical rising and falling thresholds of 1.221V and 1.181V, respectively. The falling threshold for turning-off switching activity can be chosen using:

\[
R_{\text{SHDN1}} = \frac{R_{\text{SHDN2}} \cdot (V_{\text{IN,CHIP OFF,FALLING}} - 1.181)}{1.181} \Omega
\]

For example, choosing \(R_{\text{SHDN2}} = 20\,\text{k}\Omega \) and a falling \(V_{\text{IN}} \) threshold of 5.42V results in:

\[
R_{\text{SHDN1}} = \frac{20\,\text{k} \cdot (5.42 - 1.181)}{1.181} \approx 71.5\,\text{k}\Omega
\]

The rising threshold for enabling switching activity would be:

\[
V_{\text{IN,CHIP OFF,RISING}} = V_{\text{IN,CHIP OFF,FALLING}} \cdot \frac{1.221}{1.181}
\]

or 5.6V in this example.

Similar calculations can be used to select a resistor divider connected to SWEN that would stop switching activity during an undervoltage condition. Make sure that the divider doesn’t cause SWEN to exceed 7V (ABS\text{MAX} rating) under maximum supply voltage conditions. See the Start-Up: SWEN Pin section for additional information.

The same technique described in the \(V_{\text{IN}} \): Regulation section can be used to create an undervoltage lockout if the LT8708 is in forward non-CCM mode, where forcing \(V_{\text{C}} \) low will stop all switching activity. Note that this does not reset the soft-start function, therefore resumption of switching activity will not be accompanied by a soft-start.

JUNCTION TEMPERATURE MEASUREMENT

The duty cycle of the CLKOUT signal is linearly proportional to the die junction temperature, \(T_J \). Measure the duty cycle of the CLKOUT signal and use the following equation to approximate the junction temperature:

\[
T_J \equiv \frac{\text{DC}_{\text{CLKOUT}} - 34.4\%}{0.325\%} \, ^\circ\text{C}
\]
where DC\textsubscript{CLKOUT} is the CLKOUT duty cycle in % and T\textsubscript{j} is the die junction temperature in °C. The actual die temperature can deviate from the above equation by ±10°C.

THERMAL SHUTDOWN

If the die junction temperature reaches approximately 165°C, the part will go into thermal shutdown. The power switches will be turned off and the INTV\textsubscript{CC} and LDO33 regulators will be turned off (see Figure 2). The part will be re-enabled when the die temperature has dropped by ~5°C (nominal). After re-enabling, the part will start in the SWITCHER OFF 1 state as shown in Figure 2. The part will then INITIALIZE, perform a SOFT-START, then enter NORMAL OPERATION as long as the die temperature remains below approximately 165°C.

EFFICIENCY CONSIDERATIONS

The efficiency of a switching regulator is equal to the output power divided by the input power times 100%. It is often useful to analyze individual losses to determine what is limiting the efficiency and which change would produce the most improvement. Although all dissipative elements in the circuit produce losses, three main sources account for most of the losses in LT8708 circuits. These and a few additional loss components are listed below:

1. **Switching losses.** These losses arise from the brief amount of time the switches (M1 – M4) spend in the saturated region during switch node transitions. Power loss depends upon the input voltage, load current, driver strength and MOSFET capacitance, among other factors. See the Power MOSFET Selection section for more details.

2. **DC I^2R losses.** These arise from the resistances of the MOSFETs (M1 – M4), sensing resistors, inductor and PC board traces and cause the efficiency to drop at high currents.

3. **INTV\textsubscript{CC} current.** This is the sum of the MOSFET driver current, LDO33 pin current and control currents. The INTV\textsubscript{CC} regulator's input voltage times the current represents lost power. This loss can be reduced by supplying INTV\textsubscript{CC} current through the EXTV\textsubscript{CC} pin from a high efficiency source, such as the output or alternate supply if available. Also, lower capacitance MOSFETs can reduce INTV\textsubscript{CC} current and power loss.

4. **C\textsubscript{IN} and C\textsubscript{OUT} loss.** The C\textsubscript{IN} capacitor has the difficult job of filtering the large RMS input current to the regulator in buck mode. The C\textsubscript{OUT} capacitor has the more difficult job of filtering the large RMS output current in boost mode. Both C\textsubscript{IN} and C\textsubscript{OUT} are required to have low ESR to minimize the AC I^2R loss and have sufficient capacitance to prevent the RMS current from causing additional upstream losses in fuses or batteries.

5. **Other losses.** Schottky diodes D1, D2, D3 and D4 are responsible for conduction losses during dead time and light load conduction periods. Inductor core loss occurs predominately at light loads.

Hybrid conduction mode (HCM) can be used to improve the efficiency when large inductor current ripples are present in DCM. See the Unidirectional Conduction: HCM section for details.

When making adjustments to improve efficiency, the input current is the best indicator of changes in efficiency. If one makes a change and the input current decreases, then the efficiency has increased. If there is no change in input current, then there is no change in efficiency.

CIRCUIT BOARD LAYOUT CHECKLIST

The basic circuit board layout requires a dedicated ground plane layer. Also, for high current, a multilayer board provides heat sinking for power components.

- The ground plane layer should not have any traces and should be as close as possible to the layer with the power MOSFETs.
- The high di/dt path formed by switch M1, switch M2, D1, R\textsubscript{SENSE} and the C\textsubscript{IN} capacitor should be compact with short leads and PC trace lengths. The high di/dt path formed by switch M3, switch M4, D2 and the C\textsubscript{OUT} capacitor also should be compact with short leads and PC trace lengths. Two layout examples are shown in Figure 18 (a) and (b).
• Avoid running signal traces parallel to the traces that carry high di/dt current because they can receive inductively coupled voltage noise. This includes the SW1, SW2, TG1 and TG2 traces to the controller.

• Use immediate vias to connect the components (including the LT8708’s GND pins) to the ground plane. Use several vias for each power component.

• Minimize parasitic SW pin capacitance by removing GND, V IN and V OUT copper from underneath the SW1 and SW2 regions.

• Except under the SW pin regions, flood all unused areas on all layers with copper. Flooding with copper will reduce the temperature rise of power components. Connect the copper areas to a DC net (i.e., quiet GND) with many vias. The more vias the board has, the better heat conduction it has.

• Partition the power ground from the signal ground. The small-signal component grounds should not return to the IC GND through the power ground path.

• Place switch M2 and switch M3 as close to the controller as possible, keeping the GND, BG and SW traces short.

• Minimize inductance from the sources of M2 and M3 to R SENSE by making the trace short and wide.

• Keep the high dv/dt nodes SW1, SW2, BOOST1, BOOST2, TG1 and TG2 away from sensitive small-signal nodes.

• The output capacitor (−) terminals should be connected as closely as possible to the (+) terminals of the input capacitor.

• Connect the top driver boost capacitor C B1 closely to the BOOST1 and SW1 pins. Connect the top driver boost capacitor C B2 closely to the BOOST2 and SW2 pins.

• Connect the C IN and C OUT capacitors closely to the power MOSFETs. These capacitors carry the MOSFET AC current in the boost and buck regions.

• Connect the FBOUT, FBIN, VINHIMON and VOUTLOMON pin resistor dividers to the (+) terminals of C OUT and C IN, respectively. Small FBOUT/ FBIN/VINHIMON/ VOUTLOMON bypass capacitors may be connected closely to the LT8708’s GND pin if needed. The resistor connections should not be along the high current or noise paths.

• Route current sense traces (CSP/CSN, CSPIN/CSNIN, CSPOUT/CSNOUT) together with minimum PC trace...
APPLICATIONS INFORMATION

spacing. Avoid having sense lines pass through noisy areas, such as switch nodes. The optional filter network capacitor between CSP and CSN should be as close as possible to the IC. Ensure accurate current sensing with Kelvin connections at the RSENSE resistors.

- Connect the VSENSE pin compensation network closely to the IC, between VSENSE and the signal ground pins. The capacitor helps to filter the effects of PCB noise and output voltage ripple voltage from the compensation loop.

- Connect the INTVC and GATEVC bypass capacitors close to the IC. The capacitors carry the MOSFET drivers’ current peaks.

- Run the trace from the LT8708’s SW1/SW2 pin to the drain of M2/M3 in parallel with the trace from the GATEVC capacitor’s GND to the CIN GND. Route the traces (as much as possible) directly above/below one another on adjacent layers and in such a way that they carry currents in opposite directions.

- Attention is required when making the PCB layout for RSENSE1 and RSENSE2, especially for sense resistor values smaller than 5mΩ. Improper PCB layout can yield significant errors in the sense voltage.

HOT PLUGGING CONSIDERATIONS

When connecting a battery to an LT8708 application, there can be significant inrush current due to charge equalization between the partially charged battery stack and the charger output capacitors. To a lesser extent a similar effect can occur when connecting a powered DC supply to the input or output. The magnitude of the inrush current depends on (1) the battery or supply voltage, (2) ESR of the input or output capacitors, (3) initial voltage of the capacitors, and (4) cable impedance. Excessive inrush current can lead to sparking that can compromise connector integrity and/or voltage overshoot that can cause electrical overstress on LT8708 pins.

Excessive inrush current can be mitigated by first connecting the battery or supply to the charger through a resistive path, followed quickly by a short circuit. This can be accomplished using staggered length pins in a multi-pin connector. Alternatively, consider the use of a Hot Swap controller such as the LT1641, LT4256, etc. to make a current limited connection.

DESIGN EXAMPLE

VIN = 8V to 25V
VIN_FBIN = 12V (VIN regulation voltage set by FBIN loop)
VOUT_FBOUT = 12V (VOUT regulation voltage set by FBOUT loop)
IOUT(MAX,FWD) = 5A
IIN(MAX,RVS) = 3A
f = 150kHz

This design operates in CCM.

Maximum ambient temperature = 60°C

Power Flow Verification: Determine which conditions in Table 6(a) apply to this application. In this design example, the VINHIMON and VOUTLOMON are disabled, therefore the conditions highlighted in blue in the copy of Table 6(a) apply to this application.

Table 9. A Copy of Table 6(a)

<table>
<thead>
<tr>
<th></th>
<th>VOUT < VOUT_VOUTLOMON</th>
<th>VOUT > VOUT_FBOUT & VOUT < VOUT_FBOUT</th>
<th>VOUT > VOUT_FBOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN < VIN_FBIN</td>
<td>No Power Transfer</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>VIN > VIN_FBIN &</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>VIN < VINHIMON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIN > VINHIMON</td>
<td>A</td>
<td>D</td>
<td>No Power Transfer</td>
</tr>
</tbody>
</table>

Next, check each of these highlighted cells using Table 6(b) with MODE = CCM. A copy of Table 6(b) is shown below:

9(b). A Copy of Table 6(b)

<table>
<thead>
<tr>
<th>MODE = BURST</th>
<th>MODE = CCM</th>
<th>MODE = DCM/HCM, DIR = FWD</th>
<th>MODE = DCM/HCM, DIR = RVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power Flows from VIN to VOUT</td>
<td>No Power Flow</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>No Power Flow</td>
<td>Power Flows from VOUT to VIN</td>
<td>No Power Flow</td>
</tr>
<tr>
<td>C</td>
<td>Power Flows from VOUT to VIN</td>
<td>No Power Flow</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Power Flows from VIN to VOUT</td>
<td>No Power Flow</td>
<td></td>
</tr>
</tbody>
</table>
Verify expected operation by combining Table 6(a) and Table 6(b):

- When $V_{IN} < V_{IN_FBIN}$ (12V) and $V_{OUT} > V_{OUT_FBOUT}$ (12V)
 - B – power is transferred from V_{OUT} to V_{IN}

- When $V_{IN} < V_{IN_FBIN}$ (12V) and $V_{OUT} < V_{OUT_FBOUT}$ (12V)
 - B – power is transferred from V_{OUT} to V_{IN}

- When $V_{IN} > V_{IN_FBIN}$ (12V) and $V_{OUT} > V_{OUT_FBOUT}$ (12V)
 - C – power is transferred from V_{OUT} to V_{IN}

- When $V_{IN} > V_{IN_FBIN}$ (12V) and $VOUT < V_{OUT_FBOUT}$ (12V)
 - D – power is transferred from V_{IN} to V_{OUT}

The results above are as expected for this design example.

RT Selection: Choose the RT resistor for the free-running oscillator frequency using:

$$RT = \left(\frac{43,750}{f_{OSC}} - 1\right) \Omega = \left(\frac{43,750}{150} - 1\right) = 290.7 \Omega$$

We will choose 294k for RT resistor.

$RSENSE$ Selection: Start by calculating the maximum and minimum duty cycle in the boost region:

$$DC_{(MAX,M3,BOOST)} \approx 1 - \frac{V_{IN(MIN,BOOST)}}{V_{OUT(MAX,BOOST)}} \times 100%$$

$$= \left(1 - \frac{8V}{12V}\right) \times 100% = 33%$$

$$DC_{(ABSMIN,M3,BOOST)} \approx t_{ON(M3,MIN)} \times f \times 100%$$

$$= 200\text{ns} \times 150\text{kHz} \times 100% = 3%$$

Next, estimate the inductor current ripples at maximum and minimum boost duty cycles:

$$\Delta I_{L(MAX,BOOST)} \approx \frac{V_{OUT(MAX,BOOST)} \times I_{OUT(MAX,FWD)}}{V_{IN(MIN,BOOST)} \times \left(\frac{100\%}{%Ripple} - 0.5\right)}$$

$$= \frac{12V \times 5A}{8V \times \left(\frac{100\%}{40\%} - 0.5\right)} = 3.75A$$

$$\Delta I_{L(MIN,BOOST)} \approx \frac{I_{IN(MAX,RVS)}}{\left(\frac{100\%}{10\%} - 0.5\right)}$$

$$= \frac{3A}{\left(\frac{100\%}{10\%} - 0.5\right)} = 0.32A$$

Now calculate the maximum $RSENSE$ values in the boost region:

$$V_{RSENSE(MIN,BOOST,MINDC)} \approx 93mV$$

Next, from the Maximum Inductor Current Sense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section:

$$V_{RSENSE(MAX,BOOST,MAXDC)} \approx 83mV$$
Next, estimate the inductor current ripples at maximum and minimum buck duty cycles:

\[
\Delta I_{L(\text{MIN,BUCK})} = \frac{I_{OUT(\text{MAX,FWD})}}{100\% - 0.5} A = \frac{5A}{100\% - 0.5} = 0.526A
\]

\[
\Delta I_{L(\text{MAX,BUCK})} = \frac{V_{IN(\text{MAX,BUCK})} \cdot I_{IN(\text{MAX,RVS})}}{100\% - 0.5} A = \frac{25V \cdot 3A}{100\% - 40\% - 0.5} = 3.125A
\]

Now calculate the maximum \(R_{\text{SENSE}} \) values in the buck region:

\[
R_{\text{SENSE(MAX,BUCK,FWD)}} = \frac{2 \cdot V_{\text{SENSE(MAX,BUCK,MINDC)}} \cdot V_{IN(\text{MIN,BUCK})}}{(2 \cdot I_{OUT(\text{MAX,FWD})} \cdot V_{OUT(\text{MAX,BUCK})} + (\Delta I_{L(\text{MAX,BUCK})} \cdot V_{IN(\text{MIN,BUCK})}))} \Omega
\]

\[
= \frac{2 \cdot 83mV \cdot 8V}{(2 \cdot 5A \cdot 12V) + (3.75A \cdot 8V)} = 8.85m\Omega
\]

\[
R_{\text{SENSE(MAX,BUCK,RVS)}} = \frac{2 \cdot |V_{\text{SENSE(MIN,BUCK,MAXDC)}}| \cdot V_{OUT(\text{MIN,BUCK})}}{(2 \cdot I_{IN(\text{MAX,RVS})} \cdot V_{IN(\text{MAX,BUCK})} + (\Delta I_{L(\text{MAX,BUCK})} \cdot V_{OUT(\text{MIN,BUCK})}))} \Omega
\]

\[
= \frac{2 \cdot 93mV \cdot 12V}{(2 \cdot 3A) - 0.32A} = 32.7m\Omega
\]

Next, calculate the maximum and minimum duty cycle in the buck region:

\[
DC_{(\text{ABS MIN,M2,BUCK})} = t_{ON(M2,\text{MIN})} \cdot f \cdot 100\% = 200ns \cdot 150kHz \cdot 100\% = 3\%
\]

\[
DC_{(\text{MAX,M2,BUCK})} = \left(1 - \frac{V_{\text{OUT(\text{MIN,BUCK})}}}{V_{\text{IN(\text{MAX,BUCK})}}} \right) \cdot 100\% = \left(1 - \frac{12V}{25V} \right) \cdot 100\% = 52\%
\]

Next, from the Maximum Inductor Current Sense Voltage vs Duty Cycle graph in the Typical Performance Characteristics section:

\[
V_{\text{SENSE(\text{MAX,BUCK,MINDC})}} = 100mV
\]

\[
V_{\text{SENSE(\text{MIN,BUCK,MAXDC})}} = 82mV
\]
Choose the smallest calculated R_{SENSE} and add an additional 30% margin, choose R_{SENSE} to be $10.5\,\text{m}\Omega / 1.3 = 8.1\,\text{m}\Omega$.

Inductor Selection: With R_{SENSE} known, we can now determine the minimum inductor value that will provide adequate load current in the boost region using:

\[
L_{(\text{MIN1,BOOST})} = \frac{V_{\text{IN(MIN,BOOST)}} \cdot \left(\frac{\text{DC}_{\text{MAX,M3,BOOST}}}{100\%} \right)}{2 \cdot f \cdot R_{\text{SENSE}} \cdot \left(\frac{V_{\text{SENSE(MAX,BOOST,MAXDC)}}}{8.1\,\text{m}\Omega} - \frac{I_{\text{OUT(MAX,BOOST)}} \cdot V_{\text{OUT(MAX,BOOST)}}}{8\,\text{V}} \right)}
\]

\[
= \frac{8\,\text{V} \cdot \left(\frac{33\%}{100\%} \right)}{2 \cdot 150\,\text{kHz} \cdot 83\,\text{m}\Omega} = 3.2\,\mu\text{H}
\]

To avoid subharmonic oscillations in the inductor current, choose the minimum inductance according to:

\[
L_{(\text{MIN2,BOOST})} = \frac{\left[V_{\text{IN(MIN,BOOST)}} - \left(\frac{V_{\text{IN(MIN,BOOST)}} \cdot V_{\text{OUT(MAX,BOOST)}}}{V_{\text{OUT(MAX,BOOST)}} - V_{\text{IN(MIN,BOOST)}}} \right) \right] \cdot R_{\text{SENSE}}}{0.08 \cdot f}
\]

\[
= \frac{12\,\text{V} - \left(\frac{8\,\text{V} \cdot 12\,\text{V}}{12\,\text{V} - 8\,\text{V}} \right) \cdot 8.1\,\text{m}\Omega}{0.08 \cdot 150\,\text{kHz}} = -8.1\,\mu\text{H}
\]

\[
L_{(\text{MIN1,BUCK})} = \frac{\left[V_{\text{IN(MAX,BUCK)}} \left(1 - \frac{V_{\text{OUT(MAX,BUCK)}}}{V_{\text{IN(MAX,BUCK)}}} \right) \right] \cdot R_{\text{SENSE}}}{0.08 \cdot f}
\]

\[
= \frac{25\,\text{V} \cdot \left(1 - \frac{12\,\text{V}}{25\,\text{V} - 12\,\text{V}} \right) \cdot 8.1\,\text{m}\Omega}{0.08 \cdot 150\,\text{kHz}} = 1.3\,\mu\text{H}
\]

The inductance must be higher than all of the minimum values calculated above. We will choose a 10\,μH standard value inductor for improved margin.

MOSFET Selection: The MOSFETs are selected based on voltage rating, C_{OSS} and $R_{\text{DS(ON)}}$ value. It is important to ensure that the part is specified for operation with the available gate voltage amplitude. In this case, the amplitude is 6.3V and MOSFETs with an $R_{\text{DS(ON)}}$ value specified at $V_{\text{GS}} = 4.5$V can be used.

Select M1 and M2: With 25V maximum input voltage, MOSFETs with a rating of at least 30V are used. As we do not yet know the actual thermal resistance (circuit board design and airflow have a major impact) we assume that the MOSFET thermal resistance from junction to ambient is $50^\circ\text{C}/\text{W}$.

If we design for a maximum junction temperature, $T_{\text{J(MAX)}} = 125^\circ\text{C}$, the maximum allowable power dissipation can be calculated. First, calculate the maximum power dissipation:

\[
PD_{\text{(MAX)}} = \frac{T_{\text{J(MAX)}} - T_{\text{A(MAX)}}}{R_{\text{TH(JA)}}}
\]

\[
PD_{\text{(MAX)}} = \frac{125^\circ\text{C} - 60^\circ\text{C}}{50^\circ\text{C}/\text{W}} = 1.3\,\text{W}
\]

Since maximum I^2R power in the boost region with positive inductor current happens when V_{IN} is minimum, we can determine the maximum allowable $R_{\text{DS(ON)}}$ for the boost region using (see Table 7):

\[
PM_{\text{1}} = P_{\text{2R}} \equiv \left[\left(\frac{V_{\text{OUT}}}{V_{\text{IN}}} \cdot I_{\text{OUT(MAX,FWD)}} \right)^2 \cdot R_{\text{DS(ON)}} \cdot \rho \tau \right] \, \text{W}
\]

and therefore

\[
R_{\text{DS(ON)}} < \frac{13\,\text{W}}{\left(\frac{12\,\text{V}}{8\,\text{V}} \cdot 5\,\text{A} \right)^2 \cdot 1.5} = 15.4\,\text{m}\Omega
\]

The Fairchild FDM7672 meets the specifications with a maximum $R_{\text{DS(ON)}}$ of $-6.9\,\text{m}\Omega$ at $V_{\text{GS}} = 4.5\,\text{V}$ ($~10\,\text{m}\Omega$ at 125°C).

The maximum dissipation in M2 occurs at maximum V_{IN} voltage when the circuit is operating in the buck region.
APPLICATIONS INFORMATION

in the reverse direction. Using the 6.9mΩ Fairchild FDMS7672, the dissipation is (see Table 7):

\[
P_{M2} = P_R + P_{SWITCHING}
\]

\[
= \left(\frac{V_{IN} - V_{OUT}}{V_{IN}} \cdot I_{OUT}(MAX,RVS)^2 \cdot R_{DS(ON)} \right) \cdot P_\tau
\]

\[
+ \left(V_{IN} \cdot I_{OUT}(MAX,RVS) \cdot f \cdot t_{RF1} \right)
\]

\[
+ \left(0.5 \cdot C_{OSS(M1+M2)} \cdot V_{IN}^2 \cdot f \right) W
\]

\[
P_{(M2,MAX)} =
\]

\[
\left(\frac{25V - 12V}{25V} \cdot (3A)^2 \cdot 6.9mΩ \cdot 1.5 \right)
\]

\[
+ \left((0.5 \cdot (685P + 685P) \cdot 25V \cdot 25V \cdot 150k) \right)
\]

\[
= 0.13W + 0.225W + 0.064W = 0.419W
\]

To check the power dissipation in the buck region with \(V_{IN} \) maximum and \(V_{OUT} \) minimum, choose the equation from Table 7 with positive inductor current in buck mode which yields:

\[
P_{M1} = P_R + P_{SWITCHING}
\]

\[
= \left[\left(\frac{V_{OUT}}{V_{IN}} \cdot I_{OUT}(MAX,FWD) \right)^2 \cdot R_{DS(ON)} \right] \cdot P_\tau
\]

\[
+ \left(V_{IN} \cdot I_{OUT}(MAX,FWD) \cdot f \cdot t_{RF2} \right)
\]

\[
+ \left(0.5 \cdot C_{OSS(M1+M2)} \cdot V_{IN}^2 \cdot f \right) W
\]

\[
P_{(M1,MAX)} =
\]

\[
\left[\left(\frac{12V}{25V} \cdot 5A \right)^2 \cdot 6.9mΩ \cdot 1.5 \right]
\]

\[
+ \left(25V \cdot 5A \cdot 150k \cdot 20ns \right)
\]

\[
+ \left((0.5 \cdot (685P + 685P) \cdot 25V \cdot 25V \cdot 150k) \right)
\]

\[
= 0.06W + 0.38W + 0.064W = 0.504W
\]

The maximum switching power of 0.38W can be reduced by choosing a slower switching frequency. Since this calculation is approximate, measure the actual rise and fall times on the PCB to obtain a better power estimate.

Select M3 and M4: With 12V output voltage we need MOSFETs with 20V or higher rating.

The highest dissipation of M3 and M4 occurs in the boost region. For switch M3, the max dissipation occurs when the \(I_{OUT} \) is highest in the forward direction and \(V_{IN} \) is at the minimum 8V (see Table 7):

\[
P_{M3} = P_R + P_{SWITCHING}
\]

\[
\equiv \left(\frac{V_{OUT} - V_{IN}}{V_{IN}^2} \cdot I_{OUT}(MAX,FWD)^2 \cdot R_{DS(ON)} \right) \cdot P_\tau
\]

\[
+ \left(V_{OUT} \cdot I_{OUT}(MAX,FWD) \cdot f \cdot t_{RF2} \right)
\]

\[
+ \left(0.5 \cdot C_{OSS(M3+M4)} \cdot V_{OUT}^2 \cdot f \right) W
\]

For switch M4, the max dissipation occurs when the \(I_{IN} \) is highest in the reverse direction and \(V_{IN} \) is highest in the boost region (see Table 7):

\[
P_{M4} = P_R + P_{SWITCHING}
\]

\[
\equiv \left(\frac{V_{IN}}{V_{OUT}} \cdot I_{IN}(MAX,RVS)^2 \cdot R_{DS(ON)} \right) \cdot P_\tau
\]

\[
+ \left(V_{OUT} \cdot I_{IN}(MAX,RVS) \cdot f \cdot t_{RF2} \right)
\]

\[
+ \left(0.5 \cdot C_{OSS(M3+M4)} \cdot V_{OUT}^2 \cdot f \right) W
\]

and

\[
\frac{V_{IN}(MAX,BOOST)}{V_{OUT}(MAX,BOOST)} = 1 - DC_{(ABS\text{MIN}_{M3,BOOST})}
\]

therefore,
APPLICATIONS INFORMATION

\[R_{M4} = R^2 + P_{switching} \]
\[= \left[(1 - DC_{ABSMIN,M3,BOOST}) \cdot I_{IN}^{(MAX,RVS)} \right] \cdot R_{DS(ON)} \cdot \rho \tau \]
\[+ \left(V_{OUT} \cdot I_{IN}^{(MAX,RVS)} \cdot f \cdot t_{RF2} \right) \]
\[+ \left(0.5 \cdot C_{OSS(M3+M4)} \cdot V_{OUT} \cdot f \right) \cdot W \]

The Fairchild FDM7672 can also be used for M3 and M4. Assuming 20ns rise and fall times, the calculated power loss is then 0.48W for M3 and 0.21W for M4.

Select \(R_{sense2}, R_{mon_op} \) and \(R_{mon_on} \): The \(I_{OUT}^{(MAX,FWD)} = 5A \) and \(I_{IN}^{(MAX,RVS)} = 3A \), with a 20% margin, the \(I_{OUT} \) current limit is set to 6A in the forward and the \(I_{IN} \) current limit is set to 3.6A in the reverse directions, respectively.

Choose \(R_{mon_op} \) to be 17.4k, so that the \(V_{CS_OUT-CS_OUT} \) limit becomes 50mV, and the \(R_{sense2} \) is calculated to be:

\[R_{sense2} = \frac{50mV}{6A} = 8m\Omega \]

Using the equation given in the \(I_{IN} \) and \(I_{OUT} \) Current Monitoring and Limiting section, \(R_{mon_on} \) is calculated to be:

\[R_{mon_on} = 1.21 \cdot \frac{1m\Omega}{I_{OUT,_LIMIT}} \cdot R_{sense2} + 20\mu A \]
\[= 1.21 \cdot \frac{1m\Omega}{3.6A \cdot 1m\Omega \cdot 8m\Omega + 20\mu A} = 24.9k\Omega \]

\(V_{OUT} \) Voltage: \(V_{OUT} \) voltage is 12V. Select \(R_{fb_out2} \) as 20k. \(R_{fb_out1} \) is:

\[R_{fb_out1} = \left(\frac{V_{OUT}}{1.207V} - 1 \right) \cdot R_{fb_out2} \]

Select \(R_{fb_out1} \) as 178k. Both \(R_{fb_out1} \) and \(R_{fb_out2} \) should have a tolerance of no more than 1%.

\(V_{IN} \) Voltage: Input voltage is 12V. Select \(R_{fb_in2} \) as 20k. \(R_{fb_in1} \) is:

\[R_{fb_in1} = \left(\frac{V_{IN}}{1.207V} - 1 \right) \cdot R_{fb_in2} \]

Select \(R_{fb_in1} \) as 178k. Both \(R_{fb_in1} \) and \(R_{fb_in2} \) should have a tolerance of no more than 1%.

Capacitors: A low ESR (5m\(\Omega \)) capacitor network with 30\(\mu \)F ceramic capacitors for \(C_{IN} \) is selected. In this mode, the maximum ripple is:

\[\Delta V_{_BUCK_CAP} \equiv I_{OUT}^{(MAX,FWD)} \cdot V_{OUT} \cdot ESR_{_CERAM} \cdot \frac{1 - \exp \left(\frac{-V_{OUT}}{V_{IN} \cdot f \cdot ESR_{_CERAM} \cdot C_{IN} - C_{_CERAM}} \right)}{1 - \exp \left(\frac{-12V}{24V \cdot 150kHz \cdot 5m\Omega \cdot 30\mu F} \right)} \]

\[= 12.5mV \]

Having 5m\(\Omega \) of ESR with 66\(\mu \)F ceramic capacitor for the \(C_{OUT} \) network sets the maximum output voltage ripple at:

\[\Delta V_{_BUCK_CAP} \equiv I_{OUT}^{(MAX,FWD)} \cdot ESR_{_CERAM} \cdot \frac{1 - \exp \left(\frac{-V_{IN} - V_{OUT}}{V_{OUT} \cdot f \cdot ESR_{_CERAM} \cdot C_{OUT} - C_{_CERAM}} \right)}{1 - \exp \left(\frac{8V - 12V}{12V \cdot 150kHz \cdot 5m\Omega \cdot 66\mu F} \right)} \]

\[= 25mV \]
TYPICAL APPLICATIONS

12V Bidirectional Dual Battery System with FHCM & RHCM

Forward Operation (DIR = 3V)

Reverse Operation (DIR = 0V)

For more information www.analog.com
APPLICATIONS INFORMATION

12V Bidirectional Dual Battery System with FHCM & RHCM Details

- V_{BAT1} Charge Voltage = 14.6V (FBIN in RHCM)
- V_{BAT2} Charge Voltage = 14.5V (FBOUT in FHCM)
- $V_{BAT1, DEAD}$ = 9V (Falling) or 9.4V (Rising)
- $V_{BAT2, DEAD}$ = 9.25V (Falling) or 9.4V (Rising)
- $V_{BAT1, UV}$ to Stop Discharging = 10.5V (FBIN in FHCM)

Table of Operation Modes and Power Flow Directions

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BAT1} < $V_{BAT1, DEAD}$</td>
<td>No Power Flow, Chip Operates in RVSOFF</td>
</tr>
<tr>
<td>V_{BAT2} < $V_{BAT2, DEAD}$</td>
<td>No Power Flow, No Switching</td>
</tr>
<tr>
<td>$V_{BAT1, UV}$ > 14.5V</td>
<td>Power Flows from V_{BAT1} to V_{BAT2} (V$_{BAT1}$ Charging)</td>
</tr>
<tr>
<td>$V_{BAT2, DEAD}$ and <14.5V</td>
<td>Power Flows from V_{BAT2} to V_{BAT1} (V$_{BAT1}$ Charging)</td>
</tr>
<tr>
<td>$V_{BAT1, DEAD}$ > 14.6V</td>
<td>No Power Flow, Chip Operates in RHCM Lo</td>
</tr>
<tr>
<td>$V_{BAT2, DEAD}$ and <14.6V</td>
<td>Power Flows from V_{BAT2} to V_{BAT1} (V$_{BAT1}$ Charging)</td>
</tr>
</tbody>
</table>

For use with LT8708-1(s)

Direction Change with $V_{BAT1} = 13.5$V and $V_{BAT2} = 13.5$V

Direction Change with $V_{BAT1} = 13.5$V and $V_{BAT2} = 16$V

Direction Change with $V_{BAT1} = 16$V and $V_{BAT2} = 13.5$V

V_{BAT1} Charging Lead Acid Battery V_{BAT2}

V_{BAT2} Charging Lead Acid Battery V_{BAT1}

For more information www.analog.com
48V to 12V Bidirectional Dual Battery System with FCHM & RHCM

Forward Operation (DIR = 3V)

Reverse Operation (DIR = 0V)

For more information www.analog.com
APPLICATIONS INFORMATION

48V to 14V Bidirectional Dual Battery System with FHCM & RHCM Details

V_{BAT1} Charge Voltage = 48V (FBIN in RHCM)

V_{BAT2} Charge Voltage = 14.5V (FBOUT in FHCM)

V_{BAT1_DEAD} = 21.3V (Falling) or **22.2V** (Rising)

V_{BAT2_DEAD} = 9.25V (Falling) or **9.4V** (Rising)

V_{BAT2_UV} to Stop Discharging = 10.5V (VOUTLOMON Falling) or **12.3V** (VOUTLOMON Rising)

V_{BAT1_CHG} = 48V (FBIN in RHCM)

V_{BAT2_CHG} = 14.5V (FBOUT in FHCM)

V_{BAT1_CHG_LIMIT} = 4A (IMON_IN)

V_{BAT2_CHG_LIMIT} = 15A (IMON_OP)

Frequency = 120kHz

Table of Operation Modes and Power Flow Directions

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>RESULTS</th>
<th>CHIP OPERATES IN</th>
<th>RVSOFF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BAT1} < V_{BAT1_DEAD}</td>
<td>-</td>
<td>No Power Flow</td>
<td>Shutdown</td>
</tr>
<tr>
<td>V_{BAT2} < V_{BAT2_DEAD}</td>
<td>-</td>
<td>No Switching</td>
<td>-</td>
</tr>
<tr>
<td>V_{BAT1} < V_{BAT2} and V_{BAT2} > 14.5V</td>
<td>Hi</td>
<td>Power Flows from V_{BAT1} to V_{BAT2} (V_{BAT2} Charging)</td>
<td>FHCM</td>
</tr>
<tr>
<td>V_{BAT1} > 48V and V_{BAT2 < V_{BAT2}_UV}</td>
<td>Lo</td>
<td>No Power Flow</td>
<td>RHCM</td>
</tr>
<tr>
<td>V_{BAT1} > V_{BAT2} and V_{BAT2 < V_{BAT2}_UV}</td>
<td>Hi</td>
<td>Power Flows from V_{BAT2} to V_{BAT1} (V_{BAT1} Charging)</td>
<td>-</td>
</tr>
</tbody>
</table>

*For use with LT8708-1(s)

Efficiency

V_{BAT1_CHG} Charging Lead Acid Battery V_{BAT2}

For more information www.analog.com
52V Battery Backup Supply Using FHCM and RHCM

When \(V_{IN} \) Is Applied, \(V_{BAT} \) Is Charged to 52.1V

When \(V_{IN} \) Is Not Applied, \(V_{LOAD} \) Is Regulated to 47.4V Until \(V_{BAT} \) Drops Below 36V
APPLICATIONS INFORMATION

52V Battery Backup Supply Using FHCM and RHCM Detail

- **V**\textsubscript{BAT} Charge Voltage = 52.1V (FBOUT in FHCM)
- **V**\textsubscript{LOAD} Regulation Voltage = 47.4V (FBIN in RHCM)
- **V**\textsubscript{BAT, DEAD} = 36V (Falling) or 37.5V (Rising)
- Frequency = 150kHz

V\textsubscript{LOAD} Rising to Activate **V**\textsubscript{BAT} Charging = 50.2V (VINHIMON Rising Activating FHCM)

V\textsubscript{LOAD} Falling to Activate Backup Operation = 45.9V (VINHIMON Falling Activating RHCM)

V\textsubscript{BAT} Charging Current Limit = 5A (IMON_OP)

V\textsubscript{LOAD} Current Limit = 5A (IMON_INN)

Table of Operation Modes and Power Flow Directions

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>V\textsubscript{LOAD}</th>
<th>V\textsubscript{BAT}</th>
<th>POWER FLOW</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td><V\textsubscript{BAT, DEAD}</td>
<td>No Power Flow</td>
<td>Shutdown</td>
</tr>
<tr>
<td>>50.2V*</td>
<td>>52.1V</td>
<td></td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>Fell Into (47.4V to 50.2V) Range*</td>
<td>V\textsubscript{BAT, DEAD} to 52.1V</td>
<td>Power Flows from V\textsubscript{IN} to V\textsubscript{BAT} (V\textsubscript{BAT} Charging)</td>
<td>FHCM</td>
<td>Lo</td>
</tr>
<tr>
<td>Rose Into (45.9V to 50.2V) Range*</td>
<td>>52.1V</td>
<td>No Power Flow</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>V\textsubscript{LOAD} Rising to Activate Backup Operation</td>
<td>V\textsubscript{BAT, DEAD}</td>
<td>Power Flows from V\textsubscript{BAT} to V\textsubscript{LOAD} (Backup Operation)</td>
<td>RHCM</td>
<td>Hi</td>
</tr>
<tr>
<td><45.9V</td>
<td></td>
<td></td>
<td></td>
<td>–</td>
</tr>
</tbody>
</table>

*V**\textsubscript{LOAD} is powered from **V**\textsubscript{IN}.

V\textsubscript{BAT}_DEAD = 36V (Falling) or 37.5V (Rising)

V\textsubscript{BAT} Charging Current Limit = 5A (IMON_OP)

V\textsubscript{LOAD} Current Limit = 5A (IMON_INN)

For more information www.analog.com
Supercapacitor Backup Supply Using CCM

When \(V_{\text{IN}} \) Is Not Applied, \(V_{\text{LOAD}} \) Is Regulated to 11V

When \(V_{\text{IN}} \) Is Applied, \(V_{\text{OUT}} \) Is Charged to 15V
APPLICATIONS INFORMATION

Supercapacitor Backup Supply Using CCM Detail

- \(V_{\text{OUT}} \) Charge Voltage = 15V (FBOUT)
- \(V_{\text{BACKUP}} \) Regulation Voltage = 11V (FBIN)
- \(V_{\text{IN,MIN}} \) = 5.42V (Falling) or 5.65V (Rising)
- Frequency = 350kHz

\(V_{\text{BACKUP}} \) Overvoltage Rising Threshold in Backup Operation = 13.3V (VINHIMON Rising)
\(V_{\text{BACKUP}} \) Overvoltage Falling Threshold in Backup Operation = 12.9V (VINHIMON Falling)
\(V_{\text{OUT}} \) Charging Current Limit = 1A (IMON_OP)
\(V_{\text{IN}} \) Current Limit = 2A (IMON_INP)

Table of Operation Modes and Power Flow Directions

<table>
<thead>
<tr>
<th>(V_{\text{BACKUP}})</th>
<th>(V_{\text{OUT}})</th>
<th>POWER FLOW</th>
<th>CHIP OPERATES IN</th>
<th>RVSOFF*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< V_{\text{IN,MIN}})</td>
<td>(-)</td>
<td>NO POWER FLOW</td>
<td>Shutdown</td>
<td>–</td>
</tr>
<tr>
<td>(> 13.3) V</td>
<td>(> 15) V</td>
<td>Power Flows from (V_{\text{IN}}) to (V_{\text{OUT}}) ((V_{\text{OUT}}) Charging)</td>
<td>CCM</td>
<td>Lo</td>
</tr>
<tr>
<td>Fell Into (12.9V to 13.3V) Range</td>
<td>(< 15) V</td>
<td>No Power Flow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rose Into (12.9V to 13.3V) Range</td>
<td>(< 15) V</td>
<td>Power Flows from (V_{\text{OUT}}) to LOADS (Backup Operation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(> 11) V and (< 12.9) V</td>
<td>(> 15) V</td>
<td>Power Flows from (V_{\text{IN}}) to (V_{\text{OUT}}) ((V_{\text{OUT}}) Charging)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(< 11) V and (> V_{\text{IN,MIN}})</td>
<td>(-)</td>
<td>Power Flows from (V_{\text{OUT}}) to LOADS (Backup Operation)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For use with LT8708-1(s)

Charging \(V_{\text{OUT}} \) to 15V with 1A Current

Transient Behavior Upon \(V_{\text{IN}} \) Dropout (\(I_{\text{LOAD}} = 4 \)A)
PACKAGE DESCRIPTION

UHG Package
40-Lead Plastic QFN (5mm × 8mm)
(Reference LTC DWG # 05-08-1528 Rev A)

NOTE:
1. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES IN DEGREES.
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 COPLANARITY SHALL NOT EXCEED 0.08MM.
3. WARPAGE SHALL NOT EXCEED 0.10MM.
4. PACKAGE LENGTH / PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC(S).
5. REFER JEDEC M0-220.
PACKAGE DESCRIPTION

LWE Package

64-Lead Plastic Exposed Pad LQFP (10mm × 10mm)

(Reference LTC DWG #05-08-1982 Rev A)

NOTE:
1. DIMENSIONS ARE IN MILLIMETERS
2. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.25mm (10 MILS) BETWEEN THE LEADS AND MAX 0.50mm (20 MILS) ON ANY SIDE OF THE EXPOSED PAD, MAX 0.77mm (30 MILS) AT CORNER OF EXPOSED PAD, IF PRESENT
3. PIN-1 IDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER
4. DRAWING IS NOT TO SCALE

Recommended Solder Pad Layout

Apply Solder Mask to Areas That Are Not Soldered

SECTION A – A

0.08 – 0.20 GAUGE PLANE 0.25
0.09 – 0.20
0.50 BSC
0.20 – 0.30
0.10 – 0.15
0.05 – 0.20
0.05 – 0.15

SIDE VIEW

0.05 – 0.15
0.10 – 0.15
0.05 – 0.15

BOTTOM OF PACKAGE—EXPOSED PAD (SHADED AREA)

0.30 – 0.50
0.45 – 0.75
11° – 13° R0.08 – 0.20
1° – 7°
<table>
<thead>
<tr>
<th>REV</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
</table>
| A | 01/20| Added eLOFP package option.

 - Added two arrows and corrected the 2nd y-axis of 8708 G08.
 - Corrected the body connection of M1, changed EA7 to A7.
 - Changed R_{SENSE1} to R_{SENSE1}.
 - Corrected calculations. | 1, 3, 4, 6, 13, 14, 64, 65, 9, 15, 43, 51, 52 |
| B | 10/21| Removed TR from eLOFP package option in the Ordering Information section. The eLOFP package ships in trays. | 4 |
| C | 05/23| Updated Features and Order Information | 1, 4 |
Supercapacitor Backup Supply Using CCM

PARTS LIST

PART NUMBER	**DESCRIPTION**	**COMMENTS**
LT8708-1 | 80V Synchronous 4-Switch Buck-Boost DC/DC Slave Controller for LT8708 Multiphase System | 2.8V (Need EXTVCC > 6.4V) ≤ VIN ≤ 80V, 1.3V ≤ VOUT ≤ 80V, 5mm × 8mm QFN-40 and 10mm × 10mm eLQFP-64 Packages

RELATED PARTS

- LT8708A: 80V VIN and VOUT Synchronous 4-Switch Buck-Boost DC/DC Controller
- LTC3779: 150V VIN and VOUT Synchronous 4-Switch Buck-Boost Controller
- LTC7813: 60V Low IO Synchronous Boost-Buck Controller Low EMI and Low Input/Output Ripple
- LTC3899: 60V, Triple Output, Buck/Buck/Boost Synchronous Controller with 29µA Burst Mode IO
- LTM8056: 58VIN, Buck-Boost μModule Regulator, Adjustable Input and Output Current Limiting
- LTC3895/ LTC7801: 150V Low IO, Synchronous Step-Down DC/DC Controller with 100% Duty Cycle
- LTC3871: Bidirectional Multiphase DC/DC Synchronous Buck or Boost On-Demand Controller
- LTC7103: 105V, 2.3A, Low EMI Synchronous Step-Down Regulator