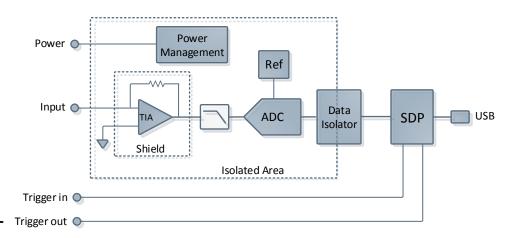
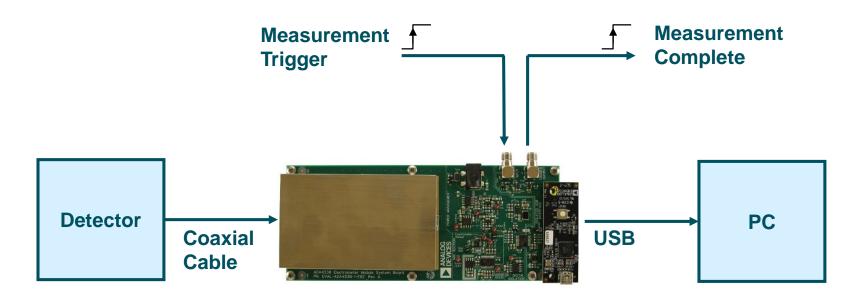

Femtoammeter Design: Development Module for Charged Particle Detection


GUSTAVO CASTRO
SYSTEM APPLICATIONS ENGINEER
PRECISION INSTRUMENTATION

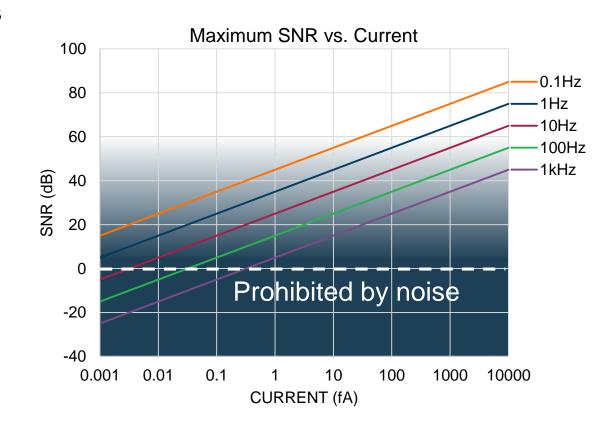
Femtoammeter Module


- Development module for sensors with low-level current output
 - Direct interface to photodiodes, faraday cups through SMA connector
- Features
 - <10fA sensitivity with 10GΩ transimpedance
 - 400pA measurement range
 - Shielding
 - Isolation with ADuM3151
 - Femtoampere input bias op amp
 - ADA4530-1
 - 24-bit resolution ADC
 - AD7172-2
 - USB interface to PC via SDP
 - Simple power supply: 9VDC input
 - ADP7118, ADP2442, ADP7182
 - Measurement synchronization
 - Trigger in/out signals
 - Can be reconfigured as electrometer frontend

Example Application

Photodiode Faraday cup Photomultiplier tubes (PMT) Electron-multiplier

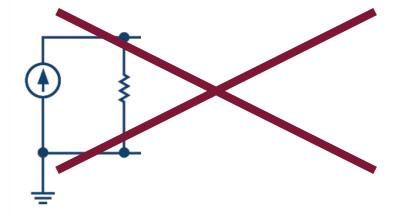
. . .

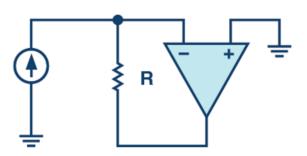

Fundamental Measurement Limits

- ► The discrete nature of electrical current generates "shot noise"
- ► Shot noise increases as the square root of current

$$i_i = \sqrt{2qI\Delta f}$$

- ► At very low-level currents, shot noise can be greater than the measurement
 - Lower bandwidth; longer measurement times are required

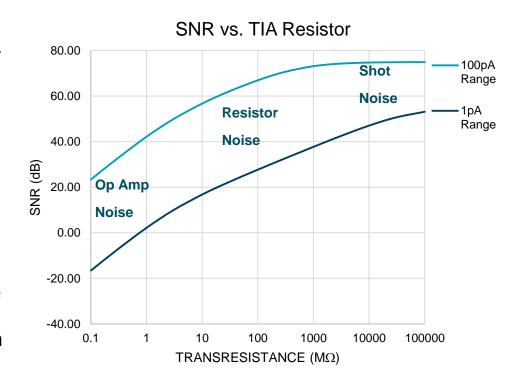

$$SNR = \sqrt{\frac{I}{2q\Delta f}}$$



Measuring Low-Level Currents

- ▶ Option 1: resistor + buffer/amplifier
 - The current can flow through a resistor and then amplify
 - Increases burden voltage
 - Increases noise

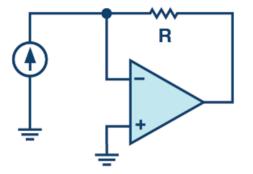
- ▶ Option 2: transimpedance amplifier
 - The current still flows through a resistor
 - The op amp is used to reduce burden voltage
 - Keeps amplifier noise and error contribution low

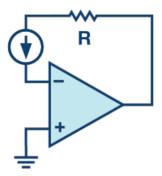

Resistor and Op Amp Noise

- Resistor
- ► The greater the resistor, the better SNR
 - Signal increases proportional to resistor value (Ohm's law)
 - Noise increases per square-root of resistor value (Johnson noise)

$$i_r = \sqrt{\frac{4kT}{R}\Delta f}$$

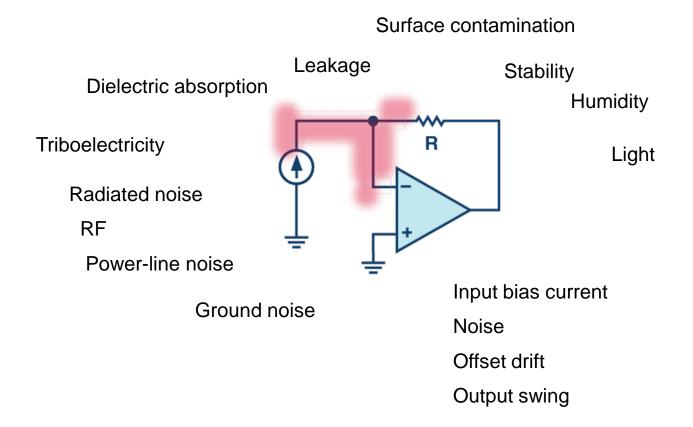
- Op Amp
- At low bandwidth, TIA has unity noise gain
 - The op amp's voltage noise contribution to current noise gets divided by resistor value


$$i_a = \frac{e_a}{R}$$



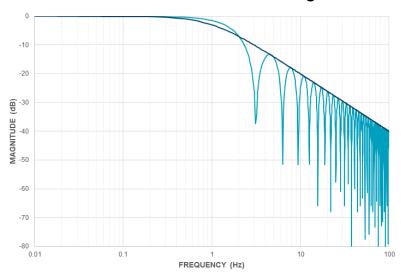
Resistor and Op Amp Noise

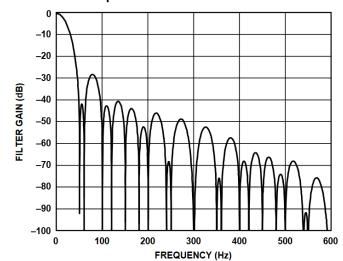
- In conclusion, to measure small currents, use
 - A large resistor
 - A very low noise op amp
 - A very low input-bias op amp like the ADA4530-1


- ▶ With large resistors
 - The amplifier will become slower (due to frequency compensation)
 - The op amp's input bias current can saturate the output
 - Doubles every 10°C

► Example: 100pA*10GΩ = 1V

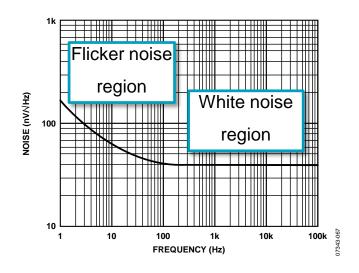
The Implementation Problems




Noise Reduction: The Effect of Averaging vs. Filtering

- Sensitivity requires minimizing the noise
- Averaging and filtering reduce measurement bandwidth but work a little different
- ► The average of N samples:
 - Reduces the noise by √N (flat-band noise)
 - Reduces the effective maximum frequency by 2^N
 - Increases measurement time
 - Rejects frequencies at the notches
 - Good for power-line noise rejection
 - Produces aliasing above the notches
- Effectively a simple FIR filter
 - Can be arbitrarily short/long
 - Very popular these days
- Sigma-delta ADCs like AD7172 perform this function internally using specialized filters

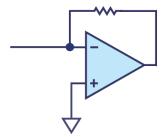
1st Order Filter vs. Average


Example Filter Transfer Function in AD7172-2



Flicker Noise and Low-Level Measurements

- ► Flicker (1/f) noise often limits measurement front-end sensitivity
- Noise reduction by filtering or averaging fails upon reaching the 1/f corner
 - Averaging reduces flat-band noise
 - Noise amplitude is not reduced by √N after reaching this region
 - The longer the average, the longer we look at the signal, the lower we move on the frequency band
- Common flicker noise sources:
 - ICs and semiconductor devices
 - Op amps, references, diodes...
 - Resistor excess noise
 - Noise index sometimes available from manufacturers

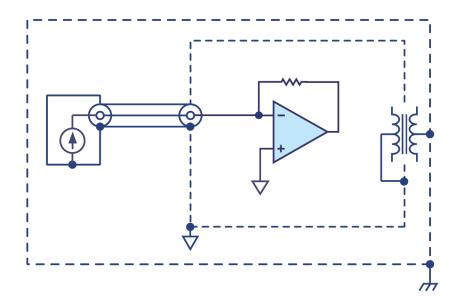


Extrinsic Noise

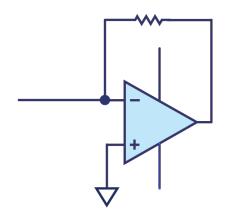
- Main sources:
 - Power lines (50/60Hz)
 - RF (e.g. wireless communications)
- Reaches the circuit via
 - Emission
 - Conduction
- ► Reduced by
 - Shielding
 - Minimize inductive loops (e.g. twist wires)
 - Proper layout and grounding
 - Isolation
 - Power supply decoupling
 - Filtering

Shielding

- Shields help keep stray fields away from sensitive nodes
- Shields should be grounded when exposed to operators for safety

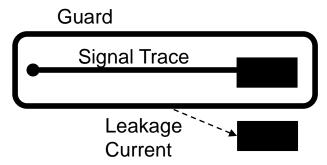


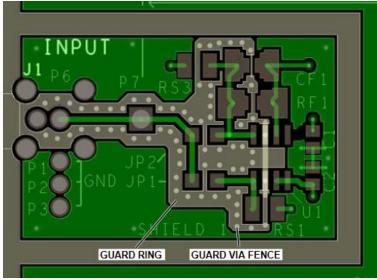
Isolation


- Great for breaking ground loops, reduce noise
- ▶ But must bring data (ADuM3151) and power across isolation barrier
- Proper connections are required to avoid coupling of the commonmode current into the measurement
 - Or use batteries
- Shields can couple noise into isolated circuits
 - Keep shields away from sensitive nodes
 - Or use a driven shield (guard) inside the shield

Surface and Board Leakage

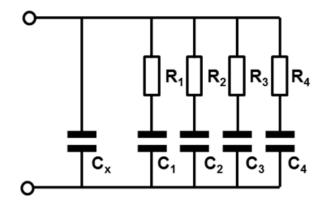
- The surface of dielectrics has better conduction properties due to contamination, humidity, etc
 - This includes FR-4 and PTFE board materials, no matter how good their bulk properties are
- Sources of contamination:
 - Solder flux residue from assembly process
 - No-clean solder residue is difficult to remove
 - Dust and other particulate accumulation
- Washing assemblies is recommended after assembly
- Moisture reduces insulation properties of PCB and cables
 - Bake after wash to eliminate moisture absorption
 - Choose appropriate materials and perform measurements in controlled environments


Material	Moisture Absorption (%)
Hi Pref FR-4	0.50
Nearly pure PTFE	0.02

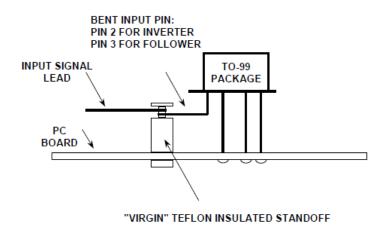

Source: Rogers Corp.

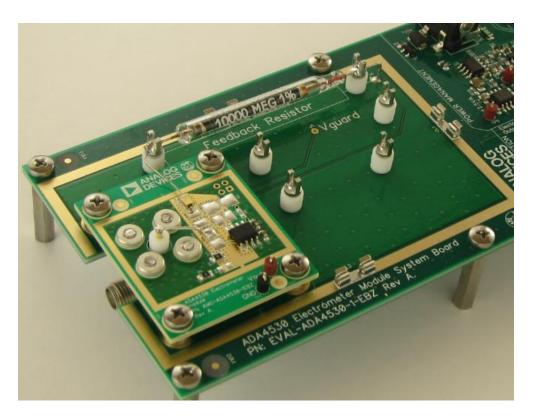
Dealing with Leakage on the PCB

- Better layout yields better performance over time and environmental conditions
- ▶ Guard rings
 - Prevents sensitive current to flow through unwanted paths
 - Needs to be driven by an amplifier at the same potential as the input (e.g. a buffer)
- ▶ Remove solder mask
 - Eliminates the conduction path over the guard ring
 - Solder mask absorbs moisture too
- ▶ Board cuts



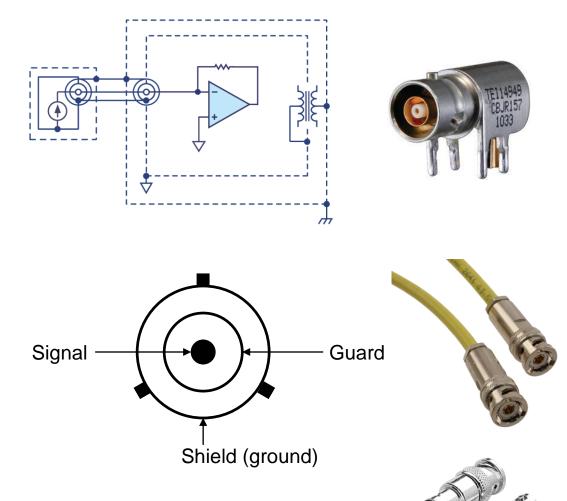
Dielectric Absorption


- Caused by the polarization of the dielectric between conductor plates upon application of an electric field
- ► Commonly observed in
 - Capacitors
 - Multilayer PCBs
- ► The polarization relaxation has a longer time constant than the capacitance formed by the plates
- ▶ Often modeled as an RC in parallel with the "ideal" capacitor
- ► This is also why large capacitors are handled with a bleeding resistor or a short (safety)



Dealing with Dielectric Absorption in PCBs

- ► Use PTFE (Teflon™) laminates (Rogers Corp.)
- Stand-offs available for airwiring
- Minimize absorbing material: board cuts



Interconnects for Low-Current Measurement

- Cables and connectors
 - Shielding is a must
- BNC, SMA and coaxial cables are OK as long as there is very little potential difference between center conductor and shield
 - Cost effective
 - Some RF materials (PTFE) have also good low-leakage, low DA properties
 - Beware of safety with groundisolated measurements
- Best: use triax connectors and cables
 - BNC to triax adapters available for interfacing to sensors

Summary

Design of low-level current measurement hardware requires attention to many details!

Problem	Cause	Solution
Leakage on PCB	Moisture and contamination	Guard rings, board cuts, dust covers
	Solder flux contamination	Avoid no-clean solder; wash and bake
Dielectric absorption	Charge trapped in dielectrics	Use PTFE in boards and cables, guarding
Cable leakage	Poor-quality insulation between conductors	Use PTFE-insulated cables or triax cables
Extrinsic noise	E/M fields, Powerline interference	Shielding and guarding
	Ground noise	Isolation
	Light-induced charge	Shielding/covers
	Mechanical vibrations, triboelectricity	Cable tie-downs

► A femtoammeter module solves many problems and enables quick and simple prototyping and evaluation

QUESTIONS?

THANK YOU!