Circuit Function & Benefits

This circuit is a quad parametric measurement unit (PMU) with supporting components to service a minimum of four device-under-test (DUT) channels. Typically, PMU channels are shared among a number of DUT channels. Although the AD5522 is very integrated and delivers four full PMU solutions, an external reference and an ADC are required as a minimum to complete this portion of the ATE signal chain. Typically, this reference and the ADC can be shared among multiple PMU packages. For further flexibility, additional external switches can be used to extend the capabilities of the PMU by extending the range of DUT capacitances that the AD5522 can drive.

Circuit Description

The AD5522 quad PMU provides the forcing and measuring functions for the DUT, but digitizing is required external to the PMU. This can be achieved as follows:

  • An ADC can be dedicated to each individual PMU channel, providing the fastest throughput and result.
  • An ADC can be shared across multiple channels. In Figure 1, one AD7685 ADC is shared across the four PMU channels. In some applications, an ADC might be shared across many more channels, sometimes 8 or 16 PMU channels.

Figure 1: Parametric Measurement Unit and Supporting Components (Simplified Schematic)

The ADC can be shared across channels using the internal Disable feature of each MEASOUTx pin. This requires a write command to the PMU register to enable/disable the appropriate switches. If this method is chosen, note that no more than one MEASOUTx channel should be selected at any one time.

Alternatively, an external 4:1 multiplexer can be used to control the measurement channel selection. In this way, all four MEASOUTx paths can be enabled, and the multiplexer makes the selection. Similarly, an 8:1 or 16:1 multiplexer would allow more measurement paths to share the one ADC. The choice of this multiplexer will depend on the ADC used and its input voltage range. For bipolar input ADCs, one member of the ADG1404/ADG1204 family would be ideal; for single-supply usage, the ADG706 and ADG708 would be more suitable. The output impedance of the MEASOUTx path is typically 60 Ω in addition to the switch impedance. Therefore, an ADC buffer, such as the ADA4898-1, should be considered to drive the ADC (buffer not shown).

The AD7685 16-bit, 250 kSPS ADC was chosen for this application because of its ability to handle the 0 V to 4.5 V output range of the MEASOUTx path. In addition, the availability of other ADCs with faster speeds in the same footprint (for example, the 16-bit, 500 kSPS AD7686) also makes it very attractive for upgrade paths.

The AD5522 requires a 5 V reference if a 20 V output range is required. The ADR435 5 V XFET reference was chosen because of its low tempco (10 ppm/°C, A Grade; 3 ppm/°C, B Grade), low noise (8 μV p-p, 0.1 Hz to 10 Hz), and ability to drive multiple PMU channels (30 mA source, 20 mA sink).

Some applications require the PMU to drive a wide range of DUT capacitances, especially applications where the PMU is connected to a power supply pin or where the PMU is used as a device power supply and will see the decoupling/bypass capacitance of the DUT. In such cases, an external switch connected to the CCOMP pin, rather than a fixed capacitor, allows for additional CCOMP capacitors to be switched in and out, thereby allowing for optimization of settling time and stability with various capacitive loads. The switch chosen for this circuit was the ADG412 quad SPST, which has an on- resistance of less than 50 Ω. The quad SPST switch was chosen instead of a multiplexer because most multiplexers allow only one of a number of channels to be on at any one time. Using the quad switch, each of the drains can be connected together and the sources connected to the each of the compensation capacitors, thereby providing 24 − 1 possible combinations of CCOMP.

Similarly, the ADG1209 differential multiplexer is used in this circuit to accommodate a wider range of feedforward capacitances connected to the CFFx pins, enabling the AD5522 to drive a wider range of DUT capacitance. The series resistance of the multiplexer used should be such that 1/(2π × RON × CDUT) > 100 kHz. In this example, the ADG1209 services two AD5522 channels.

The switch and capacitors will see the same voltage excursion as the voltage range at the FOH pin of the AD5522. Therefore, the voltage rating of the switch and capacitors should take this into account. CFF capacitors can have a ≤10% tolerance; this extra variation directly affects settling times, especially in the measure current mode for low currents. Selection of CCOMP capacitors should be ≤5% tolerance. Table 1 gives suggested nominal compensation capacitors CCOMP and CFF for various values of load capacitance.

Table 1. Suggested Compensation Capacitor Selection

 ≤1 nF
 100 pF
 220 pF
 ≤10 nF
 100 pF
 1 nF
 ≤100 nF

The circuit must be constructed on a multilayer PC board with a large area ground plane. Proper layout, grounding, and decoupling techniques must be used to achieve optimum performance (see Tutorial MT-031, Grounding Data Converters and Solving the Mystery of "AGND" and "DGND" and Tutorial MT-101, Decoupling Techniques). Note that Figure 1 is a simplified schematic and does not show all the necessary decoupling.

Careful consideration of the power supply and ground return layout helps to ensure the rated performance. Design the printed circuit board (PCB) on which the AD5522 is mounted so that the analog and digital sections are separated and confined to certain areas of the board. If the AD5522 is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. Establish the star ground point as close as possible to the device.

Figure 2: Output Voltage Step Response for 11.25 V Force Voltage Step with 220 pFLoad for Various Values of CCOMP Using ADG412 SPST Switch 

Figure 3: Integral Linearity Performance Using the AD7685 to Measure FIMV Error (FI Range = ±2 mA, Measout Gain = 0.2) 

Figure 4: Integral Linearity Pperformance Using the AD7685 to Measure FVMI Error (FV Range = ±10 V in 2mA Range into a 5.6 kΩ Load) 

Figure 5: Integral Linearity Performance Using the AD7685 to Measure FVMV Error (FV Range = ±10 V, Measout Gain = 0.2) 

Figure 6: Integral Linearity Performance Using the AD7685 to Measure FIMI Error (FI Range = ±2 mA, Measout Gain = 0.2)

For supplies with multiple pins (AVSS and AVDD), it is recommended that these pins be tied together and that each supply be decoupled only once.

The AD5522 should have ample supply decoupling of 10 μF in parallel with 0.1 μF on each supply located as close to the package as possible, ideally right up against the device. The 10 μF capacitors are the tantalum bead type. The 0.1 μF capacitors should have low effective series resistance (ESR) and low effective series inductance (ESL)–typical of the common ceramic types that provide a low impedance path to ground at high frequencies–to handle transient currents due to internal logic switching.

Avoid running digital lines under the device because they can couple noise onto the device. However, allow the analog ground plane to run under the AD5522 to avoid noise coupling (this applies only to the package with paddle up). The power supply lines of the AD5522 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching digital signals should be shielded with digital ground to avoid radiating noise to other parts of the board, and they should never be run near the reference inputs. It is essential to minimize noise on all VREF lines.

Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other to reduce the effects of feedthrough through the board. As is the case for all thin packages, care must be taken to avoid flexing the package and to avoid a point load on the surface of this package during the assembly process.

Also, note that the exposed paddle of the AD5522 is connected to the negative supply, AVSS.

Common Variations

PMU circuits do not always need to use the full 20 V output range of the AD5522. Many applications require only a portion of that voltage. For example, the use of the ADR421 2.5 V voltage reference will allow the user to achieve a nominal output voltage range of ±5.6 V, which can be further scaled to suit the DUT requirements by using the on-chip OFFSET DAC. (See the AD5522 data sheet for more detail). There is also the added benefit of being able to use lower supply rails. This helps by reducing the power dissipated in the AD5522, especially when operating at the full 80 mA current range per channel.

Variations in terms of the partitioning of PMU measurement channels per ADC channel could mean that one ADC channel is shared among more PMU channels (sometimes in 8:1 or 16:1 ratios). Alternatively, the on-chip MEASOUT disable feature or an analog multiplexer can be used for this function. Multiplexers add more series resistance to the measurement path; therefore, buffering may be required prior to the ADC input.

Other variations include the use of ADCs, which handle bipolar signal ranges, or ADCs with faster sampling rates.

Sample Products




Available Product
Models to Sample

ADR435 Ultralow Noise XFET Voltage References with Current Sink and Source Capability





ADG412 LC2MOS Precision Quad SPST Switch

Contact ADI

AD5522 Quad Parametric Measurement Unit With Integrated 16-Bit Level Setting DACs

Contact ADI

ADG1209 Low Capacitance, 4-Channel, ±15 V/+12 V iCMOS™ Multiplexer




AD7685 16-Bit, 250 kSPS PulSAR® ADC in MSOP/QFN







Buy functionality exists in desktop site