FEATUERES
On-Chip Latches for Both DACs
+5 V to +15 V Operation
DACs Matched to 1%
Four Quadrant Multiplication
TTL/CMOS Compatible
Latch Free (Protection Schottkys not Required)

APPLICATIONS
Digital Control of:
Gain/Attenuation
Filter Parameters
Stereo Audio Circuits
X-Y Graphics

GENERAL DESCRIPTION
The AD7528 is a monolithic dual 8-bit digital/analog converter featuring excellent DAC-to-DAC matching. It is available in skinny 0.3” wide 20-lead DIPs and in 20-lead surface mount packages.

Separate on-chip latches are provided for each DAC to allow easy microprocessor interface.

Data is transferred into either of the two DAC data latches via a common 8-bit TTL/CMOS compatible input port. Control input DAC A/DAC B determines which DAC is to be loaded. The AD7528’s load cycle is similar to the write cycle of a random access memory and the device is bus compatible with most 8-bit microprocessors, including 6800, 8080, 8085, Z80.

The device operates from a +5 V to +15 V power supply, dissipating only 20 mW of power.

Both DACs offer excellent four quadrant multiplication characteristics with a separate reference input and feedback resistor for each DAC.

PRODUCT HIGHLIGHTS
1. DAC-to-DAC matching: since both of the AD7528 DACs are fabricated at the same time on the same chip, precise matching and tracking between DAC A and DAC B is inherent. The AD7528’s matched CMOS DACs make a whole new range of applications circuits possible, particularly in the audio, graphics and process control areas.

2. Small package size: combining the inputs to the on-chip DAC latches into a common data bus and adding a DAC A/DAC B select line has allowed the AD7528 to be packaged in either a small 20-lead DIP, SOIC or PLCC.

NOTES
1 Analog Devices reserves the right to ship side-brazed ceramic in lieu of cerdip. Parts will be marked with cerdip designator “Q.”
2 Processing to MIL-STD-883C, Class B is available. To order, add suffix “/883B” to part number. For further information, see Analog Devices’ 1990 Military Products Databook.
3 N = Plastic DIP; P = Plastic Leaded Chip Carrier; Q = Cerdip; R = SOIC.

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model2</th>
<th>Temperature Ranges</th>
<th>Relative Accuracy</th>
<th>Gain Error</th>
<th>Package Options3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD7528JN</td>
<td>–40°C to +85°C</td>
<td>±1 LSB</td>
<td>±4 LSB</td>
<td>N-20</td>
</tr>
<tr>
<td>AD7528KN</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±2 LSB</td>
<td>N-20</td>
</tr>
<tr>
<td>AD7528LN</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±1 LSB</td>
<td>N-20</td>
</tr>
<tr>
<td>AD7528JP</td>
<td>–40°C to +85°C</td>
<td>±1 LSB</td>
<td>±4 LSB</td>
<td>P-20A</td>
</tr>
<tr>
<td>AD7528KP</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±2 LSB</td>
<td>P-20A</td>
</tr>
<tr>
<td>AD7528LP</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±1 LSB</td>
<td>P-20A</td>
</tr>
<tr>
<td>AD7528JR</td>
<td>–40°C to +85°C</td>
<td>±1 LSB</td>
<td>±4 LSB</td>
<td>R-20</td>
</tr>
<tr>
<td>AD7528KR</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±2 LSB</td>
<td>R-20</td>
</tr>
<tr>
<td>AD7528LR</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±1 LSB</td>
<td>R-20</td>
</tr>
<tr>
<td>AD7528AQ</td>
<td>–40°C to +85°C</td>
<td>±1 LSB</td>
<td>±4 LSB</td>
<td>Q-20</td>
</tr>
<tr>
<td>AD7528BQ</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±2 LSB</td>
<td>Q-20</td>
</tr>
<tr>
<td>AD7528CQ</td>
<td>–40°C to +85°C</td>
<td>±1/2 LSB</td>
<td>±1 LSB</td>
<td>Q-20</td>
</tr>
<tr>
<td>AD7528SQ</td>
<td>–55°C to +125°C</td>
<td>±1 LSB</td>
<td>±4 LSB</td>
<td>Q-20</td>
</tr>
<tr>
<td>AD7528TQ</td>
<td>–55°C to +125°C</td>
<td>±1/2 LSB</td>
<td>±2 LSB</td>
<td>Q-20</td>
</tr>
<tr>
<td>AD7528UQ</td>
<td>–55°C to +125°C</td>
<td>±1/2 LSB</td>
<td>±1 LSB</td>
<td>Q-20</td>
</tr>
</tbody>
</table>

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
COMPARABLE PARTS
View a parametric search of comparable parts.

DOCUMENTATION
Application Notes
• AN-137: A Digitally Programmable Gain and Attenuation Amplifier Design
• AN-206: CMOS Multiplying DAC Based Panning Circuit Provides Almost Constant Output Power
• AN-318: AD7528 Dual 8-Bit CMOS Multiplying DAC
• AN-320A: CMOS Multiplying DACs and Op Amps Combine to Build Programmable Gain Amplifier, Part 1
• AN-322: Improve Function Generators with Matched D/A Converters
• AN-912: Driving a Center-Tapped Transformer with a Balanced Current-Output DAC

Data Sheet
• AD7528: CMOS Dual 8-Bit Buffered Multiplying DAC Data Sheet
• AD7528: Military Data Sheet

REFERENCE MATERIALS
Solutions Bulletins & Brochures
• Digital to Analog Converters ICs Solutions Bulletin

DESIGN RESOURCES
• AD7528 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all AD7528 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.
AD7528—SPECIFICATIONS (V_{REF A} = V_{REF B} = +10 V; OUT A = OUT B = 0 V unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Version</th>
<th>V_{DD} = +5 V</th>
<th>V_{DD} = +15 V</th>
<th>Units</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PERFORMANCE</td>
<td></td>
<td>T_A = +25°C</td>
<td>T_MIN, T_MAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>All</td>
<td>8</td>
<td>8</td>
<td>Bits</td>
<td>This is an Endpoint Linearity Specification</td>
</tr>
<tr>
<td>Relative Accuracy</td>
<td>J, A, S</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>LSB max</td>
</tr>
<tr>
<td>Differential Nonlinearity</td>
<td>L, C, U</td>
<td>±1/2</td>
<td>±1/2</td>
<td>±1/2</td>
<td>LSB max</td>
</tr>
<tr>
<td>Gain Error</td>
<td>J, A, S</td>
<td>±4</td>
<td>±4</td>
<td>±5</td>
<td>LSB max</td>
</tr>
<tr>
<td>Gain Temperature Coefficient</td>
<td>J, A, S</td>
<td>±1/2</td>
<td>±1/2</td>
<td>±1/2</td>
<td>LSB max</td>
</tr>
<tr>
<td>ΔGain/AΔTemperature</td>
<td>All</td>
<td>±0.007</td>
<td>±0.007</td>
<td>±0.0035</td>
<td>%/%C max</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>All</td>
<td>±50</td>
<td>±500</td>
<td>±500</td>
<td>nA max</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>All</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>μA max</td>
</tr>
<tr>
<td>Input Resistance (V_{REF A}, V_{REF B})</td>
<td>All</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>kΩ max</td>
</tr>
<tr>
<td>V_{REF A}/V_{REF B} Input Resistance Match</td>
<td>All</td>
<td>±1</td>
<td>±1</td>
<td>±1</td>
<td>% max</td>
</tr>
<tr>
<td>DIGITAL INPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Voltage</td>
<td>All</td>
<td>2.4</td>
<td>13.5</td>
<td>13.5</td>
<td>V min</td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>All</td>
<td>0.8</td>
<td>1.5</td>
<td>1.5</td>
<td>V max</td>
</tr>
<tr>
<td>Input Current</td>
<td>All</td>
<td>±1</td>
<td>±10</td>
<td>±10</td>
<td>μA max</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>DB0–DB7</td>
<td>All</td>
<td>10</td>
<td>10</td>
<td>pF max</td>
</tr>
<tr>
<td>WR, CS, DAC A/DAC B</td>
<td>All</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>pF max</td>
</tr>
<tr>
<td>SWITCHING CHARACTERISTICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chip Select to Write Set Up Time</td>
<td>All</td>
<td>90</td>
<td>60</td>
<td>80</td>
<td>ns min</td>
</tr>
<tr>
<td>DAC Select to Write Hold Time</td>
<td>All</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>ns min</td>
</tr>
<tr>
<td>Data Valid to Write Set Up Time</td>
<td>All</td>
<td>90</td>
<td>60</td>
<td>80</td>
<td>ns min</td>
</tr>
<tr>
<td>DAC Select to Write Hold Time</td>
<td>All</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td>ns min</td>
</tr>
<tr>
<td>Data Valid to Write Hold Time</td>
<td>All</td>
<td>80</td>
<td>30</td>
<td>40</td>
<td>ns min</td>
</tr>
<tr>
<td>Data Valid to Write Hold Time</td>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ns min</td>
</tr>
<tr>
<td>Write Pulsewidth</td>
<td>All</td>
<td>90</td>
<td>60</td>
<td>80</td>
<td>ns min</td>
</tr>
<tr>
<td>POWER SUPPLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{EIO}</td>
<td>All</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>mA max</td>
</tr>
<tr>
<td>t_{IIO}</td>
<td>All</td>
<td>100</td>
<td>500</td>
<td>500</td>
<td>μA max</td>
</tr>
</tbody>
</table>

AC PERFORMANCE CHARACTERISTICS (Measured Using Recommended P.C. Board Layout (Figure 7) and AD644 as Output Amplifiers)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Version</th>
<th>V_{DD} = +5 V</th>
<th>V_{DD} = +15 V</th>
<th>Units</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC SUPPLY REJECTION (ΔGAIN/ΔV_{DD})</td>
<td>All</td>
<td>0.02</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>CURRENT SETTLING TIME</td>
<td>All</td>
<td>350</td>
<td>400</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>PROPAGATION DELAY (From Digital Input to 90% of Final Analog Output Current)</td>
<td>All</td>
<td>220</td>
<td>270</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>DIGITAL-TO-ANALOG GLITCH IMPULSE</td>
<td>All</td>
<td>160</td>
<td>440</td>
<td>nV sec typ</td>
<td>For Code Transition 00000000 to 11111111</td>
</tr>
<tr>
<td>OUTPUT CAPACITANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OUT A}</td>
<td>All</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>C_{OUT B}</td>
<td>All</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>AC FEEDTHROUGH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{REF A} to OUT A</td>
<td>All</td>
<td>−70</td>
<td>−65</td>
<td>−70</td>
<td>−65</td>
</tr>
<tr>
<td>V_{REF B} to OUT B</td>
<td>All</td>
<td>−70</td>
<td>−65</td>
<td>−70</td>
<td>−65</td>
</tr>
</tbody>
</table>
AD7528

Parameter	Version1	$V_{DD} = +5\,\text{V}$	$V_{DD} = +15\,\text{V}$	Test Conditions/Comments
CHANNEL-TO-CHANNEL ISOLATION | All | -77 | -77 | dB typ

DIGITAL CROSSTALK | All | 30 | 60 | nV sec typ

HARMONIC DISTORTION | All | -85 | -85 | dB typ

Notes
1. Temperature Ranges are J, K, L Versions: $-40^\circ C$ to $+85^\circ C$
 A, B, C Versions: $-40^\circ C$ to $+85^\circ C$
 S, T, U Versions: $-55^\circ C$ to $+125^\circ C$
2. Specifications applies to both DACs in AD7528.
3. Guaranteed by design but not production tested.
4. Logic inputs are MOS Gates. Typical input current $(+25\,^\circ C)$ is less than 1 mA.
5. These characteristics are for design guidance only and are not subject to test.
6. Feedthrough can be further reduced by connecting the metal lid on the ceramic package (suffix D) to DGND.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS
($T_{A} = +25^\circ C$ unless otherwise noted)

Parameter	V_{DD} to AGND	V_{DD} to DGND	AGND to V_{DD}	DGND to AGND	Digital Input Voltage to DGND	$V_{REF\,A}$, $V_{REF\,B}$ to AGND	$V_{REF\,A}$, $V_{REF\,B}$ to AGND	Power Dissipation (Any Package) to $+75^\circ C$	Operating Temperature Range
	$0\,\text{V}$, $+17\,\text{V}$	$0\,\text{V}$, $+17\,\text{V}$	$V_{DD} + 0.3\,\text{V}$	$V_{DD} + 0.3\,\text{V}$	$-0.3\,\text{V}$, $V_{DD} + 0.3\,\text{V}$	$-0.3\,\text{V}$, $V_{DD} + 0.3\,\text{V}$	$\pm 25\,\text{V}$	$\pm 25\,\text{V}$	$450\,\text{mW}$
 Industrial (A, B, C) Grades | $-40^\circ C$ to $+85^\circ C$
 Extended (S, T, U) Grades | $-55^\circ C$ to $+125^\circ C$
 Storage Temperature | $-65^\circ C$ to $+150^\circ C$
 Lead Temperature (Soldering, 10 secs) | $-65^\circ C$ to $+300^\circ C$

CAUTION:
1. ESD sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subjected to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts.
2. Do not insert this device into powered sockets. Remove power before insertion or removal.

TERMINOLOGY
Relative Accuracy
Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of full scale reading.

Differential Nonlinearity
Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB max over the operating temperature range ensures monotonicity.

Gain Error
Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For the AD7528, ideal maximum output is $V_{REF} – 1$ LSB. Gain error of both DACs is adjustable to zero with external resistance.

Output Capacitance
Capacitance from OUT A or OUT B to AGND.

Digital to Analog Glitch Impulse
The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-secs or nV-secs depending upon whether the glitch is measured as a current or voltage signal. Glitch impulse is measured with $V_{REF\,A}$, $V_{REF\,B} = AGND$.

Propagation Delay
This is a measure of the internal delays of the circuit and is defined as the time from a digital input change to the analog output current reaching 90% of its final value.

Channel-to-Channel Isolation
The proportion of input signal from one DAC’s reference input which appears at the output of the other DAC, expressed as a ratio in dB.

Digital Crosstalk
The glitch energy transferred to the output of one converter due to a change in digital input code to the other converter. Specified in nV secs.

Notes
1. Temperature Ranges are J, K, L Versions: $-40^\circ C$ to $+85^\circ C$
 A, B, C Versions: $-40^\circ C$ to $+85^\circ C$
 S, T, U Versions: $-55^\circ C$ to $+125^\circ C$
2. Specifications applies to both DACs in AD7528.
3. Guaranteed by design but not production tested.
4. Logic inputs are MOS Gates. Typical input current $(+25\,^\circ C)$ is less than 1 mA.
5. These characteristics are for design guidance only and are not subject to test.
6. Feedthrough can be further reduced by connecting the metal lid on the ceramic package (suffix D) to DGND.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS
($T_{A} = +25^\circ C$ unless otherwise noted)

Parameter	V_{DD} to AGND	V_{DD} to DGND	AGND to V_{DD}	DGND to AGND	Digital Input Voltage to DGND	$V_{REF\,A}$, $V_{REF\,B}$ to AGND	$V_{REF\,A}$, $V_{REF\,B}$ to AGND	Power Dissipation (Any Package) to $+75^\circ C$	Operating Temperature Range
	$0\,\text{V}$, $+17\,\text{V}$	$0\,\text{V}$, $+17\,\text{V}$	$V_{DD} + 0.3\,\text{V}$	$V_{DD} + 0.3\,\text{V}$	$-0.3\,\text{V}$, $V_{DD} + 0.3\,\text{V}$	$-0.3\,\text{V}$, $V_{DD} + 0.3\,\text{V}$	$\pm 25\,\text{V}$	$\pm 25\,\text{V}$	$450\,\text{mW}$
 Industrial (A, B, C) Grades | $-40^\circ C$ to $+85^\circ C$
 Extended (S, T, U) Grades | $-55^\circ C$ to $+125^\circ C$
 Storage Temperature | $-65^\circ C$ to $+150^\circ C$
 Lead Temperature (Soldering, 10 secs) | $-65^\circ C$ to $+300^\circ C$

CAUTION:
1. ESD sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subjected to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts.
2. Do not insert this device into powered sockets. Remove power before insertion or removal.

TERMINOLOGY
Relative Accuracy
Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of full scale reading.

Differential Nonlinearity
Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB max over the operating temperature range ensures monotonicity.

Gain Error
Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For the AD7528, ideal maximum output is $V_{REF} – 1$ LSB. Gain error of both DACs is adjustable to zero with external resistance.

Output Capacitance
Capacitance from OUT A or OUT B to AGND.

Digital to Analog Glitch Impulse
The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA-secs or nV-secs depending upon whether the glitch is measured as a current or voltage signal. Glitch impulse is measured with $V_{REF\,A}$, $V_{REF\,B} = AGND$.

Propagation Delay
This is a measure of the internal delays of the circuit and is defined as the time from a digital input change to the analog output current reaching 90% of its final value.

Channel-to-Channel Isolation
The proportion of input signal from one DAC’s reference input which appears at the output of the other DAC, expressed as a ratio in dB.

Digital Crosstalk
The glitch energy transferred to the output of one converter due to a change in digital input code to the other converter. Specified in nV secs.
INTERFACE LOGIC INFORMATION

DAC Selection:
Both DAC latches share a common 8-bit input port. The control input DAC A/DAC B selects which DAC can accept data from the input port.

Mode Selection:
Inputs CS and WR control the operating mode of the selected DAC. See Mode Selection Table below.

Write Mode:
When CS and WR are both low the selected DAC is in the write mode. The input data latches of the selected DAC are transparent and its analog output responds to activity on DB0–DB7.

Hold Mode:
The selected DAC latch retains the data which was present on DB0–DB7 just prior to CS or WR assuming a high state. Both analog outputs remain at the values corresponding to the data in their respective latches.

Mode Selection Table

<table>
<thead>
<tr>
<th>DAC A/DAC B</th>
<th>CS</th>
<th>WR</th>
<th>DAC A</th>
<th>DAC B</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>WRITE</td>
<td>HOLD</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>HOLD</td>
<td>WRITE</td>
</tr>
<tr>
<td>X</td>
<td>H</td>
<td>X</td>
<td>HOLD</td>
<td>HOLD</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>HOLD</td>
<td>HOLD</td>
</tr>
</tbody>
</table>

L = Low State; H = High State; X = Don’t Care.

WRITE CYCLE TIMING DIAGRAM

CIRCUIT INFORMATION—D/A SECTION

The AD7528 contains two identical 8-bit multiplying D/A converters, DAC A and DAC B. Each DAC consists of a highly stable thin film R-2R ladder and eight N-channel current steering switches. A simplified D/A circuit for DAC A is shown in Figure 1. An inverted R-2R ladder structure is used, that is, binary weighted currents are switched between the DAC output and AGND thus maintaining fixed currents in each ladder leg independent of switch state.

EQUIVALENT CIRCUIT ANALYSIS

Figure 2 shows an approximate equivalent circuit for one of the AD7528's D/A converters, in this case DAC A. A similar equivalent circuit can be drawn for DAC B. Note that AGND (Pin 1) is common for both DAC A and DAC B.

The current source I_{LEAKAGE} is composed of surface and junction leakages and, as with most semiconductor devices, approximately doubles every 10°C. The resistor R_O as shown in Figure 2 is the equivalent output resistance of the device which varies with input code (excluding all 0s code) from 0.8 R to 2 R. R is typically 11 kΩ. C_{OUT} is the capacitance due to the N-channel switches and varies from about 50 pF to 120 pF depending upon the digital input. g(V_{REF A}, N) is the Thevenin equivalent voltage generator due to the reference input voltage V_{REF A} and the transfer function of the R-2R ladder.

CIRCUIT INFORMATION—DIGITAL SECTION

The input buffers are simple CMOS inverters designed such that when the AD7528 is operated with V_D = 5 V, the buffer converts TTL input levels (2.4 V and 0.8 V) into CMOS logic levels. When V_IN is in the region of 2.0 volts to 3.5 volts the input buffers operate in their linear region and pass a quiescent current, see Figure 3. To minimize power supply currents it is recommended that the digital input voltages be as close to the supply rails (V_DD and DGND) as is practically possible.

The AD7528 may be operated with any supply voltage in the range 5 \(\leq V_D \leq 15 \) volts. With V_D = 15 V the input logic levels are CMOS compatible only, i.e., 1.5 V and 13.5 V.

CIRCUIT INFORMATION—D/A SECTION

The AD7528 contains two identical 8-bit multiplying D/A converters, DAC A and DAC B. Each DAC consists of a highly stable thin film R-2R ladder and eight N-channel current steering switches. A simplified D/A circuit for DAC A is shown in Figure 1. An inverted R-2R ladder structure is used, that is, binary weighted currents are switched between the DAC output and AGND thus maintaining fixed currents in each ladder leg independent of switch state.

Figure 1. Simplified Functional Circuit for DAC A
Table I. Unipolar Binary Code Table

<table>
<thead>
<tr>
<th>DAC Latch Contents</th>
<th>Analog Output (DAC A or DAC B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB</td>
<td>LSB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1 LSB = \(\frac{2}{256} \) \(V_{IN} \)

Figure 4. Dual DAC Unipolar Binary Operation (2 Quadrant Multiplication); See Table I

Table II. Bipolar (Offset Binary) Code Table

<table>
<thead>
<tr>
<th>DAC Latch Contents</th>
<th>Analog Output (DAC A or DAC B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSB</td>
<td>LSB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1 LSB = \(\frac{2}{128} \) \(V_{IN} \)

Figure 5. Dual DAC Bipolar Operation (4 Quadrant Multiplication); See Table II

Table III. Recommended Trim Resistor Values vs. Grade

<table>
<thead>
<tr>
<th>Trim Resistor</th>
<th>J/A/S</th>
<th>K/B/T</th>
<th>L/C/U</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1, R3</td>
<td>1 k</td>
<td>500</td>
<td>200</td>
</tr>
<tr>
<td>R2, R4</td>
<td>330</td>
<td>150</td>
<td>82</td>
</tr>
</tbody>
</table>

NOTES:
1. R1, R2 AND R3, R4 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED. SEE TABLE III FOR RECOMMENDED VALUES.
2. C1, C2 PHASE COMPENSATION (10pF–15pF) IS REQUIRED WHEN USING HIGH SPEED AMPLIFIERS TO PREVENT RINGING OR OSCILLATION.
APPLICATIONS INFORMATION

Application Hints
To ensure system performance consistent with AD7528 specifications, careful attention must be given to the following points:

1. GENERAL GROUND MANAGEMENT: AC or transient voltages between the AD7528 AGND and DGND can cause noise injection into the analog output. The simplest method of ensuring that voltages at AGND and DGND are equal is to tie AGND and DGND together at the AD7528. In more complex systems where the AGND–DGND intertie is on the backplane, it is recommended that diodes be connected in inverse parallel between the AD7528 AGND and DGND pins (1N914 or equivalent).

2. OUTPUT AMPLIFIER OFFSET: CMOS DACs exhibit a code-dependent output resistance which in turn causes a code-dependent amplifier noise gain. The effect is a code-dependent differential nonlinearity term at the amplifier output which depends on \(V_{OS} \) (\(V_{OS} \) is amplifier input offset voltage). This differential nonlinearity term adds to the R/2R differential nonlinearity. To maintain monotonic operation, it is recommended that amplifier \(V_{OS} \) be no greater than 10% of 1 LSB over the temperature range of interest.

3. HIGH FREQUENCY CONSIDERATIONS: The output capacitance of a CMOS DAC works in conjunction with the amplifier feedback resistance to add a pole to the open loop response. This can cause ringing or oscillation. Stability can be restored by adding a phase compensation capacitor in parallel with the feedback resistor.

DYNAMIC PERFORMANCE

The dynamic performance of the two DACs in the AD7528 will depend upon the gain and phase characteristics of the output amplifiers together with the optimum choice of the PC board layout and decoupling components. Figure 6 shows the relationship between input frequency and channel to channel isolation. Figure 7 shows a printed circuit layout for the AD7528 and the AD644 dual op amp which minimizes feedthrough and crosstalk.

SINGLE SUPPLY APPLICATIONS

The AD7528 DAC R-2R ladder termination resistors are connected to AGND within the device. This arrangement is particularly convenient for single supply operation because AGND may be biased at any voltage between DGND and \(V_{DD} \). Figure 8 shows a circuit which provides two +5 V to +8 V analog outputs by biasing AGND +5 V up from DGND. The two DAC reference inputs are tied together and a reference input voltage is obtained without a buffer amplifier by making use of the constant and matched impedances of the DAC A and DAC B reference inputs. Current flows through the two DAC R-2R ladders into R1 and R1 is adjusted until the \(V_{REF A} \) and \(V_{REF B} \) inputs are at +2 V. The two analog output voltages range from +5 V to +8 V for DAC codes 00000000 to 11111111.

Figure 8. AD7528 Single Supply Operation

Figure 9 shows DAC A of the AD7528 connected in a positive reference, voltage switching mode. This configuration is useful in that \(V_{OUT} \) is the same polarity as \(V_{IN} \) allowing single supply operation. However, to retain specified linearity, \(V_{IN} \) must be in the range 0 V to +2.5 V and the output buffered or loaded with a high impedance, see Figure 10. Note that the input voltage is connected to the DAC OUT A and the output voltage is taken from the DAC \(V_{REF A} \) pin.

Figure 9. AD7528 in Single Supply, Voltage Switching Mode

Figure 10. Typical AD7528 Performance in Single Supply Voltage Switching Mode (K/B/T, L/C/U Grades)
Microprocessor Interface

In this state variable or universal filter configuration (Figure 14) DACs A1 and B1 control the gain and Q of the filter characteristic while DACs A2 and B2 control the cutoff frequency, f_c. DACs A2 and B2 must track accurately for the simple expression for f_c to hold. This is readily accomplished by the AD7528. Op amps are 2 x AD644. C3 compensates for the effects of op amp gain bandwidth limitations.

The filter provides low pass, high pass and band pass outputs and is ideally suited for applications where microprocessor control of filter parameters is required, e.g., equalizer, tone controls, etc.

Programmable range for component values shown is f_c = 0 kHz to 15 kHz and Q = 0.3 to 4.5.

Circuit Equations

\[
\begin{align*}
C_1 &= C_2, R_1 = R_2, R_4 = R_5 \\
\frac{1}{2\pi R_1 C_1} &= f_c \\
Q &= \frac{R_3}{R_4} \times \frac{R_F}{R_F} \\
A_0 &= \frac{R_F}{R_S}
\end{align*}
\]

Note: DAC Equivalent Resistance Equals

\[
\frac{256 \times (\text{DAC Ladder Resistance})}{\text{DAC Digital Code}}
\]

Programmable Window Comparator

In the circuit of Figure 13 the AD7528 is used to implement a programmable window comparator. DACs A and B are loaded with the required upper and lower voltage limits for the test, respectively. If the test input is not within the programmed limits, the pass/fail output will indicate a fail (logic zero).

Programmable State Variable Filter

Figure 14. Digitally Controlled State Variable Filter

In this state variable or universal filter configuration (Figure 14) DACs A1 and B1 control the gain and Q of the filter characteristic while DACs A2 and B2 control the cutoff frequency, f_c. DACs A2 and B2 must track accurately for the simple expression for f_c to hold. This is readily accomplished by the AD7528. Op amps are 2 x AD644. C3 compensates for the effects of op amp gain bandwidth limitations.

The filter provides low pass, high pass and band pass outputs and is ideally suited for applications where microprocessor control of filter parameters is required, e.g., equalizer, tone controls, etc.

Programmable range for component values shown is f_c = 0 kHz to 15 kHz and Q = 0.3 to 4.5.

Circuit Equations

\[
\begin{align*}
C_1 &= C_2, R_1 = R_2, R_4 = R_5 \\
\frac{1}{2\pi R_1 C_1} &= f_c \\
Q &= \frac{R_3}{R_4} \times \frac{R_F}{R_F} \\
A_0 &= \frac{R_F}{R_S}
\end{align*}
\]

Note: DAC Equivalent Resistance Equals

\[
\frac{256 \times (\text{DAC Ladder Resistance})}{\text{DAC Digital Code}}
\]
In this configuration the AD7528 functions as a 2-channel digitally controlled attenuator. Ideal for stereo audio and telephone signal level control applications. Table IV gives input codes vs. attenuation for a 0 dB to 15.5 dB range.

\[\text{Input Code} = 256 \times 10^{\frac{-\text{Attenuation, dB}}{20}} \]

Figure 15. Digitally Controlled Dual Telephone Attenuator

For further applications information the reader is referred to Analog Devices Application Note on the AD7528.