Communications Test Equipment

Analog Devices offers a variety of solutions to address the needs of communications test equipment. RadioVerse integrated transceivers provide a complete, compact, low-power solution for software-defined radios. Analog Devices high speed converters deliver the performance required to achieve wide bandwidth transmit and receive channels for the latest technologies. High performance PLLs, quadrature modulators and demodulators, wideband mixers, wideband switches, and attenuators collectively deliver superior performance enabling the highest performance communications test solutions. With the most complete line of transceivers, data converters and RF components, all of the required signal chain elements are available from a single supplier.

Communications Test Equipment

Featured Products (8)

Signal Chains

(3)

Click on a part in the diagram below

Reference Designs

(11)

X +

CN0375

CN0302

CN0232

CN0245

CN0205

CN0134

CN0174

CN0248

Evaluation Kits

(6)

X +

AD-FMCOMMS5-EBZ

AD-FMCOMMS5-EBZ Circuit Diagram

Evaluation Kits

The AD-FMCOMMS5-EBZ is a high-speed analog module designed to showcase the AD9361 in multiple-input, multiple-output (MIMO) applications. The AD9361 is a high performance, highly integrated RF transceiver that operates from 70 MHz to 6 GHz, and supports bandwidths from less than 200 kHz to 56 MHz. The AD-FMCOMMS5-EBZ supports dual AD9361 devices, allowing for the creation of a 4x4 MIMO system. This platform is intended to enable the prototyping and development of many software defined radio applications, such as active antennas, transmit beamforming, and receive angle of arrival systems. The AD-FMCOMMS5-EBZ board has both wideband channels covering the full 6 GHz range, as well as narrowband channels matched to 2.4GHz. The AD-FMCOMMS5-EBZ also contains dual ADG918 SPDT switches, which create a calibration matrix between the two AD9361s. This switch matrix hardware, combined with the Analog Devices supplied API software, allow for a full digital and RF synchronization between the two AD9361s. The providing APIs also support full independent device configuration of the two AD9361s.

Because the AD-FMCOMMS5-EBZ supports both narrow and wideband input and output connectivity, it provides RF engineers the ability to connect the AD9361 to a RF test bench (vector signal analyzer, signal generator, etc.) and measure narrowband performance, as well as providing software and system engineers the ability to quickly prototype across the full 6 GHz operating range. Additionally the AD-FMCOMMS5-EBZ allows for both AD9361 devices to receive an on-board generated external LO signal, which can provide improved RF performance.

Applications
  • General purpose design suitable for any software-designed radio application
  • MIMO radio
  • Transmit beamforming and receive angle of arrival detection
  • Point to point communication systems
  • Femtocell/picocell/microcell base stations

EVAL-AD-FMCOMMS6-EBZ

EVAL-AD-FMCOMMS6-EBZ Circuit Diagram

EVAL-AD-FMCOMMS6-EBZ Photo

Evaluation Kits

The AD-FMCOMMS6-EBZ eval board is a 400MHz to 4.4GHz receiver based on the AD9652 dual 16bit analog to digital converter, the ADL5566 High Dynamic Range RF/IF Dual Differential Amplifier and the ADL5380 quadrature demodulator.

This is an I and Q demodulation approach to direct convert (also known as a homodyne or zero IF) receiver architecture. Direct conversion radios perform just one frequency translation compared to a super-heterodyne receiver that can perform several frequency translations. One frequency translation is advantageous because it:

  • Reduces receiver complexity and the number of stages needed, increasing performance and reducing power consumption
  • Avoids image rejection issues and unwanted mixing


This topology will provide image rejection and early implementation of the differential signal environment. There is an amplification stage to maintain the full-scale input to the ACD. The local oscillator and ADC clock are on board and share the same reference signal prevent smearing. The form factor is VITA57 compliant and all of the DC power is routed from the data capture board through an FMC connector. This evaluation board demonstrates a high performance receiver signal chain aimed at military and commercial radar using “commercial off the shelf” (COTS) components. The overall circuit has a bandwidth of 220MHz with a pass band flatness of +/_ 1.0 dB. The SNR and SFDR measured at an IF of 145MHz are 64dB and 75dBc, respectively.


AD-FMCADC2-EBZ

AD-FMCADC2-EBZ Circuit Diagram

AD-FMCADC2-EBZ Photo

Evaluation Kits

The AD-FMCADC2-EBZ is a high-speed data acquisition board featuring the AD9625 single channel ADC at 2500 MSPS, in a FMC form factor which supports the JESD204B high speed serial interface. The AD9625 is a 12-bit monolithic sampling analog-to-digital converter (ADC) that operates at conversion rates of up to 2.5 GSPS. This product is designed for sampling wide bandwidth analog signals up to the second Nyquist zone. The combination of wide input bandwidth, high sampling rate, and excellent linearity of the AD9625 is ideally suited for spectrum analyzers, data acquisition systems, and a wide assortment of military electronics applications, such as radar and jamming/anti-jamming measures.

The board meets most of the FMC specifications in terms of mechanical size, mounting hole locations, and more. Although this board does meet most of the FMC specifications, it’s not meant as a commercial off-the-shelf (COTS) board. If you want a commercial, ready to integrate product, please refer to one of the many FMC manufacturers and the FMC specification (ANSI/VITA 57.1).

This board is targeted to use the ADI reference designs that work with Xilinx development systems. ADI provides complete source (HDL and software) to re-create those projects (minus the IP provided by the FPGA vendors, which we use), but may not provide enough info to port this to your custom platform

The design of the board is specifically tailored to synchronizing multiple AD-FMCADC2-EBZ boards together.  For more information on synchronization please refer to A Test Method for Synchronizing Multiple GSPS Converters.

The reference design includes the device data capture via the JESD204B serial interface and the SPI interface. The samples are written to the external DDR-DRAM. It allows programming the device and monitoring its internal registers via SPI.

AD-FMCOMMS2-EBZ

AD-FMCOMMS2-EBZ Circuit Diagram

AD-FMCOMMS2-EBZ Photo

Evaluation Kits

The AD-FMCOMMS2-EBZ is a high-speed analog module designed to showcase the AD9361, a high performance, highly integrated RF transceiver intended for use in RF applications, such as 3G and 4G base station and test equipment applications, and software defined radios. Its programmability and wideband capability make it ideal for a broad range of transceiver applications. The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers, simplifying design-in by providing a configurable digital interface to a processor or FPGA. The AD9361 chip operates in the 70 MHz to 6 GHz range, covering most licensed and unlicensed bands. The AD-FMCOMMS2-EBZ board comes specifically tuned and optimized to 2.4 GHz and due to the limitations of the on-board discrete external components, it may exhibit diminished RF performance on some other programmed configurations. The chip supports channel bandwidths from less than 200 kHz to 56 MHz by changing sample rate, digital filters, and decimation, all programmable within the AD9361 itself.

The AD-FMCOMMS2-EBZ provides RF engineers the ability to connect the AD9361 to a RF testbench (Vector Signal Analyzer, Signal generator, etc) and measure performance. The external components (which can easily be swapped) on the AD-FMCOMMS2-EBZ have a narrower RF tuning range 2400 – 2500 MHz. It is expected that most engineers will change these external components (pin for pin replacements from various vendors are available) for their specific application/frequency of interest. Anyone interested in a wider tuning range board should look at the AD-FMCOMMS3-EBZ.

AD-FMCOMMS3-EBZ

AD-FMCOMMS3-EBZ Circuit Diagram

AD-FMCOMMS3-EBZ Photo

Evaluation Kits

The AD-FMCOMMS3-EBZ is a high-speed analog module designed to showcase the AD9361, a high performance, highly integrated RF transceiver intended for use in RF applications, such as 3G and 4G base station and test equipment applications, and software defined radios. Its programmability and wideband capability make it ideal for a broad range of transceiver applications. The device combines an RF front end with a flexible mixed-signal baseband section and integrated frequency synthesizers, simplifying design-in by providing a configurable digital interface to a processor or FPGA. The AD9361 chip operates in the 70 MHz to 6 GHz range, covering most licensed and unlicensed bands. The chip supports channel bandwidths from less than 200 kHz to 56 MHz by changing sample rate, digital filters, and decimation, which are all programmable within the AD9361 itself.

The AD-FMCOMMS3-EBZ provides software developers and system architect who want a single platform to operate over a wider tuning range than the AD-FMCOMMS2-EBZ. RF performance expectations of this board must be tempered with the very wide band front end. It does meet the datasheet specifications at 2.4 GHz, but does not over the entire RF tuning range that the board supports. Typical performance data for the entire range (70 MHz – 6 GHz) which is supported by the platform is published within the board documentation. This board is primarily intended for system investigation and bringing up various waveforms from a software team before custom hardware is complete. The objective being for designers to see waveforms, but not being concerned about the last 1dB or 1% EVM of performance. For performance-oriented platforms – please refer to the AD-FMCOMMS2-EBZ.

AD-FMCOMMS4-EBZ

AD-FMCOMMS4-EBZ Circuit Diagram

AD-FMCOMMS4-EBZ Photo

Evaluation Kits

The AD-FMCOMMS4-EBZ provides software developers and system architect with a single 1 x 1 transceiver platform that can be software-configured for wideband tuning as well as narrowband RF performance.


In the wideband configuration, the AD-FMCOMMS4-EBZ will operate over the full 70 MHz to 6 GHz tuning range of the AD9364, however, the RF performance expectations of this configuration must be tempered with the very wide band front end. It will meet the AD9364 datasheet specifications at 2.4 GHz, but does not over the entire RF tuning range that the board can support. Typical performance data for the platform’s entire tuning range is published within the board documentation. This configuration is primarily intended for system investigation and bringing up various waveforms from a software team before custom hardware is complete. The objective being for designers to see waveforms, but not being concerned about the last 1dB or 1% EVM of performance.


The AD-FMCOMMS4-EBZ can also be user-configured for optimum performance in the 2400 – 2500 MHz band. In this configuration it may exhibit diminished RF performance on tuned frequencies or programmed configurations, outside of this band. This configuration is primarily intended to provide RF engineers with the ability to connect the AD9364 to an RF test bench (Vector Signal Analyzer, Signal generator, etc.) and achieve its optimum performance. The AD-FMCOMMS4-EBZ is a high-speed 1 x 1 agile RF transceiver analog FMC module software-tunable over the 56 MHz to 6 GHz band.