FREQUENCY MULTIPLIER - ACTIVE - SMT

HMC695LP4 / HMC695LP4E

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER

11.4 - 13.2 GHz OUTPUT

Typical Applications

The HMC695LP4(E) is ideal for:

- Fiber Optic Applications
- Point-to-Point Radios
- Military Radar

Features

Output Power: +7 dBm

Sub-Harmonic Suppression: >25 dBc

SSB Phase Noise: -140 dBc/Hz

Single Supply: +5V @ 60 mA

24 Lead 4x4 mm SMT Package: 16 mm²

General Description

The HMC695LP4(E) are active miniature x4 frequency multipliers utilizing InGaP GaAs HBT technology in 4x4 mm leadless surface mount packages. Power output is +7 dBm typical from a +5V supply voltage and varies little vs. input power, temperature and supply voltage. Suppression of undesired fundamental and sub-harmonics is >25 dBc typical with respect to output signal level. The low additive SSB phase noise of -140 dBc/Hz at 100 kHz offset helps the user maintain good system noise performance. The HMC695LP4(E) are ideal for use in LO multiplier chains allowing reduced parts count vs. traditional approaches.

Functional Diagram

![Functional Diagram](image)

Electrical Specifications, T_A = +25°C, Vcc= 5V

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range, Input</td>
<td>2.85 - 3.3 GHz</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Frequency Range, Output</td>
<td>11.4 - 13.2 GHz</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Input Power Range</td>
<td>-15 dBm</td>
<td>7 dBm</td>
<td>5 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>Output Power</td>
<td>2 dBm</td>
<td>7 dBm</td>
<td>5 dBm</td>
<td>dBm</td>
</tr>
<tr>
<td>Sub-Harmonic Suppression</td>
<td>25 dBc</td>
<td></td>
<td></td>
<td>dBc</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15 dB</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>8 dB</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>SSB Phase Noise (100 kHz Offset)</td>
<td>Pin= 0 dBm</td>
<td></td>
<td></td>
<td>dBc/Hz</td>
</tr>
<tr>
<td>Supply Current (Icc)</td>
<td>60 mA</td>
<td>75 mA</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC695* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• HMC695LP4 Evaluation Board

DOCUMENTATION
Data Sheet
• HMC695 Data Sheet

TOOLS AND SIMULATIONS
• HMC695 S-Parameter

REFERENCE MATERIALS
Quality Documentation
• Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
• Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES
• HMC695 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all HMC695 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
HMC695LP4 / HMC695LP4E

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER
11.4 - 13.2 GHz OUTPUT

Output Power vs. Temperature @ -10 dBm Drive Level

Output Power vs. Drive Level

Output Power vs. Supply Voltage @ -10 dBm Drive Level

Input Return Loss vs. Temperature

Output Return Loss vs. Temperature

Harmonics @ -10 dBm Drive Level

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
HMC695LP4 / HMC695LP4E

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER

11.4 - 13.2 GHz OUTPUT

SSB Phase Noise

@ Pin = 0 dBm @ 12.5 GHz

![SSB Phase Noise Graph](image)

SSB Phase Noise

@ Pin = -10 dBm @ 12.5 GHz

![SSB Phase Noise Graph](image)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Input (Vcc= +5V)</td>
<td>+20 dBm</td>
</tr>
<tr>
<td>Vcc</td>
<td>+5.5V</td>
</tr>
<tr>
<td>Channel Temperature</td>
<td>135 °C</td>
</tr>
<tr>
<td>Continuous Pdiss (T=85 °C)</td>
<td>538 mW</td>
</tr>
<tr>
<td>(derate 10.8 mW/°C above 85 °C)</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance (Rth)</td>
<td>93 °C/W</td>
</tr>
<tr>
<td>(junction to ground paddle)</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65 to +150 °C</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40 to +85 °C</td>
</tr>
<tr>
<td>ESD Sensitivity (HBM)</td>
<td>Class 1B</td>
</tr>
</tbody>
</table>

Typical Supply Current vs. Vcc

<table>
<thead>
<tr>
<th>Vcc (V)</th>
<th>Icc (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75</td>
<td>59</td>
</tr>
<tr>
<td>5.00</td>
<td>60</td>
</tr>
<tr>
<td>5.25</td>
<td>61</td>
</tr>
</tbody>
</table>

Note: Multiplier will operate over full voltage range shown above.

ELECTROSTATIC SENSITIVE DEVICE

OBSEERVE HANDLING PRECAUTIONS

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D
HMC695LP4 / HMC695LP4E

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER
11.4 - 13.2 GHz OUTPUT

Outline Drawing

NOTES:
1. LEADFRAME MATERIAL: COPPER ALLOY
2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
6. ALL GROUND LEADS AND GROUND PADDLE MUST BE
 SOLDERED TO PCB RF GROUND.
7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED
 LAND PATTERN.

Package Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package Body Material</th>
<th>Lead Finish</th>
<th>MSL Rating</th>
<th>Package Marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMC695LP4</td>
<td>Low Stress Injection Molded Plastic</td>
<td>Sn/Pb Solder</td>
<td>MSL1 [1]</td>
<td>H695 XXXX</td>
</tr>
<tr>
<td>HMC695LP4E</td>
<td>RoHS-compliant Low Stress Injection Molded Plastic</td>
<td>100% matte Sn</td>
<td>MSL1 [2]</td>
<td>H695 XXXX</td>
</tr>
</tbody>
</table>

[1] Max peak reflow temperature of 235 °C
[3] 4-Digit lot number XXXX
HMC695LP4 / HMC695LP4E

SMT GaAs HBT MMIC x4 ACTIVE FREQUENCY MULTIPLIER
11.4 - 13.2 GHz OUTPUT

Pin Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 5 - 14, 17, 18, 20 - 24</td>
<td>N/C</td>
<td>The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RFIN</td>
<td>RF input needs to be DC blocked only if there is an external DC voltage applied to RFIN.</td>
<td></td>
</tr>
<tr>
<td>4, 15</td>
<td>GND</td>
<td>All ground leads and ground paddle must be soldered to PCB RF/DC ground.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RFOUT</td>
<td>Multiplied Output. AC coupled. No external DC blocks necessary.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Vcc</td>
<td>Supply voltage 5V</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation PCB

List of Materials for Evaluation PCB 106137

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 - J3</td>
<td>PCB Mount SMA Connector</td>
</tr>
<tr>
<td>C1</td>
<td>1,000 pF Capacitor, 0603 Pkg.</td>
</tr>
<tr>
<td>U1</td>
<td>HMC695LP4(E) x4 Active Multiplier</td>
</tr>
<tr>
<td>PCB [2]</td>
<td>104610 Eval Board</td>
</tr>
</tbody>
</table>

[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.