Precision, Unipolar, Inverting Conversion Using the AD5546/AD5556 DAC
Manufactured by:

Circuit Function & Benefits

This circuit provides precision, unipolar, inverting data conversion using the AD5546/AD5556 current output DAC with the ADR03 precision reference and AD8628 operational amplifier (op amp). This circuit provides accurate, low noise, high speed output voltage capability and is well suited for process control, automatic test equipment, and digital calibration applications. 

Figure 1: Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to -VREF

Circuit Description

The AD5546 and AD5556 are 16-bit and 14-bit, precision, multiplying, low power, current output, parallel input digital-to-analog converters. They operate from a single 2.7 V to 5.5 V supply with ±15 V multiplying references for 4-quadrant outputs. Built-in 4-quadrant resistors facilitate the resistance matching and temperature tracking that minimize the number of components needed for multiquadrant applications.

This circuit uses the ADR03, which is a highly accuracy, high stability, 2.5 V precision voltage reference. As voltage reference temperature coefficient and long-term drift are primary considerations for applications requiring high precision conversion, this device is an ideal candidate.

An op amp is used in the current-to-voltage (I-V) stage of this circuit. An op amp’s bias current and offset voltage are both important selection criteria for use with precision current output DACs. Therefore, this circuit employs the AD8628 auto-zero op amp, which has ultralow offset voltage (1 μV typical) and bias current (30 pA typical). The value of C7 for this circuit is 2.2 pF, which is optimized to compensate for the external output capacitance of the DAC.

Note that the AD8628 has rail-to-rail input and output stages, but the output can only come within a few millivolts of either rail depending on load current. For the circuit shown, the output can swing from –2.5 V to approximately –1 mV.

The input offset voltage of the op amp is multiplied by the variable noise gain (due to the code-dependent output resistance of the DAC) of the circuit. A change in this noise gain between two adjacent digital codes produces a step change in the output voltage due to the amplifier’s input offset voltage. This output voltage change is superimposed on the desired change in output between the two codes and gives rise to a differential linearity error, which, if large enough, could cause the DAC to be nonmonotonic. In general, the input offset voltage should be a fraction of an LSB to ensure monotonic behavior when stepping through codes. For the ADR03 and the AD5546, the LSB size is


The input offset voltage of the AD8628 auto-zero op amp is typically 1 μV, which is negligible compared to the LSB size.

The input bias current of an op amp also generates an offset at the voltage output as a result of the bias current flowing through the feedback resistor, RFB. In the case of the AD8628, the input bias current is only 30 pA typical, which flowing through the RFB resistor (10 kΩ typical), produces an error of only 0.3 μV.

The AD5546/AD5556 DAC architecture uses a current-steering R-2R ladder design that requires an external reference and op amp to generate the output voltage. VOUT can be calculated for the AD5546 using the equation


where D is the decimal equivalent of the input code. VOUT can be calculated for the AD5556 using the equation


where D is the decimal equivalent of the input code.

Common Variations

For multichannel applications, the AD8629 is a dual version of the AD8628. The ADR01 and ADR02 are other low noise references available from the same reference family as the ADR03. Other low noise references that would be suitable are the ADR441 and ADR445 products. The size of the reference input voltage is restricted by the rail-to-rail voltage of the op amp selected.

These circuits can also be used as a variable gain element by utilizing the multiplying bandwidth nature of the R-2R structure of the AD5546/AD5556 DAC. In this configuration, remove the external precision reference and apply the signal to be multiplied to the reference input pins of the DAC.

Sample Products





Available Product
Models to Sample

ADL5385 30 MHz TO 2200 MHz Quadrature Modulator


AD9779A Dual 16-Bit, 1 GSPS, Digital-to-Analog Converter


AD9788 Dual 16-Bit 800 MSPS DAC with Low Power 32-Bit Complex NCO

Contact ADI