Features

- **Video signal processor**
 - Full 12-bit, 4:4:4 YCbCr (color space) internal processing
 - Motion adaptive deinterlacing with ultralow angle interpolation
 - Multiple video processing paths with up to 3 simultaneous video streams including picture-in-picture (PiP) support
 - Upscaling and downsampling to/from 4k × 2k
 - Aspect ratio conversion/panorama scaling
 - Cadence detection for the recovery of original frames from film-based content
 - Dual video scalers enable simultaneous output of multiple different resolutions
 - Sharpness and detail enhancement
 - Noise reduction for random, mosquito, and block noise
 - Frame rate converter (FRC)
 - Video metrics readback to enable correct phase and frequency selection for graphics inputs

- **On-screen display (OSD)**
 - Internally generated bitmap-based OSD allowing overlay on one or more video outputs
 - Overlay on 3D and 4k × 2k video formats
 - Dedicated OSD scaler
 - Alpha blending of OSD data on video data
 - Disturbance free blending of OSD on either of 2 zones
 - Support for external OSD

Functional Block Diagram

```
Figure 1.
```

Applications

- High end A/V receivers
- Upconverting DVD players/recorders
- Video conferencing and distribution
- HDMI splitters
- Video walls

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Applications</td>
<td>1</td>
</tr>
<tr>
<td>Functional Block Diagram</td>
<td>1</td>
</tr>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>General Description</td>
<td>3</td>
</tr>
<tr>
<td>ADV8005 Models</td>
<td>3</td>
</tr>
<tr>
<td>Detailed Functional Block Diagram</td>
<td>4</td>
</tr>
<tr>
<td>Specifications</td>
<td>5</td>
</tr>
<tr>
<td>Electrical Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>Analog Specifications</td>
<td>7</td>
</tr>
<tr>
<td>Data and I²C Timing Characteristics</td>
<td>7</td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td>17</td>
</tr>
<tr>
<td>ESD Caution</td>
<td>17</td>
</tr>
<tr>
<td>Pin Configurations and Function Descriptions</td>
<td>18</td>
</tr>
<tr>
<td>Theory of Operation</td>
<td>45</td>
</tr>
<tr>
<td>Video Input</td>
<td>45</td>
</tr>
</tbody>
</table>

REVISION HISTORY

6/14—Revision 0: Initial Version
GENERAL DESCRIPTION

The ADV8005 is a multiple input video signal processor that can deinterlace and scale standard definition (SD), enhanced definition (ED), or high definition (HD) video data to ultra HD formats; generate a bitmap on-screen display (OSD); and output the video with OSD overlaid on two High-Definition Multimedia Interface (HDMI*) transmitters and a video encoder.

The 60-bit TTL video port can be used to input video to the ADV8005 in a number of ways: using the 48-bit TTL pixel port, using the 24-bit external OSD TTL pixel port, or from a device with an HDMI transmitter such as the ADV7850. The ADV8005 supports many of the formats outlined in the CEA-861-F and VESA specifications, as well as several other widely used timing formats.

The ADV8005 features primary and secondary video scalers that enable simultaneous output of multiple different resolutions. The primary video scaler can upscale to 4k × 2k modes. The secondary video scaler can upscale to 1080p or UXGA graphics. 4k × 2k downscaling is performed using the secondary video scaler, leaving the primary video scaler available for other video processing.

The ADV8005 primary video scaler can perform high performance, motion adaptive interlaced to progressive conversion on SD and HD content. Additional functionality has also been added to ADV8005 to facilitate upsampling and downscaling to VESA formats with pixel clock frequencies below 300 MHz.

Detail enhancement and image enhancing techniques such as random, mosquito, and block noise reduction allow improved final image quality. The frame rate converter of the ADV8005 allows the conversion between common frame rates with support to output two different frame rates simultaneously under certain conditions.

The ADV8005 can accept OSD information from an external OSD source on one of its inputs, or it can internally generate a high quality, bitmap-based OSD. The internal OSD is highly flexible and allows the system designer to easily incorporate features like scrolling text and animation in various color depths up to 24-bit true color.

Analog Devices, Inc., provides an OSD development tool (Blimp) to assist in the design, debug, and emulation of the OSD prior to integration with the system application. When the design is complete, the OSD development tool automatically generates code to which system application programming interfaces (APIs) can be added before integration with the system application and an OSD design resource, which must be downloaded to an external SPI flash memory.

Video can be output from the ADV8005 using one or both of the HDMI transmitters and/or the six-DAC SD/HD video encoder. The six 12-bit NSV® video DACs allow composite (CVBS), S-Video (Y/C), and component (YPrPb) analog outputs in standard, enhanced, and high definition video formats. Oversampling of 216 MHz (SD and ED) and 297 MHz (HD) removes the requirement for external output filtering. Rovi* and non-Rovi variants of the ADV8005 are available.

Both of the HDMI transmitters on the ADV8005 support 4k × 2k and all mandatory and many optional 3D video resolutions. Each transmitter features an audio return channel receiver (ARC). The ADV8005 can receive up to eight channels of I’s, S/PDIF, direct stream digital (DSD), and high bit rate (HBR) audio passed from either the serial video Rx or from the externally available audio input pins.

The ADV8005 supports the I²C protocol for communication with the system microcontroller.

ADV8005 MODELS

The ADV8005 includes a number of models, each featuring different capabilities; all are provided in the same 19 mm × 19 mm, 425-ball CSP_BGA package (see Table 9).

Note that the functionality of the ADV8005KBCZ-8A is described throughout this data sheet. Some sections are not relevant to other models because not all of the blocks found in the ADV8005KBCZ-8A are included in those models. Table 9 lists the functionality for each model.
SPECIFICATIONS

Measured at DVDD = 1.746 V to 1.854 V, DVDD_DDR = 1.746 V to 1.854 V, PVDD1 = 1.746 V to 1.854 V, PVDD2 = 1.746 V to 1.854 V, PVDD3 = 1.746 V to 1.854 V, PVDD5 = 1.789 V to 1.90 V, PVDD6 = 1.789 V to 1.90 V, PVDD_DDR = 1.746 V to 1.854 V, AVDD3 = 1.746 V to 1.854 V, AVDD4 = 1.746 V to 1.854 V, CVDD1 = 1.746 V to 1.854 V, AVDD1 = 3.20 V to 3.40 V, AVDD2 = 3.20 V to 3.40 V, DVDD_IO = 3.20 V to 3.40 V, T_MIN to T_MAX = 0°C to 70°C, unless otherwise noted.

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PERFORMANCE</td>
<td>Resolution (Each DAC)</td>
<td>DAC outputs sampled at 500 kHz</td>
<td>12</td>
<td>Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity, +ve(^1)</td>
<td>INL</td>
<td>DAC outputs sampled at 500 kHz</td>
<td>0.389</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity, −ve(^1)</td>
<td>INL</td>
<td>DAC outputs sampled at 500 kHz</td>
<td>−0.322</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Nonlinearity, +ve(^2)</td>
<td>DNL</td>
<td>DAC outputs sampled at 500 kHz</td>
<td>0.183</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Nonlinearity, −ve(^2)</td>
<td>DNL</td>
<td>DAC outputs sampled at 500 kHz</td>
<td>−0.208</td>
<td>LSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIGITAL INPUTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High Voltage</td>
<td>V(_{IH})</td>
<td>HDMI Ethernet and audio channel (HEAC(_\pm)) inputs</td>
<td>0.7 × DVDD_IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>V(_{IL})</td>
<td>DDR_DQS([x]) inputs</td>
<td>0.3 × DVDD_IO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I(_{IN})</td>
<td>Other digital inputs</td>
<td>±60 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>C(_{IN})</td>
<td>RESET</td>
<td>13 pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIGITAL INPUTS (5 V TOLERANT)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High Voltage</td>
<td>V(_{IH})</td>
<td></td>
<td>3.4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>V(_{IL})</td>
<td></td>
<td>0.8 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I(_{IN})</td>
<td></td>
<td>±60 μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DIGITAL OUTPUTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output High Voltage</td>
<td>V(_{OH})</td>
<td></td>
<td>2.4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V(_{OL})</td>
<td></td>
<td>0.4 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Impedance Leakage Current</td>
<td>I(_{LEAK})</td>
<td></td>
<td>±10 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C(_{OUT})</td>
<td></td>
<td>13 pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

POWER REQUIREMENTS\(^3\)\(^-\)\(^4\)

<table>
<thead>
<tr>
<th>Digital Power Supplies</th>
<th>DVDD, DVDD_DDR, PVDD_DDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL Analog Supply</td>
<td>PVDD1</td>
</tr>
<tr>
<td>PLL Digital Supply</td>
<td>PVDD2</td>
</tr>
<tr>
<td>Encoder PLL Supply</td>
<td>PVDD3</td>
</tr>
<tr>
<td>HDMI PLL Power Supply(^5)</td>
<td>PVDD5, PVDD6</td>
</tr>
<tr>
<td>Transmitter 1 (Tx1)</td>
<td>1.789, 1.845, 1.90 V</td>
</tr>
<tr>
<td>Transmitter 2 (Tx2)</td>
<td>1.789, 1.845, 1.90 V</td>
</tr>
<tr>
<td>HDMI Analog Power Supply</td>
<td>Tx1, Tx2</td>
</tr>
<tr>
<td>AVDD3</td>
<td>1.746, 1.8, 1.854 V</td>
</tr>
<tr>
<td>AVDD4</td>
<td>1.746, 1.8, 1.854 V</td>
</tr>
<tr>
<td>Comparator Power Supply</td>
<td>CVDD1</td>
</tr>
<tr>
<td>HDMI Rx Inputs Analog Supply</td>
<td>AVDD1</td>
</tr>
<tr>
<td>Encoder Analog Power Supply</td>
<td>AVDD2</td>
</tr>
<tr>
<td>Digital Interface Supply</td>
<td>DVDD_IO</td>
</tr>
<tr>
<td>AVDD2</td>
<td>3.20, 3.3, 3.40 V</td>
</tr>
<tr>
<td>Digital Interface Supply</td>
<td>DVDD_IO</td>
</tr>
<tr>
<td>AVDD2</td>
<td>3.20, 3.3, 3.40 V</td>
</tr>
</tbody>
</table>

Rev. 0 | Page 5 of 52
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Power Supply Currents</td>
<td>IDVDD, IDVDD_CLK</td>
<td>Mode 1</td>
<td>1693.9</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>1508.1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>11.7</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL Analog Supply Current</td>
<td>IPVDD1</td>
<td>Mode 1</td>
<td>23.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>20.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0.9</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLL Digital Supply Current</td>
<td>IPVDD2</td>
<td>Mode 1</td>
<td>21.3</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>19.26</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0.06</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder PLL Supply Current</td>
<td>IPVDD3</td>
<td>Mode 1</td>
<td>13.8</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>3.27</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0.01</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI Tx1 PLL Supply Current</td>
<td>IPVDD5</td>
<td>Mode 1</td>
<td>74.9</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>59.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI Tx2 PLL Supply Current</td>
<td>IPVDD6</td>
<td>Mode 1</td>
<td>75.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>0.5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder Analog Power Supply Current</td>
<td>IAVDD2</td>
<td>Mode 1</td>
<td>19.7</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>0.6</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator Power Supply Current</td>
<td>IDVDD2</td>
<td>Mode 1</td>
<td>78.4</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>73.4</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>1.1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI Rx Inputs Analog Supply Current</td>
<td>IAVDD1</td>
<td>Mode 1</td>
<td>63.1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>57.6</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0.2</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder Analog Power Supply</td>
<td>IAVDD3</td>
<td>Mode 1</td>
<td>38.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>34.9</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>2.1</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Interface Supply Current</td>
<td>IDVDD_IO</td>
<td>Mode 1</td>
<td>3.0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mode 2</td>
<td>1.3</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power-down mode</td>
<td>0</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Integral nonlinearity (INL) measures the deviation of the actual DAC transfer function from the ideal. For +ve INL, the actual line lies above the ideal line value. For −ve INL, the actual line lies below the ideal line value.
2. Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal step value. For −ve DNL, the actual step value lies below the ideal step value.
3. Mode 1 involves a 1080i, 60 Hz input to the ADV8005 receiver and a 720p, 60 Hz input to the ADV8005 TTL external OSD input. Both inputs are run through the front-end color space converters. The 1080i, 60 Hz video stream is deinterlaced and upscaled to 4k × 2k at 24 Hz. The 720p video stream is input to the OSD block and is blended onto the 4k × 2k at 24 Hz video stream using the OSD block scaler. Both HDMI transmitters are then driven using the 4k × 2k at 24 Hz output.
4. Mode 2 involves a 1080i, 60 Hz input to the ADV8005 receiver. This input is run through the front-end color space converter. The 1080i, 60 Hz video stream is deinterlaced and is output to HDMI Tx1. The secondary VSP is used to convert the 1080p video stream to 480i and is output using the SD encoder.
5. For normal operation, set the Tx PVDDS and PVDD6 supplies to 1.845 V ± 3%. However, if the ADV8005 die temperature is kept below 100°C, it is possible to use PVDDS and PVDD6 with a reduced nominal voltage supply level of 1.8 V ± 3%. It is possible to measure the die temperature (TJ) of the ADV8005 using the method outlined in the Thermal Considerations section. If using this reduced voltage level with Tx PVDDS and PVDD6, it is the responsibility of the customer to ensure that the die temperature is below 100°C when used in the highest power mode of the application and at its highest ambient temperature.
ANALOG SPECIFICATIONS

Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Drive Output Current (Full Scale)</td>
<td>I_{OC}</td>
<td>$R_{SET} = 4.12 , \text{kΩ}, R_L = 300 , \text{Ω}$</td>
<td>3.95</td>
<td>4.3</td>
<td>4.5</td>
<td>mA</td>
</tr>
<tr>
<td>Output Compliance</td>
<td>I_{OC}</td>
<td>DAC1, DAC2, DAC3</td>
<td>0</td>
<td>1.4</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_{OUT}</td>
<td>DAC1, DAC2, DAC3, DAC4, DAC5, DAC6</td>
<td>9</td>
<td>9</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAC-to-DAC Matching</td>
<td></td>
<td>DAC1 to DAC6</td>
<td>0.9</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>DAC Analog Output Skew</td>
<td></td>
<td>DAC1 to DAC6</td>
<td>0.2</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

DATA AND I2C TIMING CHARACTERISTICS

For input timing measurements, $V_{HI} = D_{VDD _IO}$ and $V_{IL} = GND$.

Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMDS CLOCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMDS Input Clock Frequency</td>
<td></td>
<td></td>
<td>25</td>
<td>297</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>TMDS Output Clock Frequency</td>
<td></td>
<td></td>
<td>25</td>
<td>297</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>CLOCK AND CRYSTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystal (XTAL) Frequency</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Stability</td>
<td></td>
<td></td>
<td></td>
<td>±50</td>
<td></td>
<td>ppm</td>
</tr>
<tr>
<td>Video Input Clock Frequency Range</td>
<td></td>
<td></td>
<td>13.5</td>
<td>162</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td>13.5</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Video Output Clock Frequency Range</td>
<td></td>
<td></td>
<td>13.5</td>
<td>162</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Serial Clock Frequency</td>
<td></td>
<td></td>
<td>11.5</td>
<td>81</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Serial Port 1 (SCK1)</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Serial Port 2 (SCK2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Serial Port 3 (VBI_SCK)</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Audio Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>SCLK</td>
<td></td>
<td></td>
<td>49.152</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>MCLK</td>
<td></td>
<td></td>
<td>98.304</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>DSCK_CLK</td>
<td></td>
<td></td>
<td>5.6448</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>FAST I2C PORTS1</td>
<td></td>
<td>See Figure 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCL Frequency</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td>kHz</td>
</tr>
<tr>
<td>SCL Minimum Pulse Width High</td>
<td>t_1</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCL Minimum Pulse Width Low</td>
<td>t_2</td>
<td></td>
<td>1.3</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Start Condition Hold Time</td>
<td>t_3</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Start Condition Setup Time</td>
<td>t_4</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SDA Setup Time</td>
<td>t_5</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCL and SDA Rise Time</td>
<td>t_6</td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCL and SDA Fall Time</td>
<td>t_7</td>
<td></td>
<td>300</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Stop Condition SETUP Time</td>
<td>t_8</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>SERIAL PORT2</td>
<td></td>
<td>See Figure 4, Figure 5, and Figure 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Serial Port (Serial Port 2)</td>
<td>$t_{SL, t_{SO}}$</td>
<td></td>
<td>t_{SO} or t_{SL} depending on the values of CPHA and CPOL</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>S2 Falling Edge to SCK2 Rising/Falling Edge</td>
<td>$t_{SL, t_{SO}}$</td>
<td></td>
<td>t_{SO} or t_{SL} depending on the values of CPHA and CPOL</td>
<td>$1 \times SCK2^4$</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCK2 Rising/Falling Edge to CS2 Rising Edge</td>
<td>$t_{SL, t_{SO}}$</td>
<td></td>
<td>t_{SO} or t_{SL} depending on the values of CPHA and CPOL</td>
<td>$1 \times SCK2^4$</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions/Comments</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>CS2 Pulse Width</td>
<td>t13</td>
<td></td>
<td>1880</td>
<td>1900</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCK2 High Time</td>
<td>t14</td>
<td>0.45 × SCK2<sup>4</sup></td>
<td>0.45 × SCK2<sup>4</sup></td>
<td>0.55 × SCK2<sup>4</sup></td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>SCK2 Low Time</td>
<td>t15</td>
<td></td>
<td>0.55 × SCK2<sup>4</sup></td>
<td>0.55 × SCK2<sup>4</sup></td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>MOSI2 Start of Data Invalid to SCK2 Falling Edge</td>
<td>t15</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>CS2 Start of Data Invalid to SCK2 Falling Edge</td>
<td>t15</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>SCK2 Falling Edge to MOSI2 End of Data Invalid</td>
<td>t16</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>SCK2 Falling Edge to CS2 End of Data Invalid</td>
<td>t16</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>MISO2 Setup Time</td>
<td>t17</td>
<td>Valid regardless of the SCK2 active edge used</td>
<td>11.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISO2 Hold Time</td>
<td>t18</td>
<td>Valid regardless of the SCK2 active edge used</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSI2 Start of Data Invalid to SCK2 Rising Edge</td>
<td>t19</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>CS2 Start of Data Invalid to SCK2 Rising Edge</td>
<td>t19</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>SCK2 Rising Edge to MOSI2 End of Data Invalid</td>
<td>t20</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>SCK2 Rising Edge to CS2 End of Data Invalid</td>
<td>t20</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>MISO2 Setup Time</td>
<td>t21</td>
<td>Valid regardless of the SCK2 active edge used</td>
<td>11.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MISO2 Hold Time</td>
<td>t22</td>
<td>Valid regardless of the SCK2 active edge used</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slave Mode (Serial Port 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1 Falling Edge to SCK1 Rising/Falling Edge</td>
<td>t23<sup>5</sup>, t24<sup>5</sup></td>
<td>t<sub>23<sup>5</sup></sub> or t<sub>24<sup>5</sup></sub>, depending on the values of CPHA and CPOL</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCK1 Rising/Falling Edge to CS1 Rising Edge</td>
<td>t25<sup>5</sup>, t26<sup>5</sup></td>
<td>t<sub>25<sup>5</sup></sub> or t<sub>26<sup>5</sup></sub>, depending on the values of CPHA and CPOL</td>
<td>50.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1 Pulse Width</td>
<td>t27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>SCK1 High Time</td>
<td>t30</td>
<td>0.45 × SCK1<sup>4</sup></td>
<td>0.45 × SCK1<sup>4</sup></td>
<td>0.55 × SCK1<sup>4</sup></td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>SCK1 Low Time</td>
<td>t31</td>
<td>0.55 × SCK1<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSI1 Setup Time</td>
<td>t31</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSI1 Hold Time</td>
<td>t32</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCK1 Falling Edge to MOSI1 Start of Data Invalid</td>
<td>t33</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>SCK1 Falling Edge to MOSI1 End of Data Invalid</td>
<td>t34</td>
<td>SPI Mode 0, SPI Mode 3</td>
<td></td>
<td></td>
<td>12.16</td>
<td></td>
</tr>
<tr>
<td>MOSI1 Setup Time</td>
<td>t35</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOSI1 Hold Time</td>
<td>t36</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCK1 Rising Edge to MOSI1 Start of Data Invalid</td>
<td>t37</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>SCK1 Rising Edge to MOSI1 End of Data Invalid</td>
<td>t38</td>
<td>SPI Mode 1, SPI Mode 2</td>
<td></td>
<td></td>
<td>12.16</td>
<td></td>
</tr>
<tr>
<td>Slave Mode (Serial Port 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBI_SCK High Time</td>
<td>t39</td>
<td>0.45 × VBI_SCK<sup>4</sup></td>
<td>0.45 × VBI_SCK<sup>4</sup></td>
<td>0.55 × VBI_SCK<sup>4</sup></td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>VBI_SCK Low Time</td>
<td>t40</td>
<td>0.55 × VBI_SCK<sup>4</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBI_CS Pulse Width</td>
<td>t41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBI_CS, VBI_MOSI Setup Time</td>
<td>t40</td>
<td>SPI Mode 0 only</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VBI_CS, VBI_MOSI Hold Time</td>
<td>t41</td>
<td>SPI Mode 0 only</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>Test Conditions/Comments</td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Unit</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------------------------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>SPI Passthrough Mode</td>
<td>t42</td>
<td>See Figure 11</td>
<td>4.97 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on SCK1 to Start of Data</td>
<td>t43</td>
<td></td>
<td>10.10 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on SCK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on SCK1 to End of Data</td>
<td>t42</td>
<td></td>
<td>5.32 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on SCK2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on MOSI1 to Start of Data</td>
<td>t43</td>
<td></td>
<td>10.82 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on MOSI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on MOSI1 to End of Data</td>
<td>t42</td>
<td></td>
<td>4.36 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on MOSI2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on MISO2 to Start of Data</td>
<td>t43</td>
<td></td>
<td>8.85 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on MISO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on MISO2 to End of Data</td>
<td>t42</td>
<td></td>
<td>5.32 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on MISO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Transition on CS1 to Start of Data</td>
<td>t43</td>
<td></td>
<td>10.91 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invalid on CS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESET FUNCTION

<table>
<thead>
<tr>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Pulse Width</td>
<td>5</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

VIDEO DATA AND CONTROL INPUTS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCLK High Time</td>
<td>t44</td>
<td></td>
<td>0.45 × PCLK⁴</td>
<td>0.55 × PCLK⁴</td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>PCLK Low Time</td>
<td>t45</td>
<td></td>
<td>0.45 × PCLK⁴</td>
<td>0.55 × PCLK⁴</td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>OSD_CLK High Time</td>
<td>t51</td>
<td>OSD_CLK signal of Pin A3</td>
<td>0.45 × OSD_CLK⁴</td>
<td>0.55 × OSD_CLK⁴</td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>OSD_CLK Low Time</td>
<td>t52</td>
<td>OSD_CLK signal of Pin A3</td>
<td>0.45 × OSD_CLK⁴</td>
<td>0.55 × OSD_CLK⁴</td>
<td>% duty cycle</td>
<td></td>
</tr>
<tr>
<td>Main Video Input, SDR and DDR Modes Setup</td>
<td>t53</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.28</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Video Input, SDR and DDR Modes Hold</td>
<td>t54</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.67</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Video Input, DDR Mode Setup</td>
<td>t55</td>
<td>(Data Latched on Falling Edge)</td>
<td>1.28</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main Video Input, DDR Mode Hold</td>
<td>t56</td>
<td>(Data Latched on Falling Edge)</td>
<td>1.67</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleaved Video Input, SDR Setup</td>
<td>t57</td>
<td>Used for 300 MHz TTL data</td>
<td>1.28</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interleaved Video Input, SDR Hold</td>
<td>t58</td>
<td>Used for 300 MHz TTL data</td>
<td>1.67</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External OSD Input, SDR and DDR Modes Setup</td>
<td>t59</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.28</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External OSD Input, SDR and DDR Modes Hold</td>
<td>t60</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.67</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External OSD Input, DDR Mode Setup</td>
<td>t61</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.28</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External OSD Input, DDR Mode Hold</td>
<td>t62</td>
<td>(Data Latched on Rising Edge)</td>
<td>1.67</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

Received by:
Rev. 0 | Page 9 of 52
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions/Comments</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIDEO DATA AND CONTROL OUTPUTS<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSD_CLK High Time</td>
<td>t<sub>56</sub></td>
<td></td>
<td>0.40 × OSD_CLK<sup>4</sup></td>
<td></td>
<td>0.60 × OSD_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>OSD_CLK Low Time</td>
<td></td>
<td></td>
<td>0.40 × OSD_CLK<sup>4</sup></td>
<td></td>
<td>0.60 × OSD_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>Data and Control Start of Data Invalid to OSD_CLK Active Edge (Data Latched on Falling Edge)</td>
<td>t<sub>57</sub></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSD_CLK Active Edge to Data and Control End of Data Invalid (Data Latched on Falling Edge)</td>
<td>t<sub>58</sub></td>
<td></td>
<td>1.66</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data and Control Start of Data Invalid to OSD_CLK Active Edge (Data Latched on Rising Edge)</td>
<td>t<sub>59</sub></td>
<td></td>
<td>0.62</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSD_CLK Active Edge to Data and Control End of Data Invalid (Data Latched on Rising Edge)</td>
<td>t<sub>60</sub></td>
<td></td>
<td>1.12</td>
<td>ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/PDIF INPUT<sup>1</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCLK High Time</td>
<td>t<sub>61</sub></td>
<td></td>
<td>0.45 × MCLK<sup>4</sup></td>
<td></td>
<td>0.55 × MCLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>MCLK Low Time</td>
<td></td>
<td></td>
<td>0.45 × MCLK<sup>4</sup></td>
<td></td>
<td>0.55 × MCLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>S/PDIF Data Setup Time</td>
<td>t<sub>62</sub></td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/PDIF Data Hold Time</td>
<td>t<sub>63</sub></td>
<td></td>
<td>1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I²S PORT, SLAVE MODE<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLK High Time</td>
<td>t<sub>64</sub></td>
<td></td>
<td>0.45 × SCLK<sup>4</sup></td>
<td></td>
<td>0.55 × SCLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>SCLK Low Time</td>
<td></td>
<td></td>
<td>0.45 × SCLK<sup>4</sup></td>
<td></td>
<td>0.55 × SCLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>I²S Data Setup Time</td>
<td>t<sub>65</sub></td>
<td></td>
<td>1.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I²S Data Hold Time</td>
<td>t<sub>66</sub></td>
<td></td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSD PORT<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSD_CLK High Time</td>
<td>t<sub>67</sub></td>
<td></td>
<td>0.45 × DSD_CLK<sup>4</sup></td>
<td></td>
<td>0.55 × DSD_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>DSD_CLK Low Time</td>
<td></td>
<td></td>
<td>0.45 × DSD_CLK<sup>4</sup></td>
<td></td>
<td>0.55 × DSD_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>DSD Data Setup Time</td>
<td>t<sub>68</sub></td>
<td></td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSD Data Hold Time</td>
<td>t<sub>69</sub></td>
<td></td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTERNAL SYNC TIMING MODE<sup>3</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF_CLK High Time</td>
<td>t<sub>70</sub></td>
<td></td>
<td>0.45 × REF_CLK<sup>4</sup></td>
<td></td>
<td>0.55 × REF_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>REF_CLK Low Time</td>
<td></td>
<td></td>
<td>0.45 × REF_CLK<sup>4</sup></td>
<td></td>
<td>0.55 × REF_CLK<sup>4</sup></td>
<td>% duty cycle</td>
</tr>
<tr>
<td>REF Data Setup Time</td>
<td>t<sub>71</sub></td>
<td></td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF Data Hold Time</td>
<td>t<sub>72</sub></td>
<td></td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ It is possible to run I²C at faster speeds; however, it has been characterized to run only in fast mode.

² All serial port measurements are for the default polarity and phase settings (clock low in idle state and negative edge used).

³ All measurements are guaranteed by design only.

⁴ Specification is in clock periods; for example, 1 × SCK2 periods.
Timing Diagrams

Figure 3. I²C Timing

Figure 4. Detailed SPI Master Timing Diagram (Serial Port 2)

Figure 5. Serial Port 2 Master Mode Timing (SPI Mode 0 and SPI Mode 3)

Figure 6. Serial Port 2 Master Mode Timing (SPI Mode 1 and SPI Mode 2)
Figure 7. Detailed SPI Slave Timing Diagram (Serial Port 1)

Figure 8. Serial Port 1 Slave Mode Timing (SPI Mode 0 and SPI Mode 3)

Figure 9. Serial Port 1 Slave Mode Timing (SPI Mode 1 and SPI Mode 2)

Figure 10. Serial Port 3 Slave Mode Timing (SPI Mode 0 Only)
Figure 11. SPI Passthrough Mode (Serial Port 1 and Serial Port 2)

Figure 12. Main Video Input, Noninterleaved SDR Video Data and Control Timing

Figure 13. Main Video Input, Noninterleaved DDR Video Data and Control Timing

Figure 14. Interleaved SDR Video Data and Control Input Timing

Figure 15. External OSD Input, Noninterleaved SDR Video Data and Control Timing
Figure 16. External OSD Input, Noninterleaved DDR Video Data and Control Timing

Figure 17. SDR Video Data and Control Output Timing (Data Launched on Falling Edge)

Figure 18. SDR Video Data and Control Output Timing (Data Launched on Rising Edge)

Figure 19. S/PDIF Input Timing, Data Latched on Rising Edge

Figure 20. S/PDIF Data Timing
Figure 21. I2S Timing

Figure 22. I2S Standard Audio—Data Width of 16 Bits to 24 Bits per Channel

Figure 23. Serial Audio—Right Justified

Figure 24. Serial Audio—Left Justified
Figure 25. AES3 Direct Audio

Figure 26. DSD Timing

Figure 27. External Sync Timing
ABSOLUTE MAXIMUM RATINGS

Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVDD1, ADDD2, DVDD_IO to GND</td>
<td>3.9 V</td>
</tr>
<tr>
<td>DVDD, PVDDx, CVDD1, AVDD3, AVDD4, DVDD_DDR, PVDD_DDR to GND</td>
<td>2.2 V</td>
</tr>
<tr>
<td>DVDD to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD1 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD2 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD3 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD5 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD6 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>CVDD1 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>AVDD3 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>AVDD4 to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>DVDD_DDR to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>PVDD_DDR to Other 1.8 V Power Supplies<sup>1</sup></td>
<td>−0.3 V to +0.3 V</td>
</tr>
<tr>
<td>Digital Inputs to GND</td>
<td>−0.3 V to DVDD_IO + 0.3 V</td>
</tr>
<tr>
<td>Serial Video Inputs to GND</td>
<td>−0.3 V to CVDD1 + 0.3 V</td>
</tr>
<tr>
<td>DDR_VREF to GND</td>
<td>−0.3 V to DVDD_DDR + 0.3 V</td>
</tr>
<tr>
<td>DDR Inputs to GND</td>
<td>−0.3 V to DVDD_DDR + 0.3 V</td>
</tr>
<tr>
<td>DDR Outputs to GND</td>
<td>−0.3 V to DVDD_DDR + 0.3 V</td>
</tr>
<tr>
<td>5 V Tolerant Digital Inputs to GND<sup>2</sup></td>
<td>−0.3 V to +5.5 V</td>
</tr>
<tr>
<td>3.3 V Analog Inputs to GND</td>
<td>−0.3 V to AVDD3 + 0.3 V</td>
</tr>
<tr>
<td>HDMI Digital Outputs to GND</td>
<td>−0.3 V to AVDD3 + 0.3 V</td>
</tr>
<tr>
<td>Digital Outputs Voltage to GND</td>
<td>−0.3 V to DVDD_IO + 0.3 V</td>
</tr>
<tr>
<td>Analog Outputs Voltage to GND<sup>3</sup></td>
<td>−0.3 V to AVDD2 + 0.3 V</td>
</tr>
<tr>
<td>Maximum Junction Temperature (T<sub>J,MAX</sub>)</td>
<td>125°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Infrared Reflow Soldering (20 sec)</td>
<td>260°C</td>
</tr>
</tbody>
</table>

¹ This includes the 1.8 V power supplies (DVDD, PVDD1, PVDD2, PVDD3, CVDD1, AVDD3, AVDD4, DVDD_DDR, and PVDD_DDR) and the 1.845 V supplies (PVDD5 and PVDD6).

² The following inputs are 5 V tolerant: DDC1_SCL, DDC2_SCL, DDC1_SDA, DDC2_SDA, HEAC_1−, HEAC_1+, HEAC_2−, HEAC_2+, RX_SV, and RX_HPD.

³ Except the ELPF1 and ELPF2 outputs, which are kept to −0.3 V to PVDD3 + 0.3 V; the RTERM output, which is kept to −0.3 V to CVDD1 + 0.3 V; and the R_TX1 and R_TX2 outputs, which are kept to −0.3 V to PVDD5 + 0.3 V.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Table 5. **ADV8005KBCZ-8A and ADV8005KBCZ-8N Pin Function Descriptions**

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>OSD_IN[23]/EXT_DIN[7]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 23 (OSD_IN[23]).</td>
</tr>
<tr>
<td>A2</td>
<td>OSD.DE</td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[7]).</td>
</tr>
<tr>
<td>A3</td>
<td>OSD_CLK/EXT_CLK</td>
<td>OSD video sync</td>
<td>Pixel Clock for the OSD Input Port (OSD_CLK).</td>
</tr>
<tr>
<td>A4</td>
<td>AUD_IN[1]</td>
<td>Audio input</td>
<td>i50/DSD1 Audio Input.</td>
</tr>
<tr>
<td>A7</td>
<td>ARC2_OUT</td>
<td>Audio output</td>
<td>Audio Return Channel for HDMI Tx2.</td>
</tr>
<tr>
<td>A8</td>
<td>MOSI1</td>
<td>Serial port control</td>
<td>Master Output Slave Input (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>A9</td>
<td>SCK2</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A10</td>
<td>CS2</td>
<td>Serial port control</td>
<td>Chip Select (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A11</td>
<td>RESET</td>
<td>Miscellaneous digital</td>
<td>Reset Pin.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>A12</td>
<td>XTALN</td>
<td>Miscellaneous 1.8 V</td>
<td>Crystal Output Pin. Leave this pin floating if a clock oscillator is used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analog†</td>
<td></td>
</tr>
<tr>
<td>A13</td>
<td>PVDD2</td>
<td>Power</td>
<td>PLL Digital Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A16</td>
<td>CVDD1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A17</td>
<td>RX_C−</td>
<td>Rx input</td>
<td>Rx Clock Complement Input.</td>
</tr>
<tr>
<td>A18</td>
<td>RX_0−</td>
<td>Rx input</td>
<td>Rx Channel 0 Complement Input.</td>
</tr>
<tr>
<td>A19</td>
<td>RX_1−</td>
<td>Rx input</td>
<td>Rx Channel 1 Complement Input.</td>
</tr>
<tr>
<td>A20</td>
<td>RX_2−</td>
<td>Rx input</td>
<td>Rx Channel 2 Complement Input.</td>
</tr>
<tr>
<td>A21</td>
<td>CVDD1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A22</td>
<td>RSET1</td>
<td>Miscellaneous analog†</td>
<td>Resistor Current Setting for DAC1, DAC2, and DAC3. Place the RSET1 resistor as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>A23</td>
<td>VREF</td>
<td>Miscellaneous analog†</td>
<td>Optional External Voltage Reference Input for DACx or Voltage Reference Output. Place VREF voltage components as close as possible to the ADV8005.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>OSD_VS</td>
<td>OSD video sync</td>
<td>Vertical Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>B4</td>
<td>AUD_IN[0]</td>
<td>Audio input</td>
<td>S/PDIF/DSD0 Audio Input.</td>
</tr>
<tr>
<td>B6</td>
<td>SFL</td>
<td>SFL</td>
<td>Subcarrier Frequency Lock Signal.</td>
</tr>
<tr>
<td>B7</td>
<td>ARC1_OUT</td>
<td>Audio output</td>
<td>Audio Return Channel for HDMI Tx1.</td>
</tr>
<tr>
<td>B8</td>
<td>MOSI0</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>B9</td>
<td>MOSI2</td>
<td>Serial port control</td>
<td>Master Output Slave Input (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B10</td>
<td>MOSI2</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B11</td>
<td>ALSB</td>
<td>I²C control</td>
<td>This pin sets the LSB of the I²C address. When the ALSB pin is set low, the I²C address is 0x18; when the ALSB pin is set high, the I²C address is 0x1A.</td>
</tr>
<tr>
<td>B12</td>
<td>XTALP</td>
<td>Miscellaneous 1.8 V</td>
<td>Input Pin for 27 MHz Crystal or an External 1.8 V, 27 MHz Clock Oscillator Source to Clock the ADV8005.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analog†</td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td>PVDD1</td>
<td>Power</td>
<td>PLL Analog Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>B14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>B17</td>
<td>RX_C+</td>
<td>Rx input</td>
<td>Rx Clock True Input.</td>
</tr>
<tr>
<td>B18</td>
<td>RX_0+</td>
<td>Rx input</td>
<td>Rx Channel 0 True Input.</td>
</tr>
<tr>
<td>B19</td>
<td>RX_1+</td>
<td>Rx input</td>
<td>Rx Channel 1 True Input.</td>
</tr>
<tr>
<td>B20</td>
<td>RX_2+</td>
<td>Rx input</td>
<td>Rx Channel 2 True Input.</td>
</tr>
<tr>
<td>B21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>B22</td>
<td>COMP1</td>
<td>Miscellaneous analog†</td>
<td>Compensation Pin. Connect a 2.2 nF capacitor from COMP1 to AVDD2.</td>
</tr>
<tr>
<td>B23</td>
<td>DAC4</td>
<td>Analog video output</td>
<td>Encoder DAC4 Output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C5</td>
<td>DSD_CLK</td>
<td>Audio input</td>
<td>DSD Audio Clock Input.</td>
</tr>
<tr>
<td>C6</td>
<td>SCLK</td>
<td>Audio input</td>
<td>I²S Bit Clock Input.</td>
</tr>
<tr>
<td>C7</td>
<td>SCL</td>
<td>I²C control</td>
<td>I²C Clock Input. SCL is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.</td>
</tr>
<tr>
<td>C8</td>
<td>SCK1</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>C9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C10</td>
<td>INT0</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin 0. When the status bits change, this pin is triggered.</td>
</tr>
<tr>
<td>C11</td>
<td>PDN</td>
<td>Miscellaneous digital</td>
<td>Power-Down. This pin controls the power state of the ADV8005.</td>
</tr>
<tr>
<td>C12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
</tbody>
</table>
ADV8005 Data Sheet

### Pin No.	Mnemonic	Type	Description
C14 | DNC | Not applicable | Do Not Connect. Do not connect to this pin.
C16 | RX_HP D | Rx input | Hot Plug Assert Signal Output for the Rx Input.
C17 | AVDD1 | Power | HDMI Rx Inputs Analog Supply (3.3 V).
C18 | GND | GND | Ground.
C19 | GND | GND | Ground.
C20 | AVDD1 | Power | HDMI Rx Inputs Analog Supply (3.3 V).
C21 | AVDD1 | Power | HDMI Rx Inputs Analog Supply (3.3 V).
C22 | DAC5 | Analog video output | Encoder DAC5 Output.
C23 | DAC6 | Analog video output | Encoder DAC6 Output.
D1 | OSD_IN[16]/EXT_DIN[0] | OSD video input/ | External OSD Video Pixel Input Port 16 (OSD_IN[16]).
D2 | OSD_IN[17]/EXT_DIN[1] | OSD video input/ | External OSD Video Pixel Input Port 17 (OSD_IN[17]).
D3 | OSD_IN[18]/EXT_DIN[2] | OSD video input/ | External OSD Video Pixel Input Port 18 (OSD_IN[18]).
D4 | GND | GND | Ground.
D5 | DVDD_IO | Power | Digital Interface Supply (3.3 V).
D6 | MCLK | Audio input | Master Clock for S/PDIF Input Audio.
D7 | SDA | I²C control | I²C Data Input. SDA is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.
D8 | CST | Serial port control | Chip Select (Serial Port 1). Serial Port 1 is used for OSD control.
D9 | GND | GND | Ground.
D10 | INT1 | Miscellaneous digital | Interrupt Pin for HDMI Transmitter Outputs. When the status bits change, an interrupt is generated on this pin.
D11 | INT2 | Miscellaneous digital | Interrupt Pin for HDMI Receiver Inputs. When the status bits change, an interrupt is generated on this pin.
D12 | DVDD_IO | Power | Digital Interface Supply (3.3 V).
D13 | TEST1 | Miscellaneous digital | Test Pin. Float this pin.
D14 | REF_HS | Digital input | Reference Horizontal Sync Input for the Master Timing Block.
D15 | REF_VS | Digital input | Reference Vertical Sync Input for the Master Timing Block.
D16 | RX_5V | Rx input | 5 V Detect Pin for the Receiver Input.
D17 | DNC | Not applicable | Do Not Connect. Do not connect to this pin.
D18 | DNC | Not applicable | Do Not Connect. Do not connect to this pin.
D19 | RTERM | HDMI Rx input | This pin sets the internal termination resistance. Use a 500 Ω resistor between this pin and GND. Place the RTERM resistor as close as possible to the ADV8005.
D20 | AVDD2 | Power | Analog Power Supply (3.3 V).
D21 | AVDD2 | Power | Analog Power Supply (3.3 V).
D22 | DAC1 | Analog video output | Encoder DAC1 Output.
D23 | DAC2 | Analog video output | Encoder DAC2 Output.
E1 | OSD_IN[13]/VBI_SCK | OSD video input/ | External OSD Video Pixel Input Port 13 (OSD_IN[13]).
E2 | OSD_IN[14]/VBI_MOSI | OSD video input/ | External OSD Video Pixel Input Port 14 (OSD_IN[14]).
E3 | OSD_IN[15]/VBI_CS | OSD video input/ | External OSD Video Pixel Input Port 15 (OSD_IN[15]).
E4 | DVDD_IO | Power | Digital Interface Supply (3.3 V).
E20 | TEST2 | Miscellaneous analog | Test Pin. Float this pin.
E21 | GND | GND | Ground.
E22 | COMP2 | Miscellaneous analog1 | Compensation Pin. Connect a 2.2 nF capacitor to AVDD2.
E23 | DAC3 | Analog video output | Encoder DAC3 Output.
F20 | RSET2 | Miscellaneous analog1 | Resistor Current Setting for DAC4, DAC5, and DAC6. Place the RSET2 resistor as close as possible to the ADV8005.
F21 | PVDD3 | Power | PLL Supply (1.8 V).
<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>F23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>G7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G10</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G14</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G20</td>
<td>ELPF1</td>
<td>Miscellaneous analog</td>
<td>External Loop Filter for PLL 1. Connect to PVDD3.</td>
</tr>
<tr>
<td>G21</td>
<td>ELPF2</td>
<td>Miscellaneous analog</td>
<td>External Loop Filter for PLL 2. Connect to PVDD3.</td>
</tr>
<tr>
<td>G22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>H1</td>
<td>OSD_IN[1]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port 1.</td>
</tr>
<tr>
<td>H7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H22</td>
<td>TX1_2+</td>
<td>HDMI video</td>
<td>HDMI1 Channel 2 True Output.</td>
</tr>
<tr>
<td>H23</td>
<td>TX1_2−</td>
<td>HDMI video</td>
<td>HDMI1 Channel 2 Complement Output.</td>
</tr>
<tr>
<td>J1</td>
<td>DE</td>
<td>Digital video sync</td>
<td>Data Enable for Digital Input Video.</td>
</tr>
<tr>
<td>J2</td>
<td>HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for Digital Input Video.</td>
</tr>
<tr>
<td>J3</td>
<td>OSD_HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>J4</td>
<td>OSD_IN[0]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port 0.</td>
</tr>
<tr>
<td>J7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>J8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>J20</td>
<td>DDC1_SDA</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Data for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>J21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J22</td>
<td>TX1_1+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 True Output.</td>
</tr>
<tr>
<td>J23</td>
<td>TX1_1−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 Complement Output.</td>
</tr>
<tr>
<td>K1</td>
<td>VS</td>
<td>Digital video sync</td>
<td>Vertical Sync for Digital Input Video.</td>
</tr>
<tr>
<td>K2</td>
<td>PCLK</td>
<td>Digital video sync</td>
<td>Pixel Clock for Digital Input Video.</td>
</tr>
<tr>
<td>K3</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K4</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K20</td>
<td>DDC1_SCL</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Clock for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>K21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>K22</td>
<td>TX1_0+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 True Output.</td>
</tr>
<tr>
<td>K23</td>
<td>TX1_0−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 Complement Output.</td>
</tr>
<tr>
<td>L1</td>
<td>P[32]</td>
<td>Digital video input</td>
<td>Digital Video Input 32 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L2</td>
<td>P[33]</td>
<td>Digital video input</td>
<td>Digital Video Input 33 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L3</td>
<td>P[34]</td>
<td>Digital video input</td>
<td>Digital Video Input 34 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L4</td>
<td>P[35]</td>
<td>Digital video input</td>
<td>Digital Video Input 35 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>L8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L20</td>
<td>HPD_TX1</td>
<td>HDMI Tx1</td>
<td>Hot Plug Assert Signal Input for HDMI Tx1.</td>
</tr>
<tr>
<td>L21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>L22</td>
<td>TX1_C+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock True Output.</td>
</tr>
<tr>
<td>L23</td>
<td>TX1_C−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock Complement Output.</td>
</tr>
<tr>
<td>M1</td>
<td>P[28]</td>
<td>Digital video input</td>
<td>Digital Video Input 28 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M2</td>
<td>P[29]</td>
<td>Digital video input</td>
<td>Digital Video Input 29 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M4</td>
<td>P[31]</td>
<td>Digital video input</td>
<td>Digital Video Input 31 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>M15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>M20</td>
<td>R_TX1</td>
<td>HDMI Tx1</td>
<td>This pin sets the internal reference currents. Place a 470 Ω resistor (1% tolerance) between this pin and ground, as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>M21</td>
<td>PVDD5</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>M22</td>
<td>HEAC_1+</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Positive Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>M23</td>
<td>HEAC_1−</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Negative Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>N1</td>
<td>P[24]</td>
<td>Digital video input</td>
<td>Digital Video Input 24 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N3</td>
<td>P[26]</td>
<td>Digital video input</td>
<td>Digital Video Input 26 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N4</td>
<td>P[27]</td>
<td>Digital video input</td>
<td>Digital Video Input 27 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>N20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>N21</td>
<td>PVDD5</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>N22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>N23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P1</td>
<td>P[20]</td>
<td>Digital video input</td>
<td>Digital Video Input 20 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P2</td>
<td>P[21]</td>
<td>Digital video input</td>
<td>Digital Video Input 21 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P3</td>
<td>P[22]</td>
<td>Digital video input</td>
<td>Digital Video Input 22 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P4</td>
<td>P[23]</td>
<td>Digital video input</td>
<td>Digital Video Input 23 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P20</td>
<td>DDC2_SCL</td>
<td>HDMI Tx2</td>
<td>HDCP Slave Serial Clock for HDMI Tx2. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>P21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>P22</td>
<td>TX2_2+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 2 True Output.</td>
</tr>
<tr>
<td>P23</td>
<td>TX2_2−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 2 Complement Output.</td>
</tr>
<tr>
<td>R1</td>
<td>P[16]</td>
<td>Digital video input</td>
<td>Digital Video Input 16 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R2</td>
<td>P[17]</td>
<td>Digital video input</td>
<td>Digital Video Input 17 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R3</td>
<td>P[18]</td>
<td>Digital video input</td>
<td>Digital Video Input 18 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R4</td>
<td>P[19]</td>
<td>Digital video input</td>
<td>Digital Video Input 19 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>R12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R20</td>
<td>DDC2_SDA</td>
<td>HDMI Tx2</td>
<td>HDCP Slave Serial Data for HDMI Tx2. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>R21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R22</td>
<td>TX2_1+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 1 True Output.</td>
</tr>
<tr>
<td>R23</td>
<td>TX2_1−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 1 Complement Output.</td>
</tr>
<tr>
<td>T1</td>
<td>P[14]</td>
<td>Digital video input</td>
<td>Digital Video Input 14 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>T3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T5</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T6</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T20</td>
<td>HPD_TX2</td>
<td>HDMI Tx2</td>
<td>Hot Plug Assert Signal Input for HDMI Tx2.</td>
</tr>
<tr>
<td>T21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T22</td>
<td>TX2_0+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 0 True Output.</td>
</tr>
<tr>
<td>T23</td>
<td>TX2_0−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 0 Complement Output.</td>
</tr>
<tr>
<td>U1</td>
<td>P[10]</td>
<td>Digital video input</td>
<td>Digital Video Input 10 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U3</td>
<td>P[12]</td>
<td>Digital video input</td>
<td>Digital Video Input 12 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U9</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U12</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U15</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U20</td>
<td>R_TX2</td>
<td>HDMI Tx2</td>
<td>This pin sets the internal reference currents. Place a 470 Ω resistor (1% tolerance) between this pin and ground, as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>U21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U22</td>
<td>TX2_C+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Clock True Output.</td>
</tr>
<tr>
<td>U23</td>
<td>TX2_C−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Clock Complement Output.</td>
</tr>
<tr>
<td>V2</td>
<td>P[7]</td>
<td>Digital video input</td>
<td>Digital Video Input 7 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V3</td>
<td>P[8]</td>
<td>Digital video input</td>
<td>Digital Video Input 8 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>V21</td>
<td>PVDD6</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>V22</td>
<td>HEAC_2+</td>
<td>HDMI Tx2</td>
<td>HDMI Ethernet and Audio Channel Positive Tx2 from the HDMI Connector.</td>
</tr>
<tr>
<td>V23</td>
<td>HEAC_2−</td>
<td>HDMI Tx2</td>
<td>HDMI Ethernet and Audio Channel Negative Tx2 from the HDMI Connector.</td>
</tr>
<tr>
<td>W1</td>
<td>P[2]</td>
<td>Digital video input</td>
<td>Digital Video Input 2 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>W20</td>
<td>TEST3</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Connect this pin to ground through a 0.1 μF capacitor.</td>
</tr>
<tr>
<td>W21</td>
<td>PVDD6</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>W22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>W23</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>Y1</td>
<td>P[0]</td>
<td>Digital video input</td>
<td>Digital Video Input 0 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Y2</td>
<td>P[1]</td>
<td>Digital video input</td>
<td>Digital Video Input 1 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Y4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y5</td>
<td>DDR_DQ[23]</td>
<td>DDR interface</td>
<td>Data Line 23. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>Y6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y13</td>
<td>DDR_CAS</td>
<td>DDR interface</td>
<td>Column Address Strobe for DDR Memory.</td>
</tr>
<tr>
<td>Y14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y15</td>
<td>DDR_CK</td>
<td>DDR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>Y16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y22</td>
<td>PVDD_DDR</td>
<td>Power</td>
<td>DDR Interface PLL Supply (1.8 V).</td>
</tr>
<tr>
<td>Y23</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA2</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA7</td>
<td>DDR_DQS[3]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[31:24], Complement.</td>
</tr>
<tr>
<td>AA8</td>
<td>DDR_A[13]</td>
<td>DDR interface</td>
<td>Address Line 13. Interface to external RAM address lines. For designs that maintain consistency with the ADV8002 or the ADV8003, this pin can be grounded or left unconnected.</td>
</tr>
<tr>
<td>AA10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA13</td>
<td>DDR_CS</td>
<td>DDR interface</td>
<td>DDR Chip Select. Interface to external DDR RAM chip selects.</td>
</tr>
<tr>
<td>AA14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA15</td>
<td>DDR_CK</td>
<td>DDR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>AA16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA20</td>
<td>DDR_DM[0]</td>
<td>DDR interface</td>
<td>Data Mask for Data Lines[7:0].</td>
</tr>
<tr>
<td>AA21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>AA22</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>AB3</td>
<td>DDR_DQ[17]</td>
<td>DDR interface</td>
<td>Data Line 17. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB7</td>
<td>DDR_DQ[31]</td>
<td>DDR interface</td>
<td>Data Line 31. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB8</td>
<td>DDR_DQ[29]</td>
<td>DDR interface</td>
<td>Data Line 29. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB12</td>
<td>DDR_A[0]</td>
<td>DDR interface</td>
<td>Address Line 0. Interface to external RAM address lines.</td>
</tr>
<tr>
<td>AB13</td>
<td>DDR_BA[0]</td>
<td>DDR interface</td>
<td>Bank Address Line 0. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AB14</td>
<td>DDR_RAS</td>
<td>DDR interface</td>
<td>Row Address Strobe for DDR Memory.</td>
</tr>
<tr>
<td>AB15</td>
<td>DDR_CKE</td>
<td>DDR interface</td>
<td>Clock Enable for External DDR Memory.</td>
</tr>
<tr>
<td>AB20</td>
<td>DDR_DQ[0]</td>
<td>DDR interface</td>
<td>Data Line 0. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB22</td>
<td>DDR_DQS[0]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[7:0]. True.</td>
</tr>
<tr>
<td>AC3</td>
<td>DDR_DQ[22]</td>
<td>DDR interface</td>
<td>Data Line 22. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC6</td>
<td>DDR_DQ[27]</td>
<td>DDR interface</td>
<td>Data Line 27. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC13</td>
<td>DDR_BA[1]</td>
<td>DDR interface</td>
<td>Bank Address Line 1. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC14</td>
<td>DDR_BA[2]</td>
<td>DDR interface</td>
<td>Bank Address Line 2. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC15</td>
<td>DDR_WE</td>
<td>DDR interface</td>
<td>Write Enable Signal for DDR RAM.</td>
</tr>
<tr>
<td>AC16</td>
<td>DDR_VREF</td>
<td>DDR interface^</td>
<td>Reference Voltage for DDR RAM.</td>
</tr>
<tr>
<td>AC22</td>
<td>DDR_DQS[0]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[7:0]. Complement.</td>
</tr>
<tr>
<td>AC23</td>
<td>DDR_DQ[1]</td>
<td>DDR interface</td>
<td>Data Line 1. Interface to external RAM data lines.</td>
</tr>
</tbody>
</table>

\^ Sensitive node. Careful layout is important. Keep the associated circuitry as close as possible to the ADV8005.
Table 6. ADV8005KBCZ-8B Pin Function Descriptions

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>OSD_IN[23]</td>
<td>OSD video input/miscellaneous digital</td>
<td>External OSD Video Pixel Input Port 23 (OSD_IN[23]). Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[7]).</td>
</tr>
<tr>
<td>A2</td>
<td>OSD_DE</td>
<td>OSD video sync</td>
<td>Data Enable for the OSD Input Port.</td>
</tr>
<tr>
<td>A3</td>
<td>OSD_CLK/EXT_CLK</td>
<td>OSD video sync</td>
<td>Pixel Clock for the OSD Input Port (OSD_CLK).</td>
</tr>
<tr>
<td>A4</td>
<td>AUD_IN[1]</td>
<td>Audio input</td>
<td>I^50/DSDD1 Audio Input.</td>
</tr>
<tr>
<td>A7</td>
<td>TEST4</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Connect this pin to ground through a 4.7 kΩ resistor.</td>
</tr>
<tr>
<td>A8</td>
<td>MOSI1</td>
<td>Serial port control</td>
<td>Master Output Slave Input (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>A9</td>
<td>SCK2</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A10</td>
<td>CS2</td>
<td>Serial port control</td>
<td>Chip Select (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A11</td>
<td>RESET</td>
<td>Miscellaneous digital</td>
<td>Reset Pin.</td>
</tr>
<tr>
<td>A12</td>
<td>XTALN</td>
<td>Miscellaneous 1.8 V</td>
<td>Crystal Output Pin. Leave this pin floating if a clock oscillator is used.</td>
</tr>
<tr>
<td>A13</td>
<td>PVDD2</td>
<td>Power</td>
<td>PLL Digital Supply Voltage (1.8 V).</td>
</tr>
</tbody>
</table>

Figure 29. ADV8005KBCZ-8B Pin Configuration
<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A16</td>
<td>CVDD1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A17</td>
<td>RX_C−</td>
<td>Rx input</td>
<td>Rx Clock Complement Input.</td>
</tr>
<tr>
<td>A18</td>
<td>RX_0−</td>
<td>Rx input</td>
<td>Rx Channel 0 Complement Input.</td>
</tr>
<tr>
<td>A19</td>
<td>RX_1−</td>
<td>Rx input</td>
<td>Rx Channel 1 Complement Input.</td>
</tr>
<tr>
<td>A20</td>
<td>RX_2−</td>
<td>Rx input</td>
<td>Rx Channel 2 Complement Input.</td>
</tr>
<tr>
<td>A21</td>
<td>CVDD1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[5]).</td>
</tr>
<tr>
<td>B2</td>
<td>OSD_IN[22]/EXT_DIN[6]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 22 (OSD_IN[22]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[6]).</td>
</tr>
<tr>
<td>B3</td>
<td>OSD_VS</td>
<td>OSD video sync</td>
<td>Vertical Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>B4</td>
<td>AUD_IN[0]</td>
<td>Audio input</td>
<td>S/PDIF/DSD0 Audio Input.</td>
</tr>
<tr>
<td>B6</td>
<td>SFL</td>
<td>SFL</td>
<td>Subcarrier Frequency Lock Signal.</td>
</tr>
<tr>
<td>B7</td>
<td>ARC1_OUT</td>
<td>Audio output</td>
<td>Audio Return Channel for HDMI Tx1.</td>
</tr>
<tr>
<td>B8</td>
<td>MOSI1</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>B9</td>
<td>MOSI2</td>
<td>Serial port control</td>
<td>Master Output Slave Input (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B10</td>
<td>MOSI2</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B11</td>
<td>ALSB</td>
<td>I2C control</td>
<td>This pin sets the LSB of the I2C address. When the ALSB pin is set low, the I2C address is 0x18; when the ALSB pin is set high, the I2C address is 0x1A.</td>
</tr>
<tr>
<td>B12</td>
<td>XTLAP</td>
<td>Miscellaneous 1.8 V Analog</td>
<td>Input Pin for 27 MHz Crystal or an External 1.8 V, 27 MHz Clock Oscillator Source to Clock the ADV8005.</td>
</tr>
<tr>
<td>B13</td>
<td>PVDD1</td>
<td>Power</td>
<td>PLL Analog Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>B14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>B17</td>
<td>RX_C+</td>
<td>Rx input</td>
<td>Rx Clock True Input.</td>
</tr>
<tr>
<td>B18</td>
<td>RX_0+</td>
<td>Rx input</td>
<td>Rx Channel 0 True Input.</td>
</tr>
<tr>
<td>B19</td>
<td>RX_1+</td>
<td>Rx input</td>
<td>Rx Channel 1 True Input.</td>
</tr>
<tr>
<td>B20</td>
<td>RX_2+</td>
<td>Rx input</td>
<td>Rx Channel 2 True Input.</td>
</tr>
<tr>
<td>B21</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>B22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C1</td>
<td>OSD_IN[19]/EXT_DIN[3]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 19 (OSD_IN[19]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[3]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[4]).</td>
</tr>
<tr>
<td>C3</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>C5</td>
<td>DSD_CLK</td>
<td>Audio input</td>
<td>DSD Audio Clock Input.</td>
</tr>
<tr>
<td>C6</td>
<td>SCLK</td>
<td>Audio input</td>
<td>I5S Bit Clock Input.</td>
</tr>
<tr>
<td>C7</td>
<td>SCL</td>
<td>I2C control</td>
<td>I2C Clock Input. This pin is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.</td>
</tr>
<tr>
<td>C8</td>
<td>SCK1</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>C9</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>C10</td>
<td>INTO</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin 0. When status bits change, this pin is triggered.</td>
</tr>
<tr>
<td>C11</td>
<td>PDN</td>
<td>Miscellaneous digital</td>
<td>Power-Down. This pin controls the power state of the ADV8005.</td>
</tr>
<tr>
<td>C12</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>C13</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>C14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C15</td>
<td>REF_CLK</td>
<td>Digital input</td>
<td>Reference Clock Input for the Master Timing Block.</td>
</tr>
<tr>
<td>C16</td>
<td>RX_HPD</td>
<td>Rx input</td>
<td>Hot Plug Assert Signal Output for the Rx Input.</td>
</tr>
<tr>
<td>C17</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>C18</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C19</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C20</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs, Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>C21</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs, Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>C22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D1</td>
<td>OSD_IN[16]/EXT_DIN[0]</td>
<td>OSD video input/ miscellaneous digital</td>
<td>External OSD Video Pixel Input Port 16 (OSD_IN[16]).</td>
</tr>
<tr>
<td>D2</td>
<td>OSD_IN[17]/EXT_DIN[1]</td>
<td>OSD video input/ miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[1]).</td>
</tr>
<tr>
<td>D4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>D5</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>D6</td>
<td>MCLK</td>
<td>Audio input</td>
<td>MCLK for S/PDIF Input Audio.</td>
</tr>
<tr>
<td>D7</td>
<td>SDA</td>
<td>I²C control</td>
<td>I²C Data Input. SDA is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.</td>
</tr>
<tr>
<td>D8</td>
<td>CST</td>
<td>Serial port control</td>
<td>Chip Select (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>D9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>D10</td>
<td>INT1</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin for HDMI Transmitter Outputs. When the status bits change, an interrupt is generated on this pin.</td>
</tr>
<tr>
<td>D11</td>
<td>INT2</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin for HDMI Receiver Inputs. When the status bits change, an interrupt is generated on this pin.</td>
</tr>
<tr>
<td>D12</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>D13</td>
<td>TEST1</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Float this pin.</td>
</tr>
<tr>
<td>D14</td>
<td>REF_HS</td>
<td>Digital input</td>
<td>Reference Horizontal Sync Input for the Master Timing Block.</td>
</tr>
<tr>
<td>D15</td>
<td>REF_VS</td>
<td>Digital input</td>
<td>Reference Vertical Sync Input for the Master Timing Block.</td>
</tr>
<tr>
<td>D16</td>
<td>RX_5V</td>
<td>Rx input</td>
<td>5 V Detect Pin for the Rx Input.</td>
</tr>
<tr>
<td>D17</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D18</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D19</td>
<td>RTERM</td>
<td>HDMI Rx input</td>
<td>This pin sets the internal termination resistance. Use a 500 Ω resistor between this pin and GND. Place the RTERM resistor as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>D20</td>
<td>AVDD2</td>
<td>Power</td>
<td>Analog Power Supply (3.3 V).</td>
</tr>
<tr>
<td>D21</td>
<td>AVDD2</td>
<td>Power</td>
<td>Analog Power Supply (3.3 V).</td>
</tr>
<tr>
<td>D22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>E1</td>
<td>OSD_IN[13]/VBI_SCK</td>
<td>OSD video input/ miscellaneous digital</td>
<td>Serial Clock for Video Blanking Interval (VBI_SCK).</td>
</tr>
<tr>
<td>E2</td>
<td>OSD_IN[14]/VBI_MOSI</td>
<td>OSD video input/ miscellaneous digital</td>
<td>External OSD Video Pixel Input Port 14 (OSD_IN[14]).</td>
</tr>
<tr>
<td>E3</td>
<td>OSD_IN[15]/VBI_CS</td>
<td>OSD video input/ miscellaneous digital</td>
<td>External OSD Video Pixel Input Port 15 (OSD_IN[15]).</td>
</tr>
<tr>
<td>E4</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>E20</td>
<td>TEST2</td>
<td>Miscellaneous analog</td>
<td>Test Pin. Float this pin.</td>
</tr>
<tr>
<td>E21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>E22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>E23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>F20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>F21</td>
<td>PVDD3</td>
<td>Power</td>
<td>PLL Supply (1.8 V).</td>
</tr>
<tr>
<td>F22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>F23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>G7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G10</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G13</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G20</td>
<td>ELPF1</td>
<td>Miscellaneous</td>
<td>External Loop Filter for PLL 1. Connect to PVDD3.</td>
</tr>
<tr>
<td>G21</td>
<td>ELPF2</td>
<td>Miscellaneous</td>
<td>External Loop Filter for PLL 2. Connect to PVDD3.</td>
</tr>
<tr>
<td>G22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>H1</td>
<td>OSD_IN[1]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port 1.</td>
</tr>
<tr>
<td>H7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H22</td>
<td>TX1_2+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 2 True Output.</td>
</tr>
<tr>
<td>H23</td>
<td>TX1_2−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 2 Complement Output.</td>
</tr>
<tr>
<td>J1</td>
<td>DE</td>
<td>Digital video sync</td>
<td>Data Enable for Digital Input Video.</td>
</tr>
<tr>
<td>J2</td>
<td>HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for Digital Input Video.</td>
</tr>
<tr>
<td>J3</td>
<td>OSD_HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>J4</td>
<td>OSD_IN[0]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port 0.</td>
</tr>
<tr>
<td>J7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>J8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>J20</td>
<td>DDC1_SDA</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Data for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>J21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>J22</td>
<td>TX1_1+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 True Output.</td>
</tr>
<tr>
<td>J23</td>
<td>TX1_1−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 Complement Output.</td>
</tr>
<tr>
<td>K1</td>
<td>VS</td>
<td>Digital video sync</td>
<td>Vertical Sync for Digital Input Video.</td>
</tr>
<tr>
<td>K2</td>
<td>PCLK</td>
<td>Digital video sync</td>
<td>Pixel Clock for Digital Input Video.</td>
</tr>
<tr>
<td>K3</td>
<td>VDD1_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K4</td>
<td>VDD2_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K7</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K8</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K9</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K10</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K11</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K12</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K13</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K14</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K15</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K17</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K20</td>
<td>DDC1_SCL</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Clock for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>K21</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>K22</td>
<td>TX1_0+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 True Output.</td>
</tr>
<tr>
<td>K23</td>
<td>TX1_0−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 Complement Output.</td>
</tr>
<tr>
<td>L1</td>
<td>P[32]</td>
<td>Digital video input</td>
<td>Digital Video Input 32 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L2</td>
<td>P[33]</td>
<td>Digital video input</td>
<td>Digital Video Input 33 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L3</td>
<td>P[34]</td>
<td>Digital video input</td>
<td>Digital Video Input 34 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L4</td>
<td>P[35]</td>
<td>Digital video input</td>
<td>Digital Video Input 35 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>L8</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L9</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L10</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L11</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L12</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L13</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L14</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L15</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L17</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L20</td>
<td>HPD_TX1</td>
<td>HDMI Tx1</td>
<td>Hot Plug Assert Signal Input for HDMI Tx1.</td>
</tr>
<tr>
<td>L21</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>L22</td>
<td>TX1_C+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock True Output.</td>
</tr>
<tr>
<td>L23</td>
<td>TX1_C−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock Complement Output.</td>
</tr>
<tr>
<td>M1</td>
<td>P[28]</td>
<td>Digital video input</td>
<td>Digital Video Input 28 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M2</td>
<td>P[29]</td>
<td>Digital video input</td>
<td>Digital Video Input 29 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M4</td>
<td>P[31]</td>
<td>Digital video input</td>
<td>Digital Video Input 31 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M7</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M8</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M9</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M10</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M11</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M12</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M13</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M14</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M15</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>M17</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>M20</td>
<td>R_TX1</td>
<td>HDMI Tx1</td>
<td>This pin sets the internal reference currents. Place a 470 Ω resistor (1% tolerance) between this pin and ground, as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>M21</td>
<td>PVDD5</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>M22</td>
<td>HEAC_1+</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Positive Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>M23</td>
<td>HEAC_1−</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Negative Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>N1</td>
<td>P[24]</td>
<td>Digital video input</td>
<td>Digital Video Input 24 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N3</td>
<td>P[26]</td>
<td>Digital video input</td>
<td>Digital Video Input 26 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N4</td>
<td>P[27]</td>
<td>Digital video input</td>
<td>Digital Video Input 27 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N17</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>N20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>N21</td>
<td>PVDD5</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>N22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>N23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P1</td>
<td>P[20]</td>
<td>Digital video input</td>
<td>Digital Video Input 20 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P2</td>
<td>P[21]</td>
<td>Digital video input</td>
<td>Digital Video Input 21 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P3</td>
<td>P[22]</td>
<td>Digital video input</td>
<td>Digital Video Input 22 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P4</td>
<td>P[23]</td>
<td>Digital video input</td>
<td>Digital Video Input 23 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>P21</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>P23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>R1</td>
<td>P[16]</td>
<td>Digital video input</td>
<td>Digital Video Input 16 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R2</td>
<td>P[17]</td>
<td>Digital video input</td>
<td>Digital Video Input 17 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R3</td>
<td>P[18]</td>
<td>Digital video input</td>
<td>Digital Video Input 18 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R4</td>
<td>P[19]</td>
<td>Digital video input</td>
<td>Digital Video Input 19 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>R15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>R16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>R21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>R23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>T1</td>
<td>P[14]</td>
<td>Digital video input</td>
<td>Digital Video Input 14 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>T3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>T21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>T23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>U1</td>
<td>P[10]</td>
<td>Digital video input</td>
<td>Digital Video Input 10 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U3</td>
<td>P[12]</td>
<td>Digital video input</td>
<td>Digital Video Input 12 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U9</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U12</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U15</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>U21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>U23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>V2</td>
<td>P[7]</td>
<td>Digital video input</td>
<td>Digital Video Input 7 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V3</td>
<td>P[8]</td>
<td>Digital video input</td>
<td>Digital Video Input 8 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>V21</td>
<td>PVDD6</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>V22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>V23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>W1</td>
<td>P[2]</td>
<td>Digital video input</td>
<td>Digital Video Input 2 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>W20</td>
<td>TEST3</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Connect this pin to ground through a 0.1 μF capacitor.</td>
</tr>
<tr>
<td>W21</td>
<td>PVDD6</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>W22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>W23</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>Y1</td>
<td>P[0]</td>
<td>Digital video input</td>
<td>Digital Video Input 0 of Bus P[35] to P[0].</td>
</tr>
<tr>
<td>Y4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y5</td>
<td>DDR_DQ[23]</td>
<td>DRR interface</td>
<td>Data Line 23. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>Y6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y13</td>
<td>DDR_CAS</td>
<td>DRR interface</td>
<td>Column Address Strobe for DDR Memory.</td>
</tr>
<tr>
<td>Y14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y15</td>
<td>DDR_CK</td>
<td>DRR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>Y16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y22</td>
<td>PVDD_DDR</td>
<td>Power</td>
<td>DDR Interface PLL Supply (1.8 V).</td>
</tr>
<tr>
<td>Y23</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA1</td>
<td>DDR_DQ[18]</td>
<td>DRR interface</td>
<td>Data Line 18. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AA2</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA7</td>
<td>DDR_DQS[3]</td>
<td>DRR interface</td>
<td>Data Strobe for DDR Data Bytes[31:24], Complement.</td>
</tr>
<tr>
<td>AA10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA13</td>
<td>DDR_CS</td>
<td>DRR interface</td>
<td>DDR Chip Select. Interface to external DDR RAM chip selects.</td>
</tr>
<tr>
<td>AA14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA15</td>
<td>DDR_CK</td>
<td>DRR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>AA16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA20</td>
<td>DDR_DM[0]</td>
<td>DRR interface</td>
<td>Data Mask for Data Lines[7:0].</td>
</tr>
<tr>
<td>AA21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>AB7</td>
<td>DDR_DQ[31]</td>
<td>DDR interface</td>
<td>Data Line 31. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB8</td>
<td>DDR_DQ[29]</td>
<td>DDR interface</td>
<td>Data Line 29. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB12</td>
<td>DDR_A[0]</td>
<td>DDR interface</td>
<td>Address Line 0. Interface to external RAM address lines.</td>
</tr>
<tr>
<td>AB13</td>
<td>DDR_BA[0]</td>
<td>DDR interface</td>
<td>Bank Address Line 0. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AB14</td>
<td>DDR_RAS</td>
<td>DDR interface</td>
<td>Row Address Strobe for DDR Memory.</td>
</tr>
<tr>
<td>AB15</td>
<td>DDR_CKE</td>
<td>DDR interface</td>
<td>Clock Enable for External DDR Memory.</td>
</tr>
<tr>
<td>AB20</td>
<td>DDR_DQ[0]</td>
<td>DDR interface</td>
<td>Data Line 0. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB22</td>
<td>DDR_DQ[0]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[7:0], True.</td>
</tr>
<tr>
<td>AC3</td>
<td>DDR_DQ[22]</td>
<td>DDR interface</td>
<td>Data Line 22. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC6</td>
<td>DDR_DQ[27]</td>
<td>DDR interface</td>
<td>Data Line 27. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC13</td>
<td>DDR_BA[1]</td>
<td>DDR interface</td>
<td>Bank Address Line 1. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC14</td>
<td>DDR_BA[2]</td>
<td>DDR interface</td>
<td>Bank Address Line 2. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC15</td>
<td>DDR_WE</td>
<td>DDR interface</td>
<td>Write Enable Signal for DDR RAM.</td>
</tr>
<tr>
<td>AC16</td>
<td>DDR_VREF</td>
<td>DDR interface</td>
<td>Reference Voltage for DDR RAM.</td>
</tr>
<tr>
<td>AC18</td>
<td>DDR_DQS[1]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[15:8], Complement.</td>
</tr>
<tr>
<td>AC22</td>
<td>DDR_DQS[0]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[7:0], Complement.</td>
</tr>
<tr>
<td>AC23</td>
<td>DDR_DQ[1]</td>
<td>DDR interface</td>
<td>Data Line 1. Interface to external RAM data lines.</td>
</tr>
</tbody>
</table>

1 Sensitive node. Careful layout is important. Keep the associated circuitry as close as possible to the ADV8005.
Table 7. **ADV8005KBCZ-8C Pin Function Descriptions**

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>OSD_IN[23]/EXT_IN[7]</td>
<td>OSD video input/miscellaneous digital</td>
<td>External OSD Video Pixel Input Port 23 (OSD_IN[23]).</td>
</tr>
<tr>
<td>A2</td>
<td>OSD_DE</td>
<td>OSD video sync</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_IN[7]).</td>
</tr>
<tr>
<td>A3</td>
<td>OSD_CLK/EXT_CLK</td>
<td>OSD video sync</td>
<td>Data Enable for the OSD Input Port.</td>
</tr>
<tr>
<td>A4</td>
<td>AUD_IN[1]</td>
<td>Audio input</td>
<td>Pixel Clock for the OSD Input Port (OSD_CLK).</td>
</tr>
<tr>
<td>A7</td>
<td>ARC2_OUT</td>
<td>Audio output</td>
<td>Audio Return Channel for HDMI Tx2.</td>
</tr>
<tr>
<td>A8</td>
<td>MOSI1</td>
<td>Serial port control</td>
<td>Master Output Slave Input (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>A9</td>
<td>SCK2</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A10</td>
<td>CS2</td>
<td>Serial port control</td>
<td>Chip Select (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>A11</td>
<td>RESET</td>
<td>Miscellaneous digital</td>
<td>Reset Pin.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>A12</td>
<td>XTALN</td>
<td>Miscellaneous 1.8 V Analóg</td>
<td>Crystal Output Pin. Leave this pin floating if a clock oscillator is used.</td>
</tr>
<tr>
<td>A13</td>
<td>PVDD2</td>
<td>Power</td>
<td>PLL Digital Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>A16</td>
<td>CVDI1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A17</td>
<td>RX_C−</td>
<td>Rx input</td>
<td>Rx Clock Complement Input.</td>
</tr>
<tr>
<td>A18</td>
<td>RX_0−</td>
<td>Rx input</td>
<td>Rx Channel 0 Complement Input.</td>
</tr>
<tr>
<td>A19</td>
<td>RX_1−</td>
<td>Rx input</td>
<td>Rx Channel 1 Complement Input.</td>
</tr>
<tr>
<td>A20</td>
<td>RX_2−</td>
<td>Rx input</td>
<td>Rx Channel 2 Complement Input.</td>
</tr>
<tr>
<td>A21</td>
<td>CVDI1</td>
<td>Power</td>
<td>Comparator Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>A22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B3</td>
<td>OSD_V5</td>
<td>OSD video sync</td>
<td>Vertical Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>B4</td>
<td>AUD_IN[0]</td>
<td>Audio input</td>
<td>S/PDIF/DSD0 Audio Input.</td>
</tr>
<tr>
<td>B6</td>
<td>SFL</td>
<td>SFL</td>
<td>Subcarrier Frequency Lock Signal.</td>
</tr>
<tr>
<td>B7</td>
<td>ARC_I_OUT</td>
<td>Audio output</td>
<td>Audio Return Channel for HDMI Tx1.</td>
</tr>
<tr>
<td>B8</td>
<td>MISO1</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>B9</td>
<td>MOSI2</td>
<td>Serial port control</td>
<td>Master Slave Input (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B10</td>
<td>MISO2</td>
<td>Serial port control</td>
<td>Master Input Slave Output (Serial Port 2). Serial Port 2 is used for the external flash ROM.</td>
</tr>
<tr>
<td>B11</td>
<td>ALSB</td>
<td>I'C control</td>
<td>This pin sets the LSb of the I'C address. When the ALSB pin is set low, the I'C address is 0x18; when the ALSB pin is set high, the I'C address is 0x1A.</td>
</tr>
<tr>
<td>B12</td>
<td>XTALP</td>
<td>Miscellaneous 1.8 V Analóg</td>
<td>Input Pin for 27 MHz Crystal or an External 1.8 V, 27 MHz Clock Oscillator Source to Clock the ADV8005.</td>
</tr>
<tr>
<td>B13</td>
<td>PVDD1</td>
<td>Power</td>
<td>PLL Analog Supply Voltage (1.8 V).</td>
</tr>
<tr>
<td>B14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B15</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B16</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>B17</td>
<td>RX_C+</td>
<td>Rx input</td>
<td>Rx Clock True Input.</td>
</tr>
<tr>
<td>B18</td>
<td>RX_0+</td>
<td>Rx input</td>
<td>Rx Channel 0 True Input.</td>
</tr>
<tr>
<td>B19</td>
<td>RX_1+</td>
<td>Rx input</td>
<td>Rx Channel 1 True Input.</td>
</tr>
<tr>
<td>B20</td>
<td>RX_2+</td>
<td>Rx input</td>
<td>Rx Channel 2 True Input.</td>
</tr>
<tr>
<td>B21</td>
<td>GND</td>
<td>Ground</td>
<td>Ground.</td>
</tr>
<tr>
<td>B22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>B23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C5</td>
<td>DSD_CLK</td>
<td>Audio input</td>
<td>DSD Audio Clock Input.</td>
</tr>
<tr>
<td>C6</td>
<td>SCLK</td>
<td>Audio input</td>
<td>I'S Bit Clock Input.</td>
</tr>
<tr>
<td>C7</td>
<td>SCL</td>
<td>I'C control</td>
<td>I'C Clock Input. SCL is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.</td>
</tr>
<tr>
<td>C8</td>
<td>SCK1</td>
<td>Serial port control</td>
<td>Serial Clock (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>C9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C10</td>
<td>INT0</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin 0. When the status bits change, this pin is triggered.</td>
</tr>
<tr>
<td>C11</td>
<td>PDN</td>
<td>Miscellaneous digital</td>
<td>Power-Down. This pin controls the power state of the ADV8005.</td>
</tr>
<tr>
<td>C12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C14</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C15</td>
<td>REF_CLK</td>
<td>Digital input</td>
<td>Reference Clock Input for the Master Timing Block.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>C16</td>
<td>RX_HPD</td>
<td>Rx input</td>
<td>Hot Plug Assert Signal Output for the Rx Input.</td>
</tr>
<tr>
<td>C17</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>C18</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C19</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>C20</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>C21</td>
<td>AVDD1</td>
<td>Power</td>
<td>HDMI Rx Inputs Analog Supply (3.3 V).</td>
</tr>
<tr>
<td>C22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>C23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D1</td>
<td>OSD_IN[16]/EXT_DIN[0]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 16 (OSD_IN[16]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[0]).</td>
</tr>
<tr>
<td>D2</td>
<td>OSD_IN[17]/EXT_DIN[1]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 17 (OSD_IN[17]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[1]).</td>
</tr>
<tr>
<td>D3</td>
<td>OSD_IN[18]/EXT_DIN[2]</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 18 (OSD_IN[18]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Additional TTL Input for External ITU-R BT.656 Video Data (EXT_DIN[2]).</td>
</tr>
<tr>
<td>D4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>D5</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>D6</td>
<td>MCLK</td>
<td>Audio input</td>
<td>MCLK for S/PDIF Input Audio.</td>
</tr>
<tr>
<td>D7</td>
<td>SDA</td>
<td>I²C control</td>
<td>I²C Data Input. SDA is open drain; use a 4.7 kΩ resistor to connect this pin to a 3.3 V supply.</td>
</tr>
<tr>
<td>D8</td>
<td>CST</td>
<td>Serial port control</td>
<td>Chip Select (Serial Port 1). Serial Port 1 is used for OSD control.</td>
</tr>
<tr>
<td>D9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>D10</td>
<td>INT1</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin for HDMI Transmitter Outputs. When the status bits change, an interrupt is generated on this pin.</td>
</tr>
<tr>
<td>D11</td>
<td>INT2</td>
<td>Miscellaneous digital</td>
<td>Interrupt Pin for HDMI Receiver Inputs. When the status bits change, an interrupt is generated on this pin.</td>
</tr>
<tr>
<td>D12</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>D13</td>
<td>TEST1</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Float this pin.</td>
</tr>
<tr>
<td>D14</td>
<td>REF_HS</td>
<td>Digital input</td>
<td>Reference Horizontal Sync Input for the Master Timing Block.</td>
</tr>
<tr>
<td>D15</td>
<td>REF_VS</td>
<td>Digital input</td>
<td>Reference Vertical Sync Input for the Master Timing Block.</td>
</tr>
<tr>
<td>D16</td>
<td>RX_5V</td>
<td>Rx input</td>
<td>5 V Detect Pin for the Rx Input.</td>
</tr>
<tr>
<td>D17</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D18</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D19</td>
<td>RTERM</td>
<td>HDMI Rx input</td>
<td>This pin sets the internal termination resistance. Use a 500 Ω resistor between this pin and GND. Place the RTERM resistor as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>D20</td>
<td>AVDD2</td>
<td>Power</td>
<td>Analog Power Supply (3.3 V).</td>
</tr>
<tr>
<td>D21</td>
<td>AVDD2</td>
<td>Power</td>
<td>Analog Power Supply (3.3 V).</td>
</tr>
<tr>
<td>D22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>D23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>E1</td>
<td>OSD_IN[13]/VBI_SCK</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 13 (OSD_IN[13]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Serial Clock for VideoBlankingInterval (VBI) Data Serial Port 3 (VBI_SCK).</td>
</tr>
<tr>
<td>E2</td>
<td>OSD_IN[14]/VBI_MOSI</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 14 (OSD_IN[14]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Master Output Slave Input for VBI Data Serial Port 3 (VBI_MOSI).</td>
</tr>
<tr>
<td>E3</td>
<td>OSD_IN[15]/VBI_CS</td>
<td>OSD video input/</td>
<td>External OSD Video Pixel Input Port 15 (OSD_IN[15]).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>miscellaneous digital</td>
<td>Chip Select for VBI Data Serial Port 3 (VBI_CS).</td>
</tr>
<tr>
<td>E4</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>E20</td>
<td>TEST2</td>
<td>Miscellaneous analog</td>
<td>Test Pin. Float this pin.</td>
</tr>
<tr>
<td>E21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>E22</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>E23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>F20</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>F21</td>
<td>PVDD3</td>
<td>Power</td>
<td>PLL Supply (1.8 V).</td>
</tr>
<tr>
<td>F22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>F23</td>
<td>DNC</td>
<td>Not applicable</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>G7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G10</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G13</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>G14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G20</td>
<td>ELPF1</td>
<td>Miscellaneous analog¹</td>
<td>External Loop Filter for PLL 1. Connect to PVDD3.</td>
</tr>
<tr>
<td>G21</td>
<td>ELPF2</td>
<td>Miscellaneous analog¹</td>
<td>External Loop Filter for PLL 2. Connect to PVDD3.</td>
</tr>
<tr>
<td>G22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>G23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>H1</td>
<td>OSD_IN[1]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port 1.</td>
</tr>
<tr>
<td>H7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H18</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H19</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>H22</td>
<td>TX1_2+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 2 True Output.</td>
</tr>
<tr>
<td>H23</td>
<td>TX1_2−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 2 Complement Output.</td>
</tr>
<tr>
<td>J1</td>
<td>DE</td>
<td>Digital video sync</td>
<td>Data Enable for Digital Input Video.</td>
</tr>
<tr>
<td>J2</td>
<td>HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for Digital Input Video.</td>
</tr>
<tr>
<td>J3</td>
<td>OSD_HS</td>
<td>Digital video sync</td>
<td>Horizontal Sync for the OSD Input Port.</td>
</tr>
<tr>
<td>J4</td>
<td>OSD_IN[0]</td>
<td>OSD video input</td>
<td>External OSD Video Pixel Input Port.</td>
</tr>
<tr>
<td>J7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>J8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>J17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>J20</td>
<td>DDC1_SDA</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Data for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>J21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>J22</td>
<td>TX1_1+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 True Output.</td>
</tr>
<tr>
<td>J23</td>
<td>TX1_1−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 1 Complement Output.</td>
</tr>
<tr>
<td>K1</td>
<td>VS</td>
<td>Digital video sync</td>
<td>Vertical Sync for Digital Input Video.</td>
</tr>
<tr>
<td>K2</td>
<td>PCLK</td>
<td>Digital video sync</td>
<td>Pixel Clock for Digital Input Video.</td>
</tr>
<tr>
<td>K3</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K4</td>
<td>DVDD_IO</td>
<td>Power</td>
<td>Digital Interface Supply (3.3 V).</td>
</tr>
<tr>
<td>K7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K17</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K20</td>
<td>DDC1_SCL</td>
<td>HDMI Tx1</td>
<td>HDCP Slave Serial Clock for HDMI Tx1. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>K21</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>K22</td>
<td>TX1_0+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 True Output.</td>
</tr>
<tr>
<td>K23</td>
<td>TX1_0−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Channel 0 Complement Output.</td>
</tr>
<tr>
<td>L1</td>
<td>P[32]</td>
<td>Digital video input</td>
<td>Digital Video Input 32 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L2</td>
<td>P[33]</td>
<td>Digital video input</td>
<td>Digital Video Input 33 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L3</td>
<td>P[34]</td>
<td>Digital video input</td>
<td>Digital Video Input 34 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L4</td>
<td>P[35]</td>
<td>Digital video input</td>
<td>Digital Video Input 35 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>L7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>L8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L17</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L20</td>
<td>HPD_TX1</td>
<td>HDMI Tx1</td>
<td>Hot Plug Assert Signal Input for HDMI Tx1.</td>
</tr>
<tr>
<td>L21</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>L22</td>
<td>TX1_C+</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock True Output.</td>
</tr>
<tr>
<td>L23</td>
<td>TX1_C−</td>
<td>HDMI Tx1</td>
<td>HDMI1 Clock Complement Output.</td>
</tr>
<tr>
<td>M1</td>
<td>P[28]</td>
<td>Digital video input</td>
<td>Digital Video Input 28 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M2</td>
<td>P[29]</td>
<td>Digital video input</td>
<td>Digital Video Input 29 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M4</td>
<td>P[31]</td>
<td>Digital video input</td>
<td>Digital Video Input 31 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>M7</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M8</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M9</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M10</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M11</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M12</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M13</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M14</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M15</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M16</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>M17</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>M20</td>
<td>R_TX1</td>
<td>HDMI Tx1</td>
<td>This pin sets the internal reference currents. Place a 470 Ω resistor (1% tolerance) between this pin and ground, as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>M21</td>
<td>PVDD5</td>
<td>Power1</td>
<td>HDMI Tx PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>M22</td>
<td>HEAC_1+</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Positive Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>M23</td>
<td>HEAC_1−</td>
<td>HDMI Tx1</td>
<td>HDMI Ethernet and Audio Channel Negative Tx1 from the HDMI Connector.</td>
</tr>
<tr>
<td>N1</td>
<td>P[24]</td>
<td>Digital video input</td>
<td>Digital Video Input 24 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N3</td>
<td>P[26]</td>
<td>Digital video input</td>
<td>Digital Video Input 26 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N4</td>
<td>P[27]</td>
<td>Digital video input</td>
<td>Digital Video Input 27 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>N7</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N8</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N9</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N11</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N12</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N13</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N14</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N15</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N16</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N17</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N18</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N19</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>N20</td>
<td>DNC</td>
<td>Do Not Connect.</td>
<td>Do Not Connect. Do not connect to this pin.</td>
</tr>
<tr>
<td>N21</td>
<td>PVDD5</td>
<td>Power1</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>N22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>N23</td>
<td>AVDD3</td>
<td>Power</td>
<td>HDMI Tx1 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P1</td>
<td>P[20]</td>
<td>Digital video input</td>
<td>Digital Video Input 20 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P2</td>
<td>P[21]</td>
<td>Digital video input</td>
<td>Digital Video Input 21 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P3</td>
<td>P[22]</td>
<td>Digital video input</td>
<td>Digital Video Input 22 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P4</td>
<td>P[23]</td>
<td>Digital video input</td>
<td>Digital Video Input 23 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>P7</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P8</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P13</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P15</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P16</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P17</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>P20</td>
<td>DDC2_SCL</td>
<td>HDMI Tx2</td>
<td>HDCP Slave Serial Clock for HDMI Tx2. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>P21</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>P22</td>
<td>TX2_2+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 2 True Output.</td>
</tr>
<tr>
<td>P23</td>
<td>TX2_2−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 2 Complement Output.</td>
</tr>
<tr>
<td>R1</td>
<td>P[16]</td>
<td>Digital video input</td>
<td>Digital Video Input 16 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R2</td>
<td>P[17]</td>
<td>Digital video input</td>
<td>Digital Video Input 17 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R3</td>
<td>P[18]</td>
<td>Digital video input</td>
<td>Digital Video Input 18 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R4</td>
<td>P[19]</td>
<td>Digital video input</td>
<td>Digital Video Input 19 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>R7</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R8</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R9</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R10</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R12</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R13</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>R14</td>
<td>GND</td>
<td>Ground.</td>
<td></td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>R15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R20</td>
<td>DDC2_SDA</td>
<td>HDMI Tx2</td>
<td>HDCP Slave Serial Data for HDMI Tx2. This pin is open drain; use a 2 kΩ resistor to connect this pin to the HDMI transmitter 5 V supply.</td>
</tr>
<tr>
<td>R21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>R22</td>
<td>TX2_1+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 1 True Output.</td>
</tr>
<tr>
<td>R23</td>
<td>TX2_1−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 1 Complement Output.</td>
</tr>
<tr>
<td>T1</td>
<td>P[14]</td>
<td>Digital video input</td>
<td>Digital Video Input 14 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>T3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T9</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T15</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T20</td>
<td>HPD_TX2</td>
<td>HDMI Tx2</td>
<td>Hot Plug Assert Signal Input for HDMI Tx2.</td>
</tr>
<tr>
<td>T21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>T22</td>
<td>TX2_0+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 0 True Output.</td>
</tr>
<tr>
<td>T23</td>
<td>TX2_0−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Channel 0 Complement Output.</td>
</tr>
<tr>
<td>U1</td>
<td>P[10]</td>
<td>Digital video input</td>
<td>Digital Video Input 10 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U3</td>
<td>P[12]</td>
<td>Digital video input</td>
<td>Digital Video Input 12 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>U7</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U9</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U10</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U11</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U12</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U13</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U14</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U15</td>
<td>DVDD</td>
<td>Power</td>
<td>Digital Power Supply (1.8 V).</td>
</tr>
<tr>
<td>U16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U17</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U20</td>
<td>R_TX2</td>
<td>HDMI Tx2(^1)</td>
<td>This pin sets the internal reference currents. Place a 470 Ω resistor (1% tolerance) between this pin and ground, as close as possible to the ADV8005.</td>
</tr>
<tr>
<td>U21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>U22</td>
<td>TX2_C+</td>
<td>HDMI Tx2</td>
<td>HDMI2 Clock True Output.</td>
</tr>
<tr>
<td>U23</td>
<td>TX2_C−</td>
<td>HDMI Tx2</td>
<td>HDMI2 Clock Complement Output.</td>
</tr>
<tr>
<td>V2</td>
<td>P[7]</td>
<td>Digital video input</td>
<td>Digital Video Input 7 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V3</td>
<td>P[8]</td>
<td>Digital video input</td>
<td>Digital Video Input 8 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>V20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>V21</td>
<td>PVDD6</td>
<td>Power(^1)</td>
<td>HDMI Transmitter PLL Power Supply (1.8 V).</td>
</tr>
<tr>
<td>V22</td>
<td>HEAC_2+</td>
<td>HDMI Tx2</td>
<td>HDMI Ethernet and Audio Channel Positive Tx2 from the HDMI Connector.</td>
</tr>
<tr>
<td>V23</td>
<td>HEAC_2−</td>
<td>HDMI Tx2</td>
<td>HDMI Ethernet and Audio Channel Negative Tx2 from the HDMI Connector.</td>
</tr>
<tr>
<td>W1</td>
<td>P[2]</td>
<td>Digital video input</td>
<td>Digital Video Input 2 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>W20</td>
<td>TEST3</td>
<td>Miscellaneous digital</td>
<td>Test Pin. Connect this pin to ground through a 0.1 μF capacitor.</td>
</tr>
<tr>
<td>W21</td>
<td>PVDD6</td>
<td>Power</td>
<td>HDMI Transmitter PLL Power Supply (1.845 V).</td>
</tr>
<tr>
<td>W22</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>W23</td>
<td>AVDD4</td>
<td>Power</td>
<td>HDMI Tx2 Analog Power Supply (1.8 V).</td>
</tr>
<tr>
<td>Y1</td>
<td>P[0]</td>
<td>Digital video input</td>
<td>Digital Video Input 0 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Y2</td>
<td>P[1]</td>
<td>Digital video input</td>
<td>Digital Video Input 1 of Bus (P[35] to P[0]).</td>
</tr>
<tr>
<td>Y4</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y5</td>
<td>DDR_DQ[23]</td>
<td>DDR interface</td>
<td>Data Line 23. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>Y6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y8</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y13</td>
<td>DDR_CAS</td>
<td>DDR interface</td>
<td>Column Address Strobe for DDR Memory.</td>
</tr>
<tr>
<td>Y14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y15</td>
<td>DDR_CK</td>
<td>DDR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>Y16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>Y20</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Y22</td>
<td>PVDD_DDR</td>
<td>Power</td>
<td>DDR Interface PLL Supply (1.8 V).</td>
</tr>
<tr>
<td>Y23</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA2</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA3</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA6</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA7</td>
<td>DDR_DQS[3]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[31:24], Complement.</td>
</tr>
<tr>
<td>AA8</td>
<td>DDR_A[13]</td>
<td>DDR interface</td>
<td>Address Line 13. Interface to external RAM address lines. For designs that maintain consistency with the ADV8002 or the ADV8003, this pin can be grounded or left unconnected.</td>
</tr>
<tr>
<td>AA10</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA12</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA13</td>
<td>DDR_CS</td>
<td>DDR interface</td>
<td>DDR Chip Select. Interface to external DDR RAM chip selects.</td>
</tr>
<tr>
<td>AA14</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA15</td>
<td>DDR_CK</td>
<td>DDR interface</td>
<td>DDR Memory Clock. Interface to external DDR RAM clock lines.</td>
</tr>
<tr>
<td>AA16</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA18</td>
<td>DVDD_DDR</td>
<td>Power</td>
<td>DDR Interface Supply (1.8 V).</td>
</tr>
<tr>
<td>AA20</td>
<td>DDR_DM[0]</td>
<td>DDR interface</td>
<td>Data Mask for Data Lines[7:0].</td>
</tr>
<tr>
<td>AA21</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>AA22</td>
<td>GND</td>
<td>GND</td>
<td>Ground.</td>
</tr>
<tr>
<td>Pin No.</td>
<td>Mnemonic</td>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>AB3</td>
<td>DDR_DQ[17]</td>
<td>DDR interface</td>
<td>Data Line 17. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB7</td>
<td>DDR_DQ[31]</td>
<td>DDR interface</td>
<td>Data Line 31. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB8</td>
<td>DDR_DQ[29]</td>
<td>DDR interface</td>
<td>Data Line 29. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AB10</td>
<td>DDR_A[0]</td>
<td>DDR interface</td>
<td>Address Line 0. Interface to external RAM address lines.</td>
</tr>
<tr>
<td>AC3</td>
<td>DDR_DQ[22]</td>
<td>DDR interface</td>
<td>Data Line 22. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC6</td>
<td>DDR_DQ[27]</td>
<td>DDR interface</td>
<td>Data Line 26. Interface to external RAM data lines.</td>
</tr>
<tr>
<td>AC13</td>
<td>DDR_BA[1]</td>
<td>DDR interface</td>
<td>Bank Address Line 1. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC14</td>
<td>DDR_BA[2]</td>
<td>DDR interface</td>
<td>Bank Address Line 2. Indicates which data bank to write to/read from.</td>
</tr>
<tr>
<td>AC15</td>
<td>DDR_WE</td>
<td>DDR interface</td>
<td>Write Enable Signal for DDR RAM.</td>
</tr>
<tr>
<td>AC16</td>
<td>DDR_VREF</td>
<td>DDR interface</td>
<td>Reference Voltage for DDR RAM.</td>
</tr>
<tr>
<td>AC18</td>
<td>DDR_DQS[1]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[15:8], Complement.</td>
</tr>
<tr>
<td>AC22</td>
<td>DDR_DQS[0]</td>
<td>DDR interface</td>
<td>Data Strobe for DDR Data Bytes[7:0], Complement.</td>
</tr>
<tr>
<td>AC23</td>
<td>DDR_DQ[1]</td>
<td>DDR interface</td>
<td>Data Line 1. Interface to external RAM data lines.</td>
</tr>
</tbody>
</table>

1 Sensitive node. Careful layout is important. Keep the associated circuitry as close as possible to the ADV8005.
THEORY OF OPERATION

VIDEO INPUT

The ADV8005 can receive data via the 48-bit input pixel port, the 24-bit OSD input port, or from the output of an HDMI transmitter.

The 48-bit input pixel port can receive data from an upstream analog/HDMI front-end device such as the ADV7619. This bus can accept multiple input formats in both RGB and YPbPr color spaces. Single data rate (SDR) and double data rate (DDR) input formats are supported.

The 24-bit input pixel port can also receive video data from an upstream analog/HDMI front-end device such as the ADV7844 or OSD data from an external OSD generator. This bus can accept multiple input formats up to UXGA. SDR and DDR input formats are supported. The video input on the 24-bit pixel port can be scaled and overlaid onto the main video path.

The serial video receiver can accept the output of an HDMI transmitter such as the ADV7850 or ADV7623. Using this configuration, the front-end device can extract HDMI audio for processing before reinserting the audio into the ADV8005 via the audio pins, for output through the HDMI transmitters. Audio can also be passed through the serial video link from the HDMI transmitter. This input, however, does not support EDID or HDCP operations.

Picture-in-picture (PiP) support is possible when receiving video data on more than one of the video inputs, such as the 48-bit pixel port and the serial video receiver.

The 60-pin TTL video interface supports the following features:

- Up to 48-bit pixel input port
- Up to 24-bit pixel port for external OSD, if the ADV8005 internal OSD is not used
- Up to 36-bit pixel output port
- An SPI interface enabling video blanking interval (VBI) data insertion

PROFESSIONAL CONFIGURATION

To accommodate professional applications where HDMI and analog video output are not desired, the ADV8005 offers a 30-bit TTL input, 30-bit TTL output mode. This mode suits applications where a video signal processor is required between two TTL interfaces (for example, an HDMI receiver and an FPGA).

EXTERNAL SYNC MODE

To alleviate the challenges involved in synchronizing multiple video streams, the ADV8005 supports an external sync mode. In this mode, an external sync (VS and/or HS) is applied to the ADV8005. The video outputs from the ADV8005 then acts as a slave to the master sync timing. The ADV8005 can also synchronize two inputs to externally applied reference sync signals. An externally applied master sync signal (VS and/or HS) is. Using this external sync mode, it is possible to synchronize multiple ADV8005 output video streams to an external sync input.

FLEXIBLE DIGITAL CORE

The ADV8005 has a flexible digital core that enables many different configurations of single, dual, and triple video processing paths. Video processing can be placed first in the signal chain to ensure that all outputs are processed to the highest quality. OSD can be placed at numerous locations within the signal chain to vary the number of outputs on which the OSD is displayed. PiP can also be supported via the OSD block, using a pixel port input that is connected to the OSD block. Several modes of operation are defined to help the user quickly integrate the ADV8005 into a system.

VIDEO SIGNAL PROCESSOR (VSP)

The ADV8005 offers video deinterlacing and scaling. The deinterlacer, located in the primary VSP, is motion adaptive and offers high performance on low angle edges. It supports input video resolutions of 480i, 576i, and 1080i.

The dual scalers in the ADV8005 support the Analog Devices proprietary scaling algorithm, which provides very high quality video upsampling and downsampling. This scaling algorithm helps eradicate many of the common problems that are encountered when scaling video data, such as saw tooth, edge blurring, and ringing.

The ADV8005 is capable of upsampling and downsampling between a range of SD, HD, and ultra HD video resolutions (for example,
The presence of two video scalers allows the generation of multiple different video resolutions on the ADV8005 outputs. The ADV8005 is also capable of upscaling and downscaling to and from a wide range of non-CEA (for example, VESA) formats.

Cadence detection and frame rate conversion are also supported in the ADV8005, which allows film formats to be displayed at their native frame rate, as well as being converted to the native refresh rate of the TV. Additional video processing in the ADV8005 helps with reduction of common video artifacts such as mosquito, random, and block noise. The ADV8005 also includes an aspect ratio converter, as well as a panorama mode feature.

Video metrics readbacks are provided to enable a system application to select the correct phase and frequency for VGA-type graphics inputs. These readbacks can be used to assist in tuning the sampling phase of an ADC front-end device.

The following VSP features are included:

- High performance motion adaptive SD/HD deinterlacer and scaler
- Two scalers, allowing independent scaling on ADV8005 outputs
- Frame rate converter, supporting conversion between multiple frame rates (23.976 Hz, 24 Hz, 25 Hz, 29.97 Hz, 30 Hz, 50 Hz, 59.94 Hz, and 60 Hz)
- Noise reduction, which helps with the reduction of random, block, and mosquito noise
- Six manually programmable color space converters that are distributed between inputs and outputs
- Autophase and frequency readbacks

ON-SCREEN DISPLAY (OSD)

The ADV8005 incorporates a bit map-based OSD block that allows users to create impressive OSD designs that can include bit map images, as well as motion and animation. Individual regions of the OSD can be alpha blended and prioritized over other regions.

An OSD development tool, Blimp, is provided to assist in the design and development of custom OSDs and to abstract the OSD hardware from the user. This tool automatically generates two design elements: a design resource (containing character sets and images) that must be downloaded to an external SPI flash on the board, and code that must be integrated with system APIs to link the functionality of the OSD with the functionality of the system.

The OSD design resource is loaded into external DDR2 memories on power-up by the OSD coprocessor of the ADV8005. This coprocessor is responsible for handling upper level commands from the user and translating them into lower level operations for the OSD and direct memory access (DMA).

OSD features include the following:

- Pixel-by-pixel alpha blending and priority levels assigned to the different OSD components
- A high performance OSD scaler allows the rendering of OSDs at a single resolution, as well as blending at different resolutions

EXTERNAL DDR2 MEMORY

External DDR2 memory is required for motion adaptive deinterlacing, scaling, frame rate conversion, and bit map OSD overlay. The bandwidth of external memory required is determined by the input video formats that the ADV8005 must support, as well as the level of video processing required (scaling, conversion, and OSD). Depending on the exact application requirements, the ADV8005 can support various combinations of memory (single or double memories) and memory sizes (up to two 2 Gb memories).

HDMI TRANSMITTERS

The ADV8005 features dual HDMI transmitters. The transmitters support all HDTV formats up to 4k × 2k, all mandatory, and many optional, 3D formats. Each HDMI transmitter features an audio return channel (ARC) receiver and on-chip microprocessor units with display data channel (DDC) FC masters to perform HDCP operations and EDID operations.

HDMI Tx features include the following:

- Support for all formats up to 4k × 2k
- Audio return channel (ARC) support
- Mandatory 3D formats and many optional 3D formats
- HDMI audio interface with support for multiple audio formats (S/PDIF, FS, DSD, HBR); data can be applied externally or passed through from the serial video receiver

VIDEO ENCODER

The ADV8005 features a high speed digital-to-analog video encoder. Six 12-bit NSV, 3.3 V video DACs provide support for worldwide composite (CVBS), S-Video (Y/C), and component (YPrPb/RGB) analog outputs in SD, ED, or HD video formats. It is also possible to enable the video encoder of the ADV8005 to work in simultaneous modes where both SD and ED/HD...
formats are output. Rovi (ADV8005KBCZ-8A) and non-Rovi (ADV8005KBCZ-8N) variants of the ADV8005 are available.

Encoder features include the following:

- Six 12-bit NSV video DACs capable of outputting video standards of up to 1080p with additional oversampling
- Multiformat video output support; composite (CVBS), S-Video (Y/C), component YPrPb (SD, ED and HD), and component RGB (SD, ED and HD)

- Simultaneous SD and ED/HD operation
- Copy generation management system (CGMS)
- Closed captioning and widescreen signaling (WSS)
- Rovi Rev. 7.1.L1 (SD) and Rev. 1.4 (ED) compliant

TYPICAL APPLICATION DIAGRAM

See Figure 35 for an example of a typical application diagram.

Figure 35. System Block Diagram
DESIGN CONSIDERATIONS

POWER-UP SEQUENCE

The power-up sequence of the ADV8005 is as follows:

1. Hold the RESET and PDN pins low.
2. Power up the 3.3 V supplies (DVDD_IO, AVDD1, AVDD2).
3. A minimum delay of 20 ms is required from the point at which the 3.3 V reaches its minimum recommended value (that is, 3.14 V) before powering up the 1.8 V supplies.
4. Power up the 1.8 V supplies (DVDD, PVDD1, PVDD2, PVDD3, CVDD1, AVDD3, AVDD4, DVDD_DDR, PVDD_DDR) and the 1.845 V supplies (PVDD5 and PVDD6). Power these up together, that is, with a difference of less than 0.3 V between them.
5. RESET can be pulled high after powering up the supplies.
6. A complete reset is recommended after power-up. This can be performed by the system microcontroller.

THERMAL CONSIDERATIONS

The thermal performance of the ADV8005 is influenced by a number of factors, for example, power dissipation of the ADV8005, printed circuit board (PCB) design, and ambient temperature.

These factors, along with any other application specific factors that may affect the thermal performance of ADV8005, must be considered to ensure that the junction temperature of the ADV8005 does not exceed 125°C.

The flexibility of the ADV8005 can, in theory, result in the device being configured in modes where the junction temperature exceeds the maximum rated specification. To ensure that this does not happen, the ADV8005 must be characterized on the final customer PCB to ensure that the maximum rated specifications are not exceeded in the planned modes of operation. Using fewer internal layers on a PCB reduces the amount of thermal conductivity between the ADV8005 and the PCB itself. This decreased thermal conductivity may necessitate some thermal management effort, or it may affect the modes in which the ADV8005 can be configured.

Calculate thermal conductivity as follows:

1. Configure the ADV8005 in the highest required power mode of operation.
2. Measure the ambient temperature of the enclosure.
3. Measure the case temperature at the top of the ADV8005.

\[
T_J = T_C + 5^\circ C
\]

\[
T_{J_{MAX}} = T_{A_{MAX}} - T_A (actual) + T_C (actual) + 5^\circ C
\]

where:
- \(T_J\) is the junction temperature (inside the ADV8005).
- \(T_C\) is the case temperature (top surface of the ADV8005).
- \(T_A\) is the ambient temperature (in the locality of the ADV8005).

Maximum specified \(T_{A_{MAX}}\) for the ADV8005 is 70°C. Depending on the result of the previous calculations/measurement for the specific system, a lower \(T_{A_{MAX}}\) limit may need to be specified for that system to ensure that \(T_{J_{MAX}}\) remains safely below 125°C.
REGISTER MAP ARCHITECTURE

The registers of the ADV8005 are controlled via a 2-wire serial (I²C-compatible) interface. Addressing in the ADV8005 is 16-bit with 8-bit data. This means that I²C writes to the device are in the following format: <I²C Address>, <Address MSBs>, <Address LSBs>, <Data>.

For example, to write 0xFF to the encoder register map, which is Register 0xE4AF, the bytes sent over the I²C interface are: 0x1A, 0xE4, 0xAF, 0xFF. The addresses are outlined in Table 8. Figure 37 shows the register map architecture for the ADV8005.

The ADV8005 also has a number of SPI register maps used for OSD functions. These are accessed through the APIs defined in the Blimp software tool.

Table 8. I²C Address and Register Address Ranges

<table>
<thead>
<tr>
<th>Register Map Name</th>
<th>I²C Address</th>
<th>Register Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IO Map</td>
<td>0x1A (when the ALSB pin is set high) or 0x18 (when the ALSB pin is set low)</td>
<td>0x1A00 to 0x1BFF</td>
</tr>
<tr>
<td>Primary VSP Map 1</td>
<td>0xE800 to 0xE8FF</td>
<td></td>
</tr>
<tr>
<td>Primary VSP Map 2</td>
<td>0xE900 to 0xE9FF</td>
<td></td>
</tr>
<tr>
<td>Secondary VSP Map</td>
<td>0xE600 to 0xE6FF</td>
<td></td>
</tr>
<tr>
<td>DPLL Map</td>
<td>0xE000 to 0xE0FF</td>
<td></td>
</tr>
<tr>
<td>Rx Main Map</td>
<td>0xE200 to 0xE2FF</td>
<td></td>
</tr>
<tr>
<td>Rx InfoFrame Map</td>
<td>0xE300 to 0xE3FF</td>
<td></td>
</tr>
<tr>
<td>Encoder Map</td>
<td>0xE400 to 0xE4FF</td>
<td></td>
</tr>
<tr>
<td>Tx1 Main Map</td>
<td>0xEC00 to 0xECFF</td>
<td></td>
</tr>
<tr>
<td>Tx1 EDID Map</td>
<td>0xEE00 to 0xEEFF</td>
<td></td>
</tr>
<tr>
<td>Tx1 UDP Map</td>
<td>0xF200 to 0xF2FF</td>
<td></td>
</tr>
<tr>
<td>Tx1 Test Map</td>
<td>0xF300 to 0xF3FF</td>
<td></td>
</tr>
<tr>
<td>Tx2 Main Map</td>
<td>0xF400 to 0xF4FF</td>
<td></td>
</tr>
<tr>
<td>Tx2 EDID Map</td>
<td>0xF600 to 0xF6FF</td>
<td></td>
</tr>
<tr>
<td>Tx2 UDP Map</td>
<td>0xF800 to 0xFBFF</td>
<td></td>
</tr>
<tr>
<td>Tx2 Test Map</td>
<td>0xF800 to 0xFBFF</td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Features Sets of the ADV8005 Models

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Maximum Data Rate</th>
<th>Maximum Video Format</th>
<th>HDMI Tx Outputs</th>
<th>Analog Outputs</th>
<th>Rovi Output</th>
<th>VSP</th>
<th>OSD</th>
<th>TTL Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV8005KBCZ-8A¹</td>
<td>3 Gbps</td>
<td>4k x 2k at 30 Hz (8-bit)</td>
<td>2</td>
<td>Six 12-bit DACs</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ADV8005KBCZ-8N</td>
<td>3 Gbps</td>
<td>4k x 2k at 30 Hz (8-bit)</td>
<td>2</td>
<td>Six 12-bit DACs</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ADV8005KBCZ-8B</td>
<td>3 Gbps</td>
<td>4k x 2k at 30 Hz (8-bit)</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>ADV8005KBCZ-8C</td>
<td>3 Gbps</td>
<td>4k x 2k at 30 Hz (8-bit)</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

¹ Rovi enabled ICs require the buyer to be an approved licensee (authorized buyer) of ICs that are capable of outputting Rovi compliant video. The ADV8005KBCZ-8A incorporates copy protection technology that is protected by U.S. patents and other intellectual property rights of Rovi Corporation. Reverse engineering and disassembly are prohibited.

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model¹ ²</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV8005KBCZ-8A</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8A-RL</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8N</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8N-RL</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8B</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8B-RL</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8C</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>ADV8005KBCZ-8C-RL</td>
<td>0°C to 70°C</td>
<td>425-Ball Chip Scale Package Ball Grid Array [CSP_BGA]</td>
<td>BC-425-1</td>
</tr>
<tr>
<td>EVAL-ADV8005-SMZ</td>
<td>0°C to 70°C</td>
<td>Evaluation Board</td>
<td>BC-425-1</td>
</tr>
</tbody>
</table>

¹ Z = RoHS Compliant Part.
² The -RL versions are supplied on 13” reels. The non-RL versions are supplied on trays.
I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).