16-Bit, Isolated Sigma-Delta Modulator

AD7402

FEATURES

- 10 MHz internal clock rate
- 16 bits, no missing codes
- Signal-to-noise ratio (SNR): 87 dB typical
- Effective number of bits (ENOB): 13.5 bits typical
- Typical offset drift vs. temperature: 1.7 µV/°C
- On-board digital isolator
- On-board reference
- Full-scale analog input range: ±320 mV
- −40°C to +105°C operating range
- High common-mode transient immunity: >25 kV/μs
- 8-lead, wide-body SOIC, with increased creepage package
- Slew rate limited output for low electromagnetic interference (EMI)

Safety and regulatory approvals

- UL recognition
 - 5000 V rms for 1 minute per UL 1577
- CSA Component Acceptance Notice 5A
- VDE Certificate of Conformity
- DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
 - \(V_{\text{FORM}} = 1250 \ V_{\text{PEAK}} \)

APPLICATIONS

- Shunt current monitoring
- AC motor controls
- Power and solar inverters
- Wind turbine inverters
- Data acquisition systems
- Analog-to-digital and opto-isolator replacements

GENERAL DESCRIPTION

The AD7402\(^1\) is a high performance, second-order, \(\Sigma\Delta\) modulator that converts an analog input signal into a high speed, single-bit data stream, with on-chip digital isolation based on Analog Devices, Inc., iCoupler\(^*\) technology. The AD7402 operates from a 4.5 V to 5.5 V (\(V_{\text{DD1}}\)) power supply and accepts a differential input signal of ±250 mV (±320 mV full scale). The differential input is ideally suited to shunt voltage monitoring in high voltage applications where galvanic isolation is required.

The analog input is continuously sampled by a high performance analog modulator, and converted to a ones density, digital output stream with a data rate of 10 MHz. The original information can be reconstructed with an appropriate digital filter to achieve 87 dB signal to noise ratio (SNR) at 39 kSPS. The serial input/output can use a 3 V to 5.5 V or a 3.3 V supply (\(V_{\text{DD2}}\)).

The serial interface is digitally isolated. High speed complementary metal oxide semiconductor (CMOS) technology, combined with monolithic transformer technology, means the on-chip isolation provides outstanding performance characteristics, superior to alternatives such as optocoupler devices. The AD7402 device is offered in an 8-lead, wide body SOIC package and has an operating temperature range of −40°C to +105°C.

\(^1\) Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075,329.
COMPARABLE PARTS
View a parametric search of comparable parts.

EVALUATION KITS
• AD-FMCMOTCON2-EBZ Evaluation Board
• Evaluation board for evaluating AD7402 16-Bit, Isolated Sigma-Delta Modulator

DOCUMENTATION
Data Sheet
• AD7402 16-Bit, Isolated Sigma-Delta Modulator Data Sheet

User Guides
• UG-793: Evaluating the AD7402 16-Bit, Isolated Sigma-Delta ADC

TOOLS AND SIMULATIONS
• AD7402 IBIS Model

REFERENCE MATERIALS
Informational
• ADSP-CM40x in Solar PV Inverters

Technical Articles
• MS-2652: Measurement Techniques for Industrial Motion Control
• MS-2758: Enhancing Industrial Motor Control Performance Utilizing Digital Isolator Technology
• Sigma-Delta Conversion Used for Motor Control

DESIGN RESOURCES
• AD7402 Material Declaration
• PCN-PDN Information
• Quality And Reliability
• Symbols and Footprints

DISCUSSIONS
View all AD7402 EngineerZone Discussions.

SAMPLE AND BUY
Visit the product page to see pricing options.

TECHNICAL SUPPORT
Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK
Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Applications</td>
<td>1</td>
</tr>
<tr>
<td>Functional Block Diagram</td>
<td>1</td>
</tr>
<tr>
<td>General Description</td>
<td>1</td>
</tr>
<tr>
<td>Revision History</td>
<td>2</td>
</tr>
<tr>
<td>Specifications</td>
<td>3</td>
</tr>
<tr>
<td>- Timing Specifications</td>
<td>4</td>
</tr>
<tr>
<td>- Package Characteristics</td>
<td>5</td>
</tr>
<tr>
<td>- Insulation and Safety-Related Specifications</td>
<td>5</td>
</tr>
<tr>
<td>- Regulatory Information</td>
<td>5</td>
</tr>
<tr>
<td>- DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 Insulation Characteristics</td>
<td>6</td>
</tr>
<tr>
<td>Absolute Maximum Ratings</td>
<td>7</td>
</tr>
<tr>
<td>- ESD Caution</td>
<td>7</td>
</tr>
<tr>
<td>Pin Configuration and Function Descriptions</td>
<td>8</td>
</tr>
<tr>
<td>Typical Performance Characteristics</td>
<td>9</td>
</tr>
<tr>
<td>Terminology</td>
<td>12</td>
</tr>
<tr>
<td>Theory of Operation</td>
<td>13</td>
</tr>
<tr>
<td>Circuit Information</td>
<td>13</td>
</tr>
<tr>
<td>Analog Input</td>
<td>13</td>
</tr>
<tr>
<td>Differential Inputs</td>
<td>14</td>
</tr>
<tr>
<td>Digital Output</td>
<td>14</td>
</tr>
<tr>
<td>Applications Information</td>
<td>15</td>
</tr>
<tr>
<td>- Current Sensing Applications</td>
<td>15</td>
</tr>
<tr>
<td>- Voltage Sensing Applications</td>
<td>15</td>
</tr>
<tr>
<td>- Input Filter</td>
<td>15</td>
</tr>
<tr>
<td>- Digital Filter</td>
<td>16</td>
</tr>
<tr>
<td>- Power Supply Considerations</td>
<td>19</td>
</tr>
<tr>
<td>- Grounding and Layout</td>
<td>19</td>
</tr>
<tr>
<td>- Insulation Lifetime</td>
<td>19</td>
</tr>
<tr>
<td>Outline Dimensions</td>
<td>20</td>
</tr>
<tr>
<td>Ordering Guide</td>
<td>20</td>
</tr>
</tbody>
</table>

REVISION HISTORY

6/15—Rev. 0 to Rev. A
Changes to Figure 1 | 1 |
Changes to Ordering Guide | 20 |

2/15—Revision 0: Initial Version
SPECIFICATIONS

$V_{DD1} = 4.5$ V to 5.5 V, $V_{DD2} = 3$ V to 5.5 V, $V_{IN+} = -250$ mV to $+250$ mV, $V_{IN-} = 0$ V, $T_A = -40^\circ$C to $+105^\circ$C, tested with sinc3 filter, 256 decimation rate, as defined by Verilog code, unless otherwise noted. All voltages are relative to their respective ground.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PERFORMANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>16</td>
<td></td>
<td></td>
<td>Bits</td>
<td>Filter output truncated to 16 bits</td>
</tr>
<tr>
<td>Integral Nonlinearity (INL)</td>
<td>±1</td>
<td></td>
<td>±5</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Differential Nonlinearity (DNL)</td>
<td>±0.2</td>
<td></td>
<td>±0.99</td>
<td>LSB</td>
<td>Guaranteed no missed codes to 16 bits</td>
</tr>
<tr>
<td>Offset Error</td>
<td>±0.2</td>
<td></td>
<td>±0.75</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Offset Drift vs. Temperature</td>
<td>1.7</td>
<td></td>
<td>5</td>
<td>µV/°C</td>
<td></td>
</tr>
<tr>
<td>Offset Drift vs. V_{DD1}</td>
<td>85</td>
<td></td>
<td></td>
<td>µV/V</td>
<td></td>
</tr>
<tr>
<td>Gain Error</td>
<td>0.2</td>
<td></td>
<td>±0.5</td>
<td>% FSR</td>
<td></td>
</tr>
<tr>
<td>Gain Error Drift vs. Temperature</td>
<td>18</td>
<td></td>
<td>32</td>
<td>ppm/°C</td>
<td></td>
</tr>
<tr>
<td>Gain Error Drift vs. V_{DD1}</td>
<td>11</td>
<td></td>
<td>20</td>
<td>µV/°C</td>
<td></td>
</tr>
<tr>
<td>Gain Error Drift vs. V_{DD1}</td>
<td>0.2</td>
<td></td>
<td></td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td>ANALOG INPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range</td>
<td>−320</td>
<td></td>
<td>+320</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Input Common-Mode Voltage Range</td>
<td>−200 to +300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Input Current</td>
<td>±19</td>
<td></td>
<td>±28</td>
<td>µA</td>
<td>$V_{IN+} = \pm 250$ mV, $V_{IN-} = 0$ V</td>
</tr>
<tr>
<td>Input Capacitance</td>
<td>14</td>
<td></td>
<td></td>
<td>pF</td>
<td>$V_{IN+} = 0$ V, $V_{IN-} = 0$ V</td>
</tr>
<tr>
<td>DYNAMIC SPECIFICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal-to-(Noise + Distortion) Ratio (SINAD)</td>
<td>74</td>
<td></td>
<td>82</td>
<td>dB</td>
<td>$V_{IN+} = 35$ Hz</td>
</tr>
<tr>
<td>Signal-to-Noise Ratio (SNR)</td>
<td>86</td>
<td></td>
<td>87</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Total Harmonic Distortion (THD)</td>
<td>−84</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Peak Harmonic or Spurious Noise (SFDR)</td>
<td>−84</td>
<td></td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Effective Number of Bits (ENOB)</td>
<td>12</td>
<td></td>
<td>13.5</td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>Noise Free Code Resolution</td>
<td>14</td>
<td></td>
<td></td>
<td>Bits</td>
<td></td>
</tr>
<tr>
<td>ISOLATION TRANSIENT IMMUNITY</td>
<td>25</td>
<td></td>
<td>30</td>
<td>kV/µs</td>
<td></td>
</tr>
<tr>
<td>LOGIC OUTPUTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output High Voltage, V_{OH}</td>
<td>$V_{DD2} - 0.1$</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_O = -200$ µA</td>
</tr>
<tr>
<td>Output Low Voltage, V_{OL}</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_O = +200$ µA</td>
</tr>
<tr>
<td>POWER REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{DD1}</td>
<td>4.5</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{DD2}</td>
<td>3</td>
<td></td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{OD1}</td>
<td>26</td>
<td></td>
<td>31</td>
<td>mA</td>
<td>$V_{DD1} = 5.5$ V</td>
</tr>
<tr>
<td>I_{OD2}</td>
<td>6</td>
<td></td>
<td>7</td>
<td>mA</td>
<td>$V_{DD2} = 5.5$ V</td>
</tr>
<tr>
<td>I_{OD2}</td>
<td>4.5</td>
<td></td>
<td>5.5</td>
<td>mA</td>
<td>$V_{DD2} = 3.3$ V</td>
</tr>
<tr>
<td>POWER DISSIPATION</td>
<td>209</td>
<td></td>
<td></td>
<td>mW</td>
<td>$V_{DD1} = V_{DD2} = 5.5$ V</td>
</tr>
</tbody>
</table>

1 See the Terminology section.
TIMING SPECIFICATIONS

V_{DD1} = 4.5 V to 5.5 V, V_{DD2} = 3 V to 5.5 V, T_{A} = -40°C to +105°C, unless otherwise noted.

Table 2.

<table>
<thead>
<tr>
<th>Parameter1</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MCLKOUT}2</td>
<td>9.4</td>
<td>10</td>
<td>10.6</td>
<td>MHz</td>
<td>Master clock output frequency</td>
</tr>
<tr>
<td>t13</td>
<td>±10 ns</td>
<td></td>
<td></td>
<td>ns</td>
<td>Data access time after MCLKOUT rising edge</td>
</tr>
<tr>
<td>t23</td>
<td>44 ns</td>
<td></td>
<td></td>
<td>ns</td>
<td>Data hold time after MCLKOUT falling edge</td>
</tr>
<tr>
<td>t3</td>
<td>33 ns</td>
<td></td>
<td></td>
<td>ns</td>
<td>Master clock low time</td>
</tr>
<tr>
<td>t4</td>
<td>33 ns</td>
<td></td>
<td></td>
<td>ns</td>
<td>Master clock high time</td>
</tr>
</tbody>
</table>

1 Sample tested during initial release to ensure compliance.
2 Mark space ratio for clock output is 45/55 to 55/45.
3 Defined as the time required for the output to cross 0.8 V or 2.0 V for VDD2 = 3 V to 3.6 V, or when the output crosses 0.8 V or 0.7 × VDD2 for VDD2 = 4.5 V to 5.5 V, as outlined in Figure 2. Measured with a ±200 μA load and a 25 pF load capacitance.

Figure 2. Data Timing

1 SEE NOTE 3 OF TABLE 2 FOR FURTHER DETAILS.
PACKAGE CHARACTERISTICS

Table 3.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (Input to Output)¹</td>
<td>R_{I-O}</td>
<td>10²</td>
<td></td>
<td></td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>Capacitance (Input to Output)¹</td>
<td>C_{I-O}</td>
<td>2.2</td>
<td></td>
<td></td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>IC Junction to Ambient Thermal Resistance</td>
<td>θ_{JA}</td>
<td>105</td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

¹ The device is considered a 2-terminal device: Pin 1 to Pin 4 are shorted together, and Pin 5 to Pin 8 are shorted together.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 4.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Test Conditions/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input-to-Output Momentary Withstand Voltage</td>
<td>V_{ISO}</td>
<td>5000 min</td>
<td>V</td>
<td>1-minute duration</td>
</tr>
<tr>
<td>Minimum External Air Gap (Clearance)</td>
<td>L(I01)</td>
<td>8.1 min¹,²</td>
<td>mm</td>
<td>Measured from input terminals to output terminals, shortest distance through air</td>
</tr>
<tr>
<td>Minimum External Tracking (Creepage)</td>
<td>L(I02)</td>
<td>8.1 min¹</td>
<td>mm</td>
<td>Measured from input terminals to output terminals, shortest distance path along body</td>
</tr>
<tr>
<td>Minimum Internal Gap (Internal Clearance)</td>
<td>CTI</td>
<td>>400</td>
<td>V</td>
<td>Insulation distance through insulation</td>
</tr>
<tr>
<td>Tracking Resistance (Comparative Tracking Index)</td>
<td>CTI</td>
<td>>400</td>
<td>V</td>
<td>DIN IEC 112/VDE 0303 Part 1</td>
</tr>
<tr>
<td>Isolation Group</td>
<td></td>
<td></td>
<td></td>
<td>Material Group (DIN VDE 0110, 1/89, Table I)</td>
</tr>
</tbody>
</table>

¹ In accordance with IEC 60950-1 guidelines for the measurement of creepage and clearance distances for a pollution degree of 2 and altitudes ≤2000 meters.
² Consideration must be given to pad layout to ensure the minimum required distance for clearance is maintained.

REGULATORY INFORMATION

Table 5.

<table>
<thead>
<tr>
<th>UL¹</th>
<th>CSA</th>
<th>VDE²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognized under 1577 Component Recognition Program¹</td>
<td>Approved under CSA Component Acceptance Notice 5A</td>
<td>Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12²</td>
</tr>
<tr>
<td>5000 V rms Isolation Voltage Single Protection</td>
<td>Basic insulation per CSA 60950-1-07 and IEC 60950-1, 810 V rms (1145 V_{PEAK}) maximum working voltage³</td>
<td>Reinforced insulation per DIN V VDE V 0884-10 (VDE V 0884-10):2006-12, 1250 V_{PEAK}</td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation per CSA 60950-1-07 and IEC 60950-1, 405 V rms (583 V_{PEAK}) maximum working voltage³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinforced insulation per IEC 60601-1, 250 V rms (353 V_{PEAK}) maximum working voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>File E214100</td>
<td>File 2471900-4880-0001</td>
</tr>
</tbody>
</table>

¹ In accordance with UL 1577, each AD7402-8 is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second (current leakage detection limit = 15 µA).
² In accordance with DIN V VDE V 0884-10, each AD7402-8 is proof tested by applying an insulation test voltage ≥ 2344 V_{PEAK} for 1 second (partial discharge detection limit = 5 pC).
³ Rating is calculated for a pollution degree of 2 and a Material Group III. The AD7402 RI-8-1 package material is rated by CSA to a CTI of >400 V and therefore Material Group II.
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 INSULATION CHARACTERISTICS

This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by means of protective circuits.

Table 6.

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Characteristic</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION CLASSIFICATION PER DIN VDE 0110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For Rated Mains Voltage ≤ 300 V rms</td>
<td></td>
<td>I to IV</td>
<td></td>
</tr>
<tr>
<td>For Rated Mains Voltage ≤ 450 V rms</td>
<td></td>
<td>I to IV</td>
<td></td>
</tr>
<tr>
<td>For Rated Mains Voltage ≤ 600 V rms</td>
<td></td>
<td>I to IV</td>
<td></td>
</tr>
<tr>
<td>For Rated Mains Voltage ≤ 1000V rms</td>
<td></td>
<td>I to IV</td>
<td></td>
</tr>
<tr>
<td>CLIMATIC CLASSIFICATION</td>
<td>40/105/21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POLLUTION DEGREE (DIN VDE 0110, TABLE 1)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM WORKING INSULATION VOLTAGE</td>
<td>V_{IORM}</td>
<td>1250</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>INPUT TO OUTPUT TEST VOLTAGE, METHOD B1</td>
<td>$V_{PD(M)}$</td>
<td>2344</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>$V_{IORM} \times 1.875 = V_{PD}, 100% Production Test, t_m = 1 Second, Partial Discharge < 5 pC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT TO-OUTPUT TEST VOLTAGE, METHOD A</td>
<td>$V_{PR(M)}$</td>
<td>2000</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>After Environmental Test Subgroup 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IORM} \times 1.6 = V_{PR}, t_m = 60 Seconds, Partial Discharge < 5 pC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Input and/or Safety Test Subgroup 2/Safety Test Subgroup 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V_{IORM} \times 1.2 = V_{PR}, t_m = 60 Seconds, Partial Discharge < 5 pC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGHEST ALLOWABLE OVERVOLTAGE (TRANSIENT OVERVOLTAGE, $t_{TR} = 10$ Seconds)</td>
<td>V_{OTM}</td>
<td>8000</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>SURGE ISOLATION VOLTAGE</td>
<td>V_{OSM}</td>
<td>12000</td>
<td>V_{PEAK}</td>
</tr>
<tr>
<td>1.2 μs Rise Time, 50 μs, 50% Fall Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFETY LIMITING VALUES (MAXIMUM VALUE ALLOWED IN THE EVENT OF A FAILURE, SEE Figure 3)</td>
<td>T_S</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Case Temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side 1 (P_{VDD1}) and Side 2 (P_{VDD2}) Power Dissipation</td>
<td>P_{SO}</td>
<td>1.19</td>
<td>W</td>
</tr>
<tr>
<td>INSULATION RESISTANCE AT T_S, $V_O = 500 V$</td>
<td>R_{IO}</td>
<td>>109</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN V VDE V 0884-10
ABSOLUTE MAXIMUM RATINGS

\(T_A = 25^\circ C, \) unless otherwise noted. All voltages are relative to their respective ground.

Table 7.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD1 to GND1</td>
<td>(-0.3 \text{ V to } +6.5 \text{ V})</td>
</tr>
<tr>
<td>VDD2 to GND2</td>
<td>(-0.3 \text{ V to } +6.5 \text{ V})</td>
</tr>
<tr>
<td>Analog Input Voltage to GND1</td>
<td>(-1 \text{ V to } V_{DD1} + 0.3 \text{ V})</td>
</tr>
<tr>
<td>Output Voltage to GND2</td>
<td>(-0.3 \text{ V to } V_{DD2} + 0.3 \text{ V})</td>
</tr>
<tr>
<td>Input Current to Any Pin Except Supplies(^1)</td>
<td>(\pm 10 \text{ mA})</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(-40^\circ \text{C to } +105^\circ \text{C})</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(-65^\circ \text{C to } +150^\circ \text{C})</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>150°C</td>
</tr>
<tr>
<td>Pb-Free Temperature, Soldering</td>
<td></td>
</tr>
<tr>
<td>Reflow</td>
<td>260°C</td>
</tr>
<tr>
<td>ESD</td>
<td>2 kV</td>
</tr>
<tr>
<td>FICDM(^2)</td>
<td>(\pm 1250 \text{ V})</td>
</tr>
<tr>
<td>HBM(^3)</td>
<td>(\pm 4000 \text{ V})</td>
</tr>
</tbody>
</table>

\(^1\) Transient currents of up to 100 mA do not cause silicon controlled rectifier (SCR) to latch up.

\(^2\) JESD22-C101; RC network: 1 \(\Omega\), package capacitance (\(C_{PKG}\)); Class: IV.

\(^3\) ESDA/JEDEC JS-001-2011; RC network: 1.5 \(k\Omega\), 100 pF; Class: 3A.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 8. Maximum Continuous Working Voltage\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max</th>
<th>Unit</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Voltage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bipolar Waveform</td>
<td>1250</td>
<td>(V_{\text{PEAK}})</td>
<td>20-year minimum lifetime (VDE approved working voltage)</td>
</tr>
<tr>
<td>Unipolar Waveform</td>
<td>1250</td>
<td>(V_{\text{PEAK}})</td>
<td>20-year minimum lifetime</td>
</tr>
<tr>
<td>DC Voltage</td>
<td>1250</td>
<td>(V_{\text{PEAK}})</td>
<td>20-year minimum lifetime</td>
</tr>
</tbody>
</table>

\(^1\) Refers to continuous voltage magnitude imposed across the isolation barrier.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
Pin Configuration and Function Descriptions

![Figure 4. Pin Configuration](image)

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD1</td>
<td>Supply Voltage, 4.5 V to 5.5 V. This is the supply voltage for the isolated side of the AD7402 and is relative to GND1.</td>
</tr>
<tr>
<td>2</td>
<td>VIN+</td>
<td>Positive Analog Input.</td>
</tr>
<tr>
<td>3</td>
<td>VIN−</td>
<td>Negative Analog Input. Normally connected to GND1.</td>
</tr>
<tr>
<td>4</td>
<td>GND1</td>
<td>Ground 1. This is the ground reference point for all circuitry on the isolated side.</td>
</tr>
<tr>
<td>5</td>
<td>GND2</td>
<td>Ground 2. This is the ground reference point for all circuitry on the nonisolated side.</td>
</tr>
<tr>
<td>6</td>
<td>MDAT</td>
<td>Serial Data Output. The single bit modulator output is supplied to this pin as a serial data stream. The bits are clocked out on the rising edge of the MCLKOUT input and are valid on the following MCLKOUT falling edge.</td>
</tr>
<tr>
<td>7</td>
<td>MCLKOUT</td>
<td>Master Clock Logic Output, 10 MHz (Typical). The bit stream from the modulator is valid on the falling edge of MCLKOUT.</td>
</tr>
<tr>
<td>8</td>
<td>VDD2</td>
<td>Supply Voltage, 3 V to 5.5 V. This is the supply voltage for the nonisolated side and is relative to GND2.</td>
</tr>
</tbody>
</table>
TYPICAL PERFORMANCE CHARACTERISTICS

$T_A = 25^\circ C$, $VDD1 = 5$ V, $VDD2 = 5$ V, using sinc3 filter with a 256 oversampling ratio (OSR), unless otherwise noted.

Figure 5. PSRR vs. Supply Ripple Frequency

Figure 6. CMRR vs. Common-Mode Ripple Frequency

Figure 7. SINAD vs. Analog Input Frequency

Figure 8. Fast Fourier Transform (FFT)

Figure 9. Typical DNL Error

Figure 10. Typical INL Error
Figure 11. Histogram of Codes at Code Center

Figure 12. SNR and SINAD vs. Temperature

Figure 13. THD and SFDR vs. Temperature

Figure 14. Offset vs. Temperature

Figure 15. Gain Error vs. Temperature

Figure 16. IDD1 vs. VDD1 at Various Temperatures
Figure 17. I_{DD1} vs. $VIN+\ DC\ Input\ at\ Various\ Temperatures$

Figure 18. I_{DD2} vs. $VDD2$ at Various Temperatures

Figure 19. I_{DD2} vs. $VIN+\ DC\ Input\ at\ Various\ Temperatures$

Figure 20. I_{IN+} vs. $VIN+\ DC\ Input$

Figure 21. Clock Frequency vs. Temperature for Various Supply Voltages
TERMINOLOGY

Differential Nonlinearity (DNL)
DNL is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Integral Nonlinearity (INL)
INL is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are specified negative full scale, −250 mV (VIN+ − VIN−), Code 7168 for the 16-bit level, and specified positive full scale, +250 mV (VIN+ − VIN−), Code 58,368 for the 16-bit level.

Offset Error
Offset error is the deviation of the midscale code (32,768 for the 16-bit level) from the ideal VIN+ − VIN− (that is, 0 V).

Gain Error
The gain error includes both positive full-scale gain error and negative full-scale gain error. Positive full-scale gain error is the deviation of the specified positive full-scale code (58,368 for the 16-bit level) from the ideal VIN+ − VIN− (250 mV) after the offset error is adjusted out. Negative full-scale gain error is the deviation of the specified negative full-scale code (7168 for the 16-bit level) from the ideal VIN+ − VIN− (−250 mV) after the offset error is adjusted out.

Signal-to-Noise-and-Distortion Ratio (SINAD)
SINAD is the measured ratio of signal to noise and distortion at the output of the ADC. The signal is the rms value of the sine wave, and noise is the rms sum of all nonfundamental signals up to half the sampling frequency (fs/2), including harmonics, but excluding dc.

Signal-to-Noise Ratio (SNR)
SNR is the measured ratio of signal to noise at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency (fs/2), excluding dc.

The ratio is dependent on the number of quantization levels in the digitization process: the greater the number of levels, the smaller the quantization noise. The theoretical signal-to-noise ratio for an ideal N-bit converter with a sine wave input is given by

\[
\text{Signal-to-Noise Ratio} = (6.02N + 1.76) \text{ dB}
\]

Therefore, for a 12-bit converter, the SNR is 74 dB.

Isolation Transient Immunity
The isolation transient immunity specifies the rate of rise and fall of a transient pulse applied across the isolation boundary, beyond which clock or data is corrupted. The AD7402 was tested using a transient pulse frequency of 100 kHz.

Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of harmonics to the fundamental. For the AD7402, it is defined as

\[
\text{THD(dB)} = 20 \log \frac{\sqrt{V_2^2 + V_3^2 + V_4^2 + V_5^2 + V_6^2}}{V_1}
\]

where:

- \(V_i\) is the rms amplitude of the fundamental.
- \(V_2, V_3, V_4, V_5,\) and \(V_6\) are the rms amplitudes of the second through the sixth harmonics.

Peak Harmonic or Spurious Noise (SFDR)
Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to fs/2, excluding dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it is a noise peak.

Effective Number of Bits (ENOB)
ENOB is defined by

\[
\text{ENOB} = \frac{\text{SINAD} − 1.76}{6.02} \text{ bits}
\]

Noise Free Code Resolution
Noise free code resolution represents the resolution in bits for which there is no code flicker. The noise free code resolution for an N-bit converter is defined as

\[
\text{Noise Free Code Resolution (Bits)} = \log_2(2^N/\text{Peak-to-Peak Noise})
\]

The peak-to-peak noise in LSBs is measured with VIN+ = VIN− = 0 V.

Common-Mode Rejection Ratio (CMRR)
CMRR is defined as the ratio of the power in the ADC output at ±250 mV frequency, \(f\), to the power of a +250 mV peak-to-peak sine wave applied to the common-mode voltage of VIN+ and VIN− of frequency, \(f_s\), as

\[
\text{CMRR (dB)} = 10 \log \left(\frac{P_f}{P_{f_s}} \right)
\]

where:

- \(P_f\) is the power at frequency, \(f\), in the ADC output.
- \(P_{f_s}\) is the power at frequency, \(f_s\), in the ADC output.

Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but not the linearity of the converter. PSRR is the maximum change in the specified full-scale (±250 mV) transition point due to a change in power supply voltage from the nominal value.
THEORY OF OPERATION

CIRCUIT INFORMATION

The AD7402 isolated Σ-Δ modulator converts an analog input signal into a high speed (10 MHz maximum), single-bit data stream; the time average single-bit data from the modulator is directly proportional to the input signal. Figure 22 shows a typical application circuit where the AD7402 is used to provide isolation between the analog input, a current sensing resistor or shunt, and the digital output, which is then processed by a digital filter to provide an N-bit word.

ANALOG INPUT

The differential analog input of the AD7402 is implemented with a switched capacitor circuit. This circuit implements a second-order modulator stage that digitizes the input signal into a single-bit output stream. The sample clock (MCLKOUT) provides the clock signal for the conversion process as well as the output data framing clock. This clock source is internal on the AD7402. The analog input signal is continuously sampled by the modulator and compared to an internal voltage reference. A digital stream that accurately represents the analog input over time appears at the output of the converter (see Figure 23).

A differential signal of 0 V ideally results in a stream of alternating 1s and 0s at the MDAT output pin. This output is high 50% of the time and low 50% of the time. A differential input of 250 mV produces a stream of 1s and 0s that are high 89.06% of the time. A differential input of −250 mV produces a stream of 1s and 0s that are high 10.94% of the time.

A differential input of 320 mV ideally results in a stream of all 1s. A differential input of −320 mV ideally results in a stream of all 0s. The absolute full-scale range is ±320 mV and the specified full-scale performance range is ±250 mV, as shown in Table 10.

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Voltage Input (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Full-Scale Value</td>
<td>+320</td>
</tr>
<tr>
<td>Positive Specified Performance Input</td>
<td>+250</td>
</tr>
<tr>
<td>Zero</td>
<td>0</td>
</tr>
<tr>
<td>Negative Specified Performance Input</td>
<td>−250</td>
</tr>
<tr>
<td>Negative Full-Scale Value</td>
<td>−320</td>
</tr>
</tbody>
</table>

Figure 22. Typical Application Circuit

Figure 23. Analog Input vs. Modulator Output
To reconstruct the original information, this output must be digitally filtered and decimated. A sinc3 filter is recommended because it is one order higher than that of the AD7402 modulator, which is a second-order modulator. If a 256 decimation rate is used, the resulting 16-bit word rate is 39 kSPS. See the Digital Filter section for more detailed information on the sinc filter implementation. Figure 24 shows the transfer function of the AD7402 relative to the 16-bit output.

Differential Inputs

The analog input to the modulator is a switched capacitor design. The analog signal is converted into charge by highly linear sampling capacitors. A simplified equivalent circuit diagram of the analog input is shown in Figure 25. A signal source driving the analog input must provide the charge onto the sampling capacitors every half MCLKOUT cycle and settle to the required accuracy within the next half cycle.

Because the AD7402 samples the differential voltage across its analog inputs, low noise performance is attained with an input circuit that provides low common-mode noise at each input.

Digital Output

The AD7402 MDAT output driver is a slew rate limited driver. This driver lowers electromagnetic emissions, thus minimizing electromagnetic interference, both conducted and radiated.
APPLICATIONS INFORMATION
CURRENT SENSING APPLICATIONS

The AD7402 is ideally suited for current sensing applications where the voltage across a shunt resistor \(R_{\text{SHUNT}} \) is monitored. The load current flowing through an external shunt resistor produces a voltage at the input terminals of the AD7402. The AD7402 provides isolation between the analog input from the current sensing resistor and the digital outputs. By selecting the appropriate shunt resistor value, a variety of current ranges can be monitored.

Choosing \(R_{\text{SHUNT}} \)

The shunt resistor \(R_{\text{SHUNT}} \) values used in conjunction with the AD7402 are determined by the specific application requirements in terms of voltage, current, and power. Small resistors minimize power dissipation, whereas low inductance resistors prevent any induced voltage spikes, and good tolerance devices reduce current variations. The final values chosen are a compromise between low power dissipation and accuracy. Higher value resistors use the full performance input range of the ADC, thus achieving maximum SNR performance. Low value resistors dissipate less power but do not use the full performance input range. The AD7402, however, delivers excellent performance, even with lower input signal levels, allowing low value shunt resistors to be used while maintaining system performance.

To choose a suitable shunt resistor, first determine the current through the shunt. The shunt current for a 3-phase induction motor can be expressed as

\[
I_{\text{RMS}} = \frac{P_W}{1.73 \times V \times EF \times PF}
\]

where:
- \(I_{\text{RMS}} \) is the motor phase current (A rms)
- \(P_W \) is the motor power (Watts)
- \(V \) is the motor supply voltage (V ac)
- \(EF \) is the motor efficiency (%)
- \(PF \) is the power efficiency (%)

To determine the shunt peak sense current, \(I_{\text{SENSE}} \), consider the motor phase current and any overload that may be possible in the system. When the peak sense current is known, divide the voltage range of the AD7402 (±250 mV) by the peak sense current to yield a maximum shunt value.

If the power dissipation in the shunt resistor is too large, the shunt resistor can be reduced and less of the ADC input range can be used. Figure 26 shows the SINAD performance characteristics and the ENOB of resolution for the AD7402 for different input signal amplitudes. Figure 27 shows the rms noise performance for dc input signal amplitudes. The AD7402 performance at lower input signal ranges allows smaller shunt values to be used while still maintaining a high level of performance and overall system efficiency.

Voltage Sensing Applications

The AD7402 can also be used for isolated voltage monitoring. For example, in motor control applications, it can be used to sense the bus voltage. In applications where the voltage being monitored exceeds the specified analog input range of the AD7402, a voltage divider network can be used to reduce the voltage being monitored to the required range.

Input Filter

In a typical use case for directly measuring the voltage across a shunt resistor, the AD7402 can be connected directly across the shunt resistor with a simple RC low-pass filter on each input.
The recommended circuit configuration for driving the differential inputs to achieve best performance is shown in Figure 28. An RC low-pass filter is placed on both the analog input pins. Recommended values for the resistors and capacitors are 10 Ω and 220 pF, respectively. If possible, equalize the source impedance on each analog input to minimize offset.

The input filter configuration for the AD7402 is not limited to the low-pass structure shown in Figure 28. The differential RC filter configuration shown in Figure 29 also achieves excellent performance. Recommended values for the resistors and capacitor are 22 Ω and 47 pF, respectively.

Figure 29. Differential RC Filter Network

Figure 30 compares the typical performance for the input filter structures outlined in Figure 28 and Figure 29 for different resistor and capacitor values.

For a sinc3 filter, the −3 dB filter response point can be derived from the filter transfer function, Equation 1, and is 0.262 times the throughput rate. The filter characteristics for a third-order sinc filter are summarized in Table 11.

Digital Filter

The output of the AD7402 is a continuous digital bit stream. To reconstruct the original input signal information, this output bit stream needs to be digitally filtered and decimated. A sinc filter is recommended due to its simplicity. A sinc3 filter is recommended because it is one order higher than that of the AD7402 modulator, which is a second-order modulator. The type of filter selected, the decimation rate, and the modulator clock used determine the overall system resolution and throughput rate. The higher the decimation rate, the greater the system accuracy, as illustrated in Figure 31. However, there is a trade-off between accuracy and throughput rate and, therefore, higher decimation rates result in lower throughput solutions.

A sinc3 filter is recommended for use with the AD7402. This filter can be implemented on a field programmable gate array (FPGA) or a digital signal processor (DSP).

Equation 1 describes the transfer function of a sinc filter.

$$H(z) = \left(\frac{1}{DR} \left(1 - z^{-DR} \right)^N \right)$$

where DR is the decimation rate and N is the sinc filter order.

The throughput rate of the sinc filter is determined by the modulator clock and the decimation rate selected.

$$Throughput = \frac{MCLK}{DR}$$

where $MCLK$ is the modulator clock frequency

As the decimation rate increases, the data output size from the sinc filter increases. The output data size is expressed in Equation 3. The 16 most significant bits are used to return a 16-bit result.

$$Data\ size = N \times \log_2 DR$$

For a sinc3 filter, the −3 dB filter response point can be derived from the filter transfer function, Equation 1, and is 0.262 times the throughput rate. The filter characteristics for a third-order sinc filter are summarized in Table 11.

Table 11. Sinc3 Filter Characteristics for 10 MHz

<table>
<thead>
<tr>
<th>Decimation Ratio (DR)</th>
<th>Throughput Rate (kHz)</th>
<th>Output Data Size (Bits)</th>
<th>Filter Response (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>312.5</td>
<td>15</td>
<td>81.8</td>
</tr>
<tr>
<td>64</td>
<td>156.2</td>
<td>18</td>
<td>40.9</td>
</tr>
<tr>
<td>128</td>
<td>78.1</td>
<td>21</td>
<td>20.4</td>
</tr>
<tr>
<td>256</td>
<td>39.1</td>
<td>24</td>
<td>10.2</td>
</tr>
<tr>
<td>512</td>
<td>19.55</td>
<td>27</td>
<td>5.1</td>
</tr>
</tbody>
</table>
The following Verilog code provides an example of a sinc3 filter implementation on a Xilinx® Spartan®-6 FPGA. Note that the data is read on the negative clock edge. It is recommended to read in the data on the negative clock edge. The code is configurable to accommodate decimation rates from 32 to 4096.

```verilog
module dec256sinc24b
(input mclk1, /* used to clk filter */
input reset,  /* used to reset filter */
input mdata1, /* input data to be filtered */
output reg [15:0] DATA, /* filtered output */
output reg data_en,
input [15:0] dec_rate
);

/* Data is read on negative clk edge */
reg [36:0] ip_data1;
reg [36:0] acc1;
reg [36:0] acc2;
reg [36:0] acc3;
reg [36:0] acc3_d2;
reg [36:0] diff1;
reg [36:0] diff2;
reg [36:0] diff3;
reg [36:0] diff1_d;
reg [36:0] diff2_d;
reg [15:0] word_count;

reg word_clk;
reg enable;

/*Perform the Sinc action*/
always @(mdata1)
if(mdata1==0)
    ip_data1 <= 37'd0; /* change 0 to a -1 for twos complement */
else
    ip_data1 <= 37'd1;

/*Accumulator (Integrator)
Perform the accumulation (IIR) at the speed of the modulator.
Z = one sample delay MCLKOUT = modulators conversion bit rate */
always @(negedge mclk1, posedge reset)
begin
    if (reset)
        acc1 <= 37'd0;
    else
        begin
            /*perform accumulation process */
            acc1 <= acc1 + ip_data1;
            acc2 <= acc2 + acc1;
            acc3 <= acc3 + acc2;
        end

    /*decimation stage (MCLKOUT/WORD_CLK) */
    always @(negedge mclk1, posedge reset)
    begin
        if (reset)
            word_count <= 16'd0;
        else
            begin
                if ( word_count == dec_rate - 1 )
                    word_count <= 16'd0;
                else
                    word_count <= word_count + 16'b1;
            end

    end

    always @(negedge mclk1, posedge reset)
    begin
        if (reset)
            word_clk <= 1'b0;
        else
            begin
                if ( word_count == dec_rate/2 - 1 )
                    word_clk <= 1'b1;
                else if ( word_count == dec_rate - 1 )
                    word_clk <= 1'b0;
            end

end

/*Differentiator (including decimation stage)
Perform the differentiation stage (FIR) at a lower speed.
Z = one sample delay WORD_CLK = output word rate */
always @(negedge word_clk, posedge reset)
begin
    if(reset)
        acc3_d2 <= 37'd0;
    else
        begin
            acc3_d2 <= 37'd0;
            diff1_d <= 37'd0;
            diff2_d <= 37'd0;
```

Figure 32. Accumulator

Figure 33. Differentiator
diff1 <= 37'd0;
diff2 <= 37'd0;
diff3 <= 37'd0;
end
else
begin
diff1 <= acc3 - acc3_d2;
diff2 <= diff1 - diff1_d;
diff3 <= diff2 - diff2_d;
acc3_d2 <= acc3;
diff1_d <= diff1;
diff2_d <= diff2;
end
end

/* Clock the Sinc output into an output register
WORD_CLK = output word rate */
always @(negedge word_clk)
begin
case (dec_rate)
16'd32:begin
DATA <= (diff3[15:0] == 16'h8000) ? 16'hFFFF : {diff3[14:0], 1'b0};
end
16'd64:begin
DATA <= (diff3[18:2] == 17'h10000) ? 16'hFFFF : diff3[17:2];
end
16'd128:begin
DATA <= (diff3[21:5] == 17'h10000) ? 16'hFFFF : diff3[20:5];
end
16'd256:begin
DATA <= (diff3[24:8] == 17'h10000) ? 16'hFFFF : diff3[23:8];
end
16'd512:begin
DATA <= (diff3[27:11] == 17'h10000) ? 16'hFFFF : diff3[26:11];
end
16'd1024:begin
DATA <= (diff3[30:14] == 17'h10000) ? 16'hFFFF : diff3[29:14];
end
16'd2048:begin
DATA <= (diff3[33:17] == 17'h10000) ? 16'hFFFF : diff3[32:17];
end
16'd4096:begin
DATA <= (diff3[36:20] == 17'h10000) ? 16'hFFFF : diff3[35:20];
end
endcase
end

/* Synchronize Data Output*/
always@ (negedge mclk1, posedge reset)
begin
if (reset)
begin
data_en <= 1'b0;
enable <= 1'b1;
end
else
begin
if ((word_count == dec_rate/2 - 1) && enable)
begin
data_en <= 1'b1;
enable <= 1'b0;
end
else if ((word_count == dec_rate - 1) && ~enable)
begin
data_en <= 1'b0;
enable <= 1'b1;
end
else
data_en <= 1'b0;
end
end
endmodule
POWER SUPPLY CONSIDERATIONS

The AD7402 requires a 5 V VDD1 supply, and there are various means of achieving this. One method is to use an isolated dc-to-dc converter such as the ADuM6000. This method provides a 5 V regulated dc supply across the isolation barrier. Note that the inherent isolation of the ADuM6000 is lower than the AD7402.

Another method is to regulate a dc supply on the high voltage side of the isolation barrier using a step-down dc-to-dc regulator, such as the ADP2441.

GROUNDING AND LAYOUT

It is recommended to decouple the VDD1 supply with a 10 μF capacitor in parallel with a 1 nF capacitor to GND1. Decouple the VDD2 supply with a 100 nF value to GND2. In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout so that any coupling that occurs equally affects all pins on a given component side. Failure to ensure equal coupling can cause voltage differentials between pins to exceed the absolute maximum ratings of the device, thereby leading to latch-up or permanent damage. Place any decoupling used as close to the supply pins as possible.

Minimize series resistance in the analog inputs to avoid any distortion effects, especially at high temperatures. If possible, equalize the source impedance on each analog input to minimize offset. Check for mismatch and thermocouple effects on the analog input printed circuit board (PCB) tracks to reduce offset drift.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the AD7402.

Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage. The values shown in Table 8 summarize the peak voltage for 20 years of service life for a bipolar, ac operating condition and the maximum VDE approved working voltages.

These tests subjected the AD7402 to continuous cross isolation voltages. To accelerate the occurrence of failures, the selected test voltages were values exceeding those of normal use. The time to failure values of these units were recorded and used to calculate the acceleration factors. These factors were then used to calculate the time to failure under the normal operating conditions. The values shown in Table 8 are the lesser of the following two values:

- The value that ensures at least a 20-year lifetime of continuous use.
- The maximum VDE approved working voltage.

Note that the lifetime of the AD7402 varies according to the waveform type imposed across the isolation barrier. The iCoupler insulation structure is stressed differently, depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 37, Figure 38, and Figure 39 illustrate the different isolation voltage waveforms.

![Figure 35. ADuM6000 Isolated 5 V DC-to-DC Regulator Example](image1)

![Figure 36. ADP2441 Step-Down DC-to-DC Regulator Example](image2)

![Figure 37. Bipolar AC Waveform, 50 Hz or 60 Hz](image3)

![Figure 38. Unipolar AC Waveform, 50 Hz or 60 Hz](image4)

![Figure 39. DC Waveform](image5)
OUTLINE DIMENSIONS

Figure 40. 8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC] Wide Body (RI-8-1)
Dimensions shown in millimeters

ORDERING GUIDE

<table>
<thead>
<tr>
<th>Model</th>
<th>Temperature Range</th>
<th>Package Description</th>
<th>Package Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD7402-8BRIZ</td>
<td>−40°C to +105°C</td>
<td>8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]</td>
<td>RI-8-1</td>
</tr>
<tr>
<td>AD7402-8BRIZ-RL</td>
<td>−40°C to +105°C</td>
<td>8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]</td>
<td>RI-8-1</td>
</tr>
<tr>
<td>AD7402-8BRIZ-RL7</td>
<td>−40°C to +105°C</td>
<td>8-Lead Standard Small Outline Package, with Increased Creepage [SOIC_IC]</td>
<td>RI-8-1</td>
</tr>
<tr>
<td>EVAL-AD7402-8FMCZ</td>
<td></td>
<td>Evaluation Board</td>
<td></td>
</tr>
</tbody>
</table>

1 Z = RoHS Compliant Part.