
Engineer To Engineer Note EE-207

a

Technical Notes on using Analog Devices' DSP components and development tools
Contact our technical support by phone: (800) ANALOG-D or e-mail: dsp.support@analog.com
Or visit our on-line resources http://www.analog.com/dsp and http://www.analog.com/dsp/EZAnswers

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device
Mode
Contributed by Jorge Manguane September 10, 2003

Introduction
The purpose of this document is to familiarize
the user with the ADSP-BF535 Blackfin®
Processor’s Peripheral Component Interconnect
(PCI) interface in Device mode. This document
describes how to program the PCI interface to
function in Device mode.

For the remainder of this document, “processor”
will refer to “ADSP-BF535 Blackfin®
processor.”

The BF535 includes a 3.3V Revision 2.2-
compliant, 33 MHz, 32-bit PCI bus interface.
The interface can act as either a PCI Host or as a
PCI Device. The BF535 can master the PCI bus
in both Host and Device modes. In addition, a
dedicated bus is available on chip to allow an
external bus master to transfer data directly to
internal (L2 memory) or external memory spaces
of the processor.

Device Mode:
The processor’s PCI interface supports a single-
function PCI device and can be interfaced
gluelessly to 3.3 Volt systems.

When a PCI device is plugged into a system, the
PCI host needs to gather some information about
the device that will allow the host to configure
the device and load the proper device driver.
Since this information exchange happens at
power up or after system reset, the device needs

to have this information stored in its boot code.
The PCI specification rev. 2.2 stipulates that a
device has up to 225 PCI clock cycles to initialize
its PCI configuration register space. The
processor’s PCI core interface will issue retries if
a system host tries to access the device’s
configuration space before the processor has
enabled the PCI interface (which is done by
writing a 1 to the “PCI Enable” bit in the PCI
Control Register (PCI_CTL)). It is, therefore,
imperative not to set the “PCI Enable” bit until
all configuration registers have been initialized.

An external PCI clock must be supplied
to the BF535 PCI module before
attempting to access the PCI
Configuration registers since these
reside in the PCI clock domain.

The ADSP-BF535 EZ-Kit Lite
evaluation board does not bring out the
PCI signals, and PCI Clock is not
provided.

BF535 based PCI boards for both host
and device applications are available
from Momentum Data Systems at:
http://www.mds.com

Copyright 2003, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property
of their respective holders. Information furnished by Analog Devices Applications and Development Tools Engineers is believed to be accurate and reliable, however
no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices’ Engineer-to-Engineer Notes.

 a
Figure 1. Type 0 PCI Configuration space
Header region

Listing 1, in the Appendix, shows an example
program of how to initialize the PCI interface in
device mode. Device ID Vendor ID

Status Register Command Register

Class Code Revision ID

BIST Header
Type

Latency
Timer

Cache Line
Size

BAR 0 (Memory BAR)

BAR 1

BAR 2 (I/O BAR)

BAR 3

BAR 4

BAR 5

CardBus CIS Pointer

Subsystem ID Subsystem Vendor ID

Expansion ROM Base Address

Reserved Capabilities
Pointer

Reserved

Maximum
Latency

Minimum
Grant

Interrupt
Pin

Interrupt
Line

PCI Transaction Types:

There are three types of PCI transactions:

1. Configuration Accesses

2. Memory Accesses

3. I/O Accesses

In device mode the BF535 PCI core responds to
all of the transaction types listed above. Note,
however, that the processor’s architecture does
not define separate Configuration and I/O
address spaces. The three PCI memory spaces
are mapped into the processor’s unified memory
region. Refer to Figure 2, which shows a subset
of the processor’s external memory map.

Figure 2. PCI Address spaces

Figure 1 shows the PCI configuration registers
implemented on the BF535 PCI interface as
specified by the PCI Local Bus Specification,
Revision 2.2. This document should be
consulted for a detailed description of these
registers.

Cache Line Size and Built-In Self Test (BIST)
registers are implemented but not supported by
the processor. The remaining registers, shown
shaded in gray, are not implemented.

This register space is referred to as the device’s
configuration header region or space. The
format of the BF535 PCI header region is Header
Type Zero, which is used for all devices other
than PCI-to-PCI and CardBus bridges.

0xEEFF FFFF

0xEEFF FFFC

0xEEFF FF00

0xEEFE FFFF

0xEEFE 0000

0xE7FF FFFF

PCI Config Space Port (4 bytes) PCI Config Space Port (4 bytes)

PCI Memory Map:

PCI Config Registers (64 KB)

RESERVED

PCI IO SPACE (64KB)

RESERVED

PCI Memory Space

 (128 MB)

0xE000 0000

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 2 of 9

 a
(which corresponds to a size of I/O accesses can be used to access the

processor’s non-prefetchable Memory Mapped
Register (MMR) space.

The processor can initiate Memory and I/O
accesses, but never Configuration accesses,
while in Device mode. Configuration accesses
are always initiated by the system host.

To respond to Configuration accesses, the
processor need only initialize its configuration
registers and then enable the PCI interface. After
this, the host system can configure the PCI
device. The host assigns to the device the
following parameters:

 The capabilities of the device, such as Bus
Mastership, Parity Error Response, Special
Cycles, etc… This information is written into
the processor’s PCI_CFG_CMD register .
Please refer to the processor’s hardware
reference manual for a description of this
register and of the remaining registers
mentioned below.

 Latency timer, the minimum amount of time
the PCI device master can retain ownership
of the bus when it initiates a transaction.
This information is written into the
processor’s PCI_CFG_MLT register

 Unique Memory and I/O addresses. This
information is written into the processor’s

PCI_CFG_MBAR and PCI_CFG_IBAR
registers. The values in these registers will
allow the device to respond, by asserting its
Device Select line (#DEVSEL), to any
accesses that fall within the range specified
by the value in PCI_CFG_xBAR offset by
the value in the corresponding mask register,
PCI_CFG_MBARM or PCI_CFG_IBARM
for memory and I/O, respectively.

 For example, if

 PCI_CFG_MBAR = 0xE000 0000 and

 PCI_CFG_MBARM = 0xFFFC 0000

0x0003 FFFF+1 = 0x0004 0000)

then the ADSP-BF535 PCI core will claim all
transactions that fall in the range:

0xE000 0000 to 0xE004 0000

In the above example, note that the host
calculates the memory size required by the
device by taking a 1’s complement of the
value in PCI_CFG_MBARM and adding a 1
to the result. Likewise, for I/O size the
operation described above is also performed
on the value in PCI_CFG_IBARM register.

 Interrupt line information written into
the processor’s PCI_CFG_IL register

Device is now ready to participate in PCI
transactions as either a target or as an initiator.

OUTBOUND TRANSACTIONS

Outbound transactions are those transactions for
which the BF535 PCI interface is the bus
master. The following registers are used to
perform outbound transactions:

PCI Outbound Memory Base Address
Register (PCI_MBAP) for memory
accesses

and the

PCI Outbound I/O Base Address Register
(PCI_IBAP) for I/O accesses.

MEMORY ACCESSES:

To initiate a memory access, the device writes to
the PCI_MBAP register the uppermost 5 bits
(31:27) of the intended destination address.
These 5 bits will be prefixed to the 27-bit offset
of the actual address in the PCI memory space.

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 3 of 9

 a

Example:
P4.H = HI(PCI_MBAP);

 P4.L = LO (PCI_MBAP);

R0.H = 0xE000;

R0.L = 0x0000;

[P4] = R0;

ssync;

Now, an access in the PCI memory space
will initiate a PCI transaction:
P2.H = 0xE000;

P2.L = 0x1234;

R0 = [P2];

ssync;

The upper 5 bits of the PCI_MBAP are:
11100

The lower 27 bits of the address in P2
are:

000 0000 0000 0001 0010 0011 0100

The actual address that will be output on
the bus will be:

1110 0000 0000 0000 0001 0010 0011
0100

which corresponds to: 0xE000 1234

I/O ACCESSES

The mechanism to perform I/O accesses is
similar to that described for memory accesses
except that now the PCI_IBAP register is used.
This register prefixes 16 bits to the actual address
that will go on the bus.

INBOUND TRANSACTIONS

Inbound transactions are those transactions for
which the BF535 PCI interface is the bus
target/slave.

To participate in inbound transactions, the
processor’s PCI interface should have bits 0 and

1 of the Command register (PCI_CFG_CMD) set
to 1. Typically, in device mode the PCI host
system writes to this register. These bits enable
the device to participate in I/O and Memory
transactions, respectively. Also, the registers:
PCI Device Memory BAR Mask
(PCI_DMBARM) and PCI Device I/O BAR
Mask (PCI_DIBARM) should contain non zero
values, as a value of zero in these registers also
disables access to the respective spaces.

To map the incoming traffic into its memory
regions the processor uses the following
registers:

PCI Inbound Memory Base Address
Register (PCI_TMBAP)

 and

PCI Inbound I/O Base Address Register
(PCI_TIBAP)

PCI_TMBAP and PCI_TIBAP specify the base
addresses in the BF535’s memory space for
memory and I/O transactions, respectively.

Example:

Let’s say the PCI host has assigned the
BF535 PCI device the following
hypothetical Base Address Register
(BAR) values:

BAR 0 = 0xE000 0000 (memory BAR)

BAR 1 = 0xFFFE 0000 (I/O BAR)

(Note that the above BAR 0 and BAR 1
addresses are part of the PCI host’s
memory address map).

If PCI_TMBAP = 0 (SDRAM space) then
all incoming memory transactions will be
directed to the SDRAM memory space of
the BF535 memory map.

For example, address 0xE000 0000 will
map to address 0x0000 0000, address
0xE000 1234 will map to address 0x0000
1234, and so on.

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 4 of 9

 a
Similarly, if PCI_TIBAP = 0xFFC0 4000
(PCI MMR space) then all incoming I/O
transactions will be directed to this
memory region.

The bits in the PCI_STAT register are
“sticky” and are Write 1 to Clear. To
prevent the interrupt from being
continuously generated, the particular
bit(s) that caused the interrupt will need
to be expressly cleared inside the
interrupt service routine. This is done by
writing a 1 to the specific bit, followed
by issuing an SSYNC instruction.

The processor’s PCI module cannot
access L1 memory or the processor’s
core resources (core MMRs).
Therefore, PCI_TMBAP or PCI_TIBAP
should not point to L1 or to the core
MMR space.

PCI INTERRUPTS

 The processor’s PCI module can generate PCI
interrupts as well as respond to PCI interrupts.
Of the four PCI interrupt lines (INTA – INTD),
only INTA can be configured as either input or
output. All others are inputs only.

The processor can also generate a PCI RESET
interrupt. To generate either PCI RESET or
INTA interrupts the processor first sets the pads
as outputs by writing to the appropriate bits in
the PCI Bridge Control Register (PCI_CTL).
The processor then writes a 1 to the “RST to
PCI” or the “INTA to PCI” bit of the PCI_CTL
register.

To have the PCI module generate an interrupt to
the processor’s core, the PCI interrupt must be
unmasked both at the core level (by writing to
the IMASK register) and at the system level (by
writing to the SIC_IMASK register). At the PCI
level, the event that is going to cause the
interrupt needs to be enabled in the PCI Interrupt
Controller Register (PCI_ICTL) by setting the
respective bit to a 1. Once the event occurs, the
corresponding bit will be set in the PCI Status
Register (PCI_STAT), and an interrupt to the
core will be generated.

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 5 of 9

 a

References
ADSP-BF535 BLACKFIN® PROCESSOR Blackfin DSP Hardware Reference, Analog Devices, Inc.

PCI SYSTEM ARCHITECTURE, 4th Edition, MindShare, Inc.

Appendix

PCI_Device_Init.asm

/* **
 *
 * Copyright (c) 2003 Analog Devices Inc. All rights reserved.
 *
 * ***/
#include "defBF535.h"

/* Helper macros
 * usage:
 * P0.H = HI(UART_THR);
 * P0.L = LO(UART_THR);
 */

#define LO(con32) ((con32) & 0xFFFF)
#define lo(con32) ((con32) & 0xFFFF)
#define HI(con32) (((con32) >> 16) & 0xFFFF)
#define hi(con32) (((con32) >> 16) & 0xFFFF)

.section program;
/********************** PCI module Configuration ****************************/
pci_cfg_init:

Initialize:
 P4.H = HI(PCI_STAT); P4.L = LO(PCI_STAT);
 R1 = [P4];
 [P4] = R1; // Clear PCI status register
 SSYNC;

 P4.H = HI(PCI_CTL); P4.L = LO(PCI_CTL);
 R0.H = 0x0; R0.L = 0x0;
 [P4] = R0; // disable PCI before writing config space
 SSYNC;

 P4.H = HI(PCI_ICTL); P4.L = LO(PCI_ICTL);
 R0.H = 0x0; R0.L = 0x0;
 [P4] = R0; // clear PCI interrupt enables before writing config space
 SSYNC;

/*************** BEGIN INITIALIZATION ***************************/
Vendor_ID:

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 6 of 9

 a
 P4.H = HI(PCI_CFG_VIC); P4.L = LO(PCI_CFG_VIC);

 R0.H = 0x0; R0.L = 0x11D4;
R0; // write PCI_CFG_VIC [P4] =

 SSYNC;

Device_ID:

L = LO(PCI_CFG_DIC); P4.H = HI(PCI_CFG_DIC); P4.
 R0.H = 0x0; R0.L = 0x1535;

R0; // write PCI_CFG_DIC [P4] =
 SSYNC;

ce mode this register should be written by the system host // in Devi
Command:

P4.L = LO(PCI_CFG_CMD); P4.H = HI(PCI_CFG_CMD);
 = 0x0; R0.H = 0x0; R0.L

R0; [P4] =
 SSYNC;

Revision_ID:

P4.L = LO(PCI_CFG_RID); P4.H = HI(PCI_CFG_RID);
 = 0x0; R0.H = 0x0; R0.L

R0; [P4] =
 SSYNC;

Class_Code:

O(PCI_CFG_CC); P4.H = HI(PCI_CFG_CC); P4.L = L
 R0.H = 0x0011; R0.L = 0x8000;
 [P4] = R0; /* Data Acquisition and Signal Processing Controllers. Refer to

 the PCI Local Bus Speficication, Revision 2.2 */
 SSYNC;

is not supported on the ADSP-BF535 // This function
Cache_Line_Size:

P4.L = LO(PCI_CFG_CLS); P4.H = HI(PCI_CFG_CLS);
 = 0x0; R0.H = 0x0; R0.L

R0; [P4] =
 SSYNC;

de this register should be written by the system host // in Device mo
Latency_Timer:

CI_CFG_MLT); P4.L = LO(PCI_CFG_MLT); P4.H = HI(P
 R0 = 0x0;

R0; [P4] =
 SSYNC;

Header_Type:

4.L = LO(PCI_CFG_HT); P4.H = HI(PCI_CFG_HT); P
 R0.H = 0x0; R0.L = 0x0;

R0; // Single function device & header type 0 [P4] =
 SSYNC;

not supported on the ADSP-BF535 // This function is
Built_In_Self_Test:

 P4.L = LO(PCI_CFG_CLS); P4.H = HI(PCI_CFG_CLS);
= 0x0; R0.H= 0x0; R0.L

 [P4] = R0;

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 7 of 9

 a

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 8 of 9

 SSYNC;

Subsystem_Vendor_ID:
 P4.H = HI(PCI_CFG_SVID); P4.L = LO(PCI_CFG_SVID);
 R0.H = 0x0; R0.L = 0x0;
 [P4] = R0;
 SSYNC;

Subsystem_ID:
 P4.H = HI(PCI_CFG_SID); P4.L = LO(PCI_CFG_SID);
 R0.H= 0x0; R0.L = 0x0;
 [P4] = R0;
 SSYNC;

Interrupt_Pin:
 P4.H = HI(PCI_CFG_IP); P4.L = LO(PCI_CFG_IP);
 R0.H = 0x0; R0.L = 0x1; /* INTA is used by ADSP-BF535 in device mode */
 [P4] = R0;
 SSYNC;

// the host system will provide this information
Interrupt_Line:
 P4.H = HI(PCI_CFG_IL); P4.L = LO(PCI_CFG_IL);
 R0.H = 0x0; R0.L = 0x0;
 [P4] = R0;
 SSYNC;

Minimum_Grant:
 P4.H = HI(PCI_CFG_MING); P4.L = LO(PCI_CFG_MING);
 R0.H = 0x0; R0.L = 0x1; //Refer to the PCI Local Bus Speficication, Revision 2.2
 [P4] = R0;

 SSYNC;

Maximum_Latency:
 P4.H = HI(PCI_CFG_MAXL); P4.L = LO(PCI_CFG_MAXL);
 R0.H = 0x0; R0.L = 0x2; //Refer to the PCI Local Bus Speficication, Revision 2.2
 [P4] = R0;
 SSYNC;

// DMBARM & DIBARM specify the size of memory and I/O requested by the device
Device_Memory_BAR_Mask:
 P4.H = HI(PCI_DMBARM); P4.L = LO(PCI_DMBARM);
 R0.H = 0xF800; R0.L = 0x0000;
 [P4] = R0; // specify the memory size required by the ADSP-BF535 PCI
 SSYNC;

Device_IO_BAR_Mask:
 P4.H = HI(PCI_DIBARM); P4.L = LO(PCI_DIBARM);
 R0.H = 0xFFFF; R0.L = 0x0000;
 [P4] = R0; // specify the I/O size required by the ADSP-BF535 PCI
 SSYNC;

 a

Using the ADSP-BF535 Blackfin® processor's PCI interface in Device Mode (EE-207) Page 9 of 9

//BF535 specific register to map PCI memory space to the processor's mem space
Target_Memory_Base_Address_Pointer:
 P4.H = HI(PCI_TMBAP); P4.L = LO(PCI_TMBAP);
 R0.H = 0xF000; R0.L = 0x0000;
 [P4] = R0; // map inbound memory accesses to the base of L2 memory
 SSYNC;

//BF535 specific register to map PCI IO space to the processor's MMR space
Target_IO_Base_Address_Pointer:
 P4.H = HI(PCI_TIBAP); P4.L = LO(PCI_ IBAP)T ;
 R0.H = 0xFFC0; R0.L = 0x4000;
 [P4] = R0; // map inbound /OI accesses to 0xFFC0 4000 (PCI MMR space)
 SSYNC;

Enable_PCI_Interrupts:
 P4.H = HI(PCI_ICTL); P4.L = LO(PCI_ICTL);
 R0.H= 0x0; R0.L = 0x0040;
 [P4] = R0; // Enable PCI an interrupt to the ADSP-BF535 core reset to generate
 SSYNC;

Enable_PCI:
 P4.H = HI(PCI_CTL); P4.L = LO(PCI_CTL);
 R0.H = 0x0; R0.L = 0x0006 ;
 [P4] = R0; /* enable PCI a as Device; enable Fast back-to-back*/
 SSYNC;

pci_cfg_init.end: nop;

L

Document History

isting 1 PCI_Device_Init.asm

Version Description

September 9, 2003 by J. Manguane e Initial Releas

August 7, 2003 by J. Manguane Initial draft release

	Introduction
	References
	Appendix
	PCI_Device_Init.asm

	Document History

