System Theory and Typical Architecture of Industrial Electromagnetic Flow Meters

The operating principle of the electromagnetic flow meter is based on Faraday’s law of electromagnetic induction. When the magnetic field direction perpendicular to the conductor cutting magnetic line is speed \(V \), both ends of the conductor will be induced by a certain force \(E \), and the liquid flow rate change can be calculated by detecting the value of the force.

The features of electromagnetic flow meters are no pressure loss and no impact from viscosity, fluid density, temperature, pressure, or conductivity, making it suitable for measuring pulp, slurry, and sewage with high accuracy.

An electromagnetic flow meter system consists of power supplies, magnetic excitation, signal conditioning, analog-to-digital conversion, processor, display, keyboards, logic I/Os, and multiple communications like 4 mA to 20 mA, HART, Profinus, RS-485/RS-422/RS-232, Modbus, and Foundation.

System Design Considerations and Major Challenges of Industrial Electromagnetic Flow Meters

To appropriately design an electromagnetic flow meter system, designers must consider many different system requirements, including accuracy, bandwidth, and magnetic excitation frequency.

- Electromagnetic flow meter sensor output ranges can be as small as several tens of \(\mu \)V with a certain common voltage. The output impedance is often higher than the MΩ range. The front-end precision operational amplifier or instrumentation amplifier requires ultrahigh input impedance, very low leakage current, and excellent CMRR.
- Electromagnetic flow meter product maximum measurement range can be as wide as 1500:1, and the range for corresponding flow rate is 0.01 m/s to 15 m/s.
- Measurement accuracy can be as high as 0.2% of reading, which often requires a 16-bit to 24-bit analog-to-digital converter.
- Connectivity to different fieldbus protocols, such as HART, Profinus, Modbus, Foundation, RS-485/RS-422/RS-232, and wireless HART.
- Isolation needed between system power supply, central logic unit, communication, and I/Os. Isolation grade varies from 1 kV to 2.5 kV.
- Portable electromagnetic flow meters require ultralow power MCU, amp, and ADC components.
- Higher frequency square wave excitation improves the flow of mud and noise immunity, but needs to be balanced with zero stability.

Industrial site temperature environments are quite complex and sometimes even extremely adverse. Low temperature drift coefficient and low power consumption are very important for electromagnetic flow meters to withstand a wide working temperature range. ADI offers a complete portfolio such as precision amplifiers, precision references, precision analog-to-digital converters, and ARM core microprocessors.

Also, EMC interference immunity, such as for ESD, EFT and surge, is a big challenge for electromagnetic flow meters. The high level ESD immunity components offered by ADI greatly help to improve its reliability and robustness.

In addition, the limited space inside electromagnetic flow meters requires dense systems. Therefore, the form factor has to be reduced to accommodate this. Recently, advances in integration have allowed system designers to migrate to smaller, lower power, lower cost solutions, with performance approaching that of larger systems. The challenge moving forward is to continue to drive the integration of these solutions while increasing their performance and diagnostic capabilities.

ADI offers market tailored solutions to aid in the design process. These solutions feature our industry-leading technologies and offer a range of design options: from implementation of discrete components to fully integrated solutions and everything in between.

Total Solutions from ADI

Leverage ADI amplifier, data conversion, signal processing, communications, and power technology and expertise to design high resolution, low noise industrial electromagnetic flow meter systems.
Main Signal Chain

Note: The signal chain above is representative of a typical EM flow meter system. The technical requirements of the blocks vary, but the products listed in the table are representative ADI’s solutions that meet some of those requirements.

Main Product Introduction

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Key Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD7663</td>
<td>16-bit, 250 kSPS CMOS ADC</td>
<td>35 mW @ 5 V, 16-bit no missing code, INL = 3 LSB, S/(N + D): 90 dB type @ 100 kHz</td>
<td>Fast throughput, serial or parallel interface</td>
</tr>
<tr>
<td>AD7685</td>
<td>16-bit, 250 kSPS PulSAR® ADC</td>
<td>16-bit 250 kSPS no missing code, INL = ±2 LSB max, 4 mW @ 5 V/100 kSPS</td>
<td>Low power, internal conversion clock, high throughput rate</td>
</tr>
<tr>
<td>AD7682</td>
<td>16-bit, 4-channels, 250 kSPS, PulSAR ADC</td>
<td>16-bit 250 kSPS no missing code, INL = ±1.5 LSB max, 12.5 mW @ 5 V/250 kSPS</td>
<td>Unipolar single-ended and differential, low power, single power with bipolar input, competitive price</td>
</tr>
<tr>
<td>AD7192</td>
<td>24-bit 2 differential/4 pseudo channels, Σ-Δ ADC with PGA</td>
<td>4.8 kHz, ultralow noise, rms noise: 11 nV @ 4.7 Hz (gain = 128), 15.5 noise-free bits @ 2.4 kHz (gain = 128), differential inputs</td>
<td>Ultralow noise, internal PGA, high precision Σ-Δ ADC</td>
</tr>
<tr>
<td>Main ADC/Aux ADC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD7792/AD7793/AD7794/AD7795</td>
<td>16-bit to 24-bit, 3 differential to 6 differential channels, Σ-Δ ADC with PGA</td>
<td>4.7 Hz to 470 Hz, embedded 2 switchable current sources, reference, PGA, low noise</td>
<td>Low power consumption and designed for RTD/thermocouple temperature measure</td>
</tr>
<tr>
<td>Processor/MCU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADUC7060</td>
<td>Analog microcontroller (ARM7TDMI core)</td>
<td>24-bit, 8 kSPS Σ-Δ ADC up to 10 ADC channels; 1-channel 14-bit voltage DAC outputs; 16-bit, 6-channel PWM; on-chip voltage reference, ±10 ppm/°C and temperature sensor; programmable sensor excitation current sources, 200 μA to 2 mA; up to 14 GPIO pins</td>
<td>High resolution, low power, and abundant resources</td>
</tr>
</tbody>
</table>
AD8622

Description: Low power and precision op amp

- **Bandwidth:** 540 kHz
- **V_{noise} density:** 11 nV/√Hz, I_{bias} = 45 pA, I_{f/f} = 350 μA

Benefits: Very low noise and low leakage current

AD8667

Description: Low noise op amp

- **Bandwidth:** 520 kHz
- **V_{noise} density:** 21 nV/√Hz, I_{bias} = 0.3 pA, I_{f/f} = 355 μA

Benefits: Extremely low leakage current, battery powered

ADA4051-1

Description: Micropower and auto-zero op amp

- **Bandwidth:** 125 kHz
- **V_{noise} density:** 95 nV/√Hz, I_{bias} = 20 pA, I_{f/f} = 20 μA

Benefits: Perfect buffer for battery supply, competitive price

AD8220

Description: Instrumentation amplifier

- **Bandwidth:** 1.5 MHz
- **V_{noise} density:** 1 nV/√Hz, I_{bias} = 25 pA, gain control interface = resistor

Benefits: New generation for replacing classic AD620

AD8226

Description: Instrumentation amplifier

- **Bandwidth:** 1.5 MHz
- **V_{noise} density:** 2 μV/√Hz, I_{bias} = 27 nA, gain control interface = pin strap

Benefits: Good performance and competitive price

AD8228

Description: Instrumentation amplifier

- **Bandwidth:** 650 kHz
- **V_{noise} density:** 50 μV, I_{bias} = 600 pA, gain control interface = pin strap

Benefits: Excellent temperature drift and low noise

AD8231

Description: Instrumentation amplifier

- **Bandwidth:** 2.7 MHz
- **V_{noise} density:** 15 μV, I_{bias} = 500 pA, gain control interface = digital

Benefits: Digital gain control with low offset voltage

AD8276

Description: Difference amplifier

- **Wide input range beyond supplies:** bandwidth: 550 kHz, low offset voltage drift: ±2 μV/°C maximum; low gain drift: 1 ppm/°C maximum

Benefits: Low cost solution for current source and RTD measurement

DAC

AD5410/AD5420

Description: Current source DAC

- **12-bit/16-bit resolution:** 0 mA to 24 mA ±0.01% FSR TUE; ±3 ppm/°C typical output drift; on-chip reference (10 ppm/°C maximum)

Benefits: Universal output DAC, supports HART communication

AD5421

Description: Current source DAC

- **16-bit resolution:** 3.2 mA to 24 mA; NAMUR-compliant alarm; TUE error: 0.05% maximum; on-chip reference TC: 4 ppm/°C maximum, loop voltage range: 5.5 V to 52 V

Benefits: Loop powered universal output DAC, supports HART

AD5680

Description: Single 16-bit, 5 ppm/°C on-chip reference; tiny 8-lead SOT-23/MSOP packages

Benefits: Tiny package and high performance

REF

ADR34xx

Description: Voltage references

- **Initial accuracy:** ±0.1% (maximum) maximum temperature coefficient: 8 ppm/°C

Benefits: Sink low quiescent current: 100 μA (maximum), low dropout voltage

ADR44x

Description: Voltage references

- **Initial accuracy:** ±0.04% (maximum), temperature coefficient: 3 ppm/°C; voltage noise: 2.25 μV p-p type in 0.1 Hz to 10 Hz

Benefits: Ultralow noise, high initial accuracy, and perfect temp drift

Gate Driver

ADuM322x

Description: Isolated gate driver

- **Dual-channel isolated:** 2.5 kV rms; 4 A peak output current, 4.5 V to 18 V output drive, output shoot-through logic protection; dc to 1 MHz

Benefits: Output shoot-through logic protection, enhanced system-level ESD performance

ADuM7234

Description: Isolated gate driver

- **Dual-channel isolated:** 1 kV rms; 4 A peak output current, high frequency operation: 1 MHz maximum, narrow-body, 16-lead SOIC, 1 kV rms input-to-output withstand voltage

Benefits: 1 kV rms input-to-output withstand voltage with competitive price

Isolator

ADuM320x

Description: Dual channel Digital isolators

- **2.5 kV rms; low power operation:** 3 V/5 V level translation; high data rate: dc to 25 Mbps (NRZ) enhanced system-level ESD performance per IEC 61000-4-x

Benefits: Dual dc-to-25 Mbps (NRZ) signal isolation channels, low power operation

ADuM140x

Description: Quad channel digital isolators

- **2.5 kV rms; low power operation:** 3 V/5 V level translation; high data rate: dc to 90 Mbps (NRZ), output enable function

Benefits: High data rate: dc to 90 Mbps (NRZ), low power operation

ADuM744x

Description: Quad channel isolators

- **1 kV rms isolation rating, low power operation; bidirectional communication:** up to 25 Mbps data rate (NRZ), 3 V/5 V level translation

Benefits: Low power operation and competitive price

Interface

ADM2587E

Description: Isolated RS-485/RS-422

- **Half or full duplex:** 500 kbps, 5 V or 3.3 V operation

Benefits: Integrated isolated dc-to-dc ±15 kV ESD

ADM2483

Description: Isolated RS-485 transceiver

- **Half-duplex:** 500 kbps data rate, 5 V or 3 V operations (V_{source}), low power operation: 2.5 mA max, 2.5 V isolation

Benefits: Low power operation and competitive price

Wireless

ADF7023

Description: ISM band FSK/FSK/ISM/GMSK transceiver IC

- **Frequency bands:** 862 MHz to 928 MHz, 431 MHz to 464 MHz; ultralow power; ISM band, data rates supported, 1 kbps to 300 Kbps, single-ended and differential PAs

Benefits: ISM band, data rate: 1 kbps to 300 kbps, very low power consumption

MUX

ADG1408

Description: Multiplexers

- **4-channel/8-channel, ±15 V supply:** 4.7 Ω maximum on resistance, up to 190 mA continuous current, rail-to-rail operation

Benefits: Fully specified at ±15 V, ±20 V, ±12 V, and ±36 V, high switching speed, break-before-make switching action

ADG5408

Description: Multiplexers

- **Latch-up proof construction, 4-channel/8-channel:** 8 kV ESD rating, low on resistance (13.5 Ω typical),

Benefits: Fully specified at ±15 V, ±20 V, ±12 V, and ±36 V, high switching speed, break-before-make switching action
Main Product Introduction (continued)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Key Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP2300/ADP2301</td>
<td>DC-to-DC regulator</td>
<td>Single nonsynchronous step-down dc-to-dc converter, 1.2 A output, 0.7 MHz/1.4 MHz frequency, input voltage range from 3.0 V to 20 V</td>
<td>Small SOT23-6 package, few peripheral components, and small solution size</td>
</tr>
<tr>
<td>ADP1720</td>
<td>Linear regulator</td>
<td>Wide input voltage range: 4 V to 28 V, max output current: 50 mA, accuracy over line, load, and temperature: ±2%, fixed 3.3 V and 5.0 V output voltage options</td>
<td>Wide input voltage range: 4 V to 28 V</td>
</tr>
<tr>
<td>ADP1612/ADP1613</td>
<td>DC-to-DC regulator</td>
<td>Voltage input: 1.8 V to 5.5 V, output voltage: Vin to 20 V, pin-selectable 650 kHz or 1.3 MHz PWM frequency</td>
<td>Boost dc-to-dc</td>
</tr>
<tr>
<td>ADP125</td>
<td>Linear regulator</td>
<td>5.5 V input, 500 mA maximum output current, 1% initial accuracy, up to 31 fixed-output voltage options available from 1.75 V to 3.3 V; low quiescent current: 45 μA</td>
<td>Excellent load/line transient response</td>
</tr>
</tbody>
</table>

Circuits from the Lab™ Reference Circuits for Electromagnetic Flow Meter Solutions

- Complete High Speed, High CMRR Precision Analog Front End for Process Control (CN0213)—www.analog.com/CN0213
- 4 mA-to-20 mA Loop-Powered Temperature Monitor Using the ADuC7060/ADuC7061 Precision Analog Microcontroller (CN0145)—www.analog.com/CN0145
- Simplified 16-Bit, 4 mA-to-20 mA Output Solution Using the AD5420 (CN0098)—www.analog.com/CN0098
- 16-Bit Fully Isolated Output Module Using the AD5422 Single Chip Voltage and Current Output DAC and the ADuM1401 Digital Isolator (CN0065)—www.analog.com/CN0065
- Fully Isolated Input Module Based on the AD7793 24-Bit Σ-Δ ADC and the ADuM5401 Digital Isolator (CN0066)—www.analog.com/CN0066

What ADI Can Provide to Customers

- ADC ADIsimADC; Σ-Δ ADC register configuration assistant
- DAC ADIsimDAC
- AMP ADIsimOpAmp, ADIsimDiffAmp
- Power EVB and ADIsimPower
- Processor EVB emulation tools and some software

Customer Interaction Center cic.asia@analog.com
EngineerZone ez.analog.com
Free Sample www.analog.com/sample