HMC-C026

WIDEBAND HIGH GAIN POWER AMPLIFIER
MODULE, 2 - 20 GHz

Features

Gain: 31 dB @ 6 GHz
P1dB Output Power: +26 dBm @ 6 GHz
Noise Figure: 2.5 dB @ 8 GHz
Spurious-Free Operation
Regulated Supply and Bias Sequencing
Hermetically Sealed Module
Field Replaceable SMA connectors
-55 °C to +85 °C Operating Temperature

General Description

The HMC-C026 is a GaAs MMIC pHEMT Distributed Power Amplifier in a miniature, hermetic module with replaceable SMA connectors which operates between 2 and 20 GHz. The amplifier provides 31 dB of gain, 2.5 dB noise figure, +30 dBm output IP3 and up to +26 dBm of output power at 1 dB gain compression. The wideband amplifier I/Os are internally matched to 50 Ohms and are DC blocked making the HMC-C026 ideal for EW, ECM RADAR and test equipment applications. Integrated voltage regulators allow for flexible biasing of both the negative and positive supply pins, while internal bias sequencing circuitry assures robust operation.

Electrical Specifications, $T_A = +25^\circ$ C, $+Vdc = +11V$ to $+16V$, $-Vdc = -3V$ to $-12V$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td></td>
<td></td>
<td></td>
<td>2 - 6</td>
<td></td>
<td></td>
<td>6 - 12</td>
<td></td>
<td></td>
<td>12 - 16</td>
<td></td>
<td></td>
<td>16 - 20</td>
</tr>
<tr>
<td>Gain</td>
<td>28</td>
<td>31</td>
<td>26</td>
<td>26</td>
<td>29</td>
<td>24</td>
<td>27</td>
<td>19</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±0.25</td>
<td>±0.75</td>
<td>±1.0</td>
<td>±0.25</td>
<td>±0.75</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±0.25</td>
<td>±0.75</td>
<td>±1.0</td>
<td>±1.0</td>
<td>±1.0</td>
<td>dB</td>
</tr>
<tr>
<td>Gain Variation Over Temperature</td>
<td>0.03</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>dB/°C</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>3.0</td>
<td>5.0</td>
<td>2.5</td>
<td>5.0</td>
<td>3.5</td>
<td>3.0</td>
<td>4.0</td>
<td>3.5</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input Return Loss</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Return Loss</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Power for 1 dB Compression (P1dB)</td>
<td>23</td>
<td>26</td>
<td>22.5</td>
<td>25.5</td>
<td>20</td>
<td>24</td>
<td></td>
<td>18</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Saturated Output Power (Psat)</td>
<td>27.5</td>
<td>27</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output Third Order Intercept (IP3)</td>
<td>33</td>
<td>30</td>
<td>30</td>
<td>27</td>
<td>27</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Positive Supply Current (+IDC)</td>
<td>400</td>
<td>450</td>
<td>400</td>
<td>450</td>
<td>400</td>
<td>450</td>
<td></td>
<td>400</td>
<td>450</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Negative Supply Current (-IDC)</td>
<td>3.2</td>
<td>5</td>
<td>3.2</td>
<td>5</td>
<td>3.2</td>
<td>5</td>
<td></td>
<td>3.2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
HMC-C026

WIDEBAND HIGH GAIN POWER AMPLIFIER MODULE, 2 - 20 GHz

Absolute Maximum Ratings

- **RF Input Power (RFIN)**: +23 dBm
- **Positive Bias Supply Voltage (+Vdc)**: +17V Max
- **Negative Bias Supply (-Vdc)**: -16V Min.
- **Thermal Resistance (at +Vdc = 12V, -Vdc = -4V, DC Power = 4.8 Watts)**: 15.9 °C/W
- **Storage Temperature**: -65 to +150 °C
- **Operating Temperature**: -55 to +85 °C

Notes:

- Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

- For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
 Phone: 781-329-4700 Order online at www.analog.com
 Application Support: Phone: 1-800-ANALOG-D

Electrostatic Sensitive Device

Observe Handling Precautions
Pin Descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Function</th>
<th>Description</th>
<th>Interface Schematic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RFIN & RF Ground</td>
<td>RF input connector, SMA female, field replaceable. This pin is AC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+Vdc</td>
<td>Positive power supply voltage for the amplifier.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RFOUT & RF Ground</td>
<td>RF output connector, SMA female. This pin is AC coupled and matched to 50 Ohms.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-Vdc</td>
<td>Negative power supply voltage for the amplifier</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Power supply ground.</td>
<td></td>
</tr>
</tbody>
</table>
HMC-C026

WIDEBAND HIGH GAIN POWER AMPLIFIER
MODULE, 2 - 20 GHz

Outline Drawing

NOTES:
1. PACKAGE, LEADS, COVER MATERIAL: KOVAR™
2. SPACER MATERIAL: ALUMINUM
3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN., OVER ELECTROLYTIC NICKEL 75 MICROINCHES MIN.
4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].
5. TOLERANCES ±.005 [0.13] UNLESS OTHERWISE SPECIFIED.
6. FIELD REPLACEABLE SMA CONNECTORS.
7. TO MOUNT MODULE TO SYSTEM PLATFORM REPLACE 0 -80 HARDWARE WITH DESIRED MOUNTING SCREWS.

Package Information

<table>
<thead>
<tr>
<th>Package Type</th>
<th>C-3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacer Weight</td>
<td>N/A</td>
</tr>
</tbody>
</table>

[1] Includes the connectors
[2] ±1 gms Tolerance

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
HMC-C026

WIDEBAND HIGH GAIN POWER AMPLIFIER
MODULE, 2 - 20 GHz

Notes: